1
|
Otocka-Kmiecik A. Effect of Carotenoids on Paraoxonase-1 Activity and Gene Expression. Nutrients 2022; 14:nu14142842. [PMID: 35889799 PMCID: PMC9318174 DOI: 10.3390/nu14142842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/27/2022] Open
Abstract
Paraoxonase 1 (PON1) is an antioxidant enzyme attached to HDL with an anti-atherogenic potential. It protects LDL and HDL from lipid peroxidation. The enzyme is sensitive to various modulating factors, such as genetic polymorphisms as well as pharmacological, dietary (including carotenoids), and lifestyle interventions. Carotenoids are nutritional pigments with antioxidant activity. The aim of this review was to gather evidence on their effect on the modulation of PON1 activity and gene expression. Carotenoids administered as naturally occurring nutritional mixtures may present a synergistic beneficial effect on PON1 status. The effect of carotenoids on the enzyme depends on age, ethnicity, gender, diet, and PON1 genetic variation. Carotenoids, especially astaxanthin, β-carotene, and lycopene, increase PON1 activity. This effect may be explained by their ability to quench singlet oxygen and scavenge free radicals. β-carotene and lycopene were additionally shown to upregulate PON1 gene expression. The putative mechanisms of such regulation involve PON1 CpG-rich region methylation, Ca(2+)/calmodulin-dependent kinase II (CaMKKII) pathway induction, and upregulation via steroid regulatory element-binding protein-2 (SREBP-2). More detailed and extensive research on the mechanisms of PON1 modulation by carotenoids may lead to the development of new targeted therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Aneta Otocka-Kmiecik
- Department of Experimental Physiology, Medical University of Lodz, 6/8 Mazowiecka St., 92-215 Lodz, Poland
| |
Collapse
|
2
|
Mukherjee D, Ahmad R. COX-2/iNOS regulation during experimental hepatic injury and its mitigation by cloudy apple juice. Int J Biol Macromol 2019; 140:1006-1017. [PMID: 31445146 DOI: 10.1016/j.ijbiomac.2019.08.180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
A number of enzymes and transcription factors have been correlated with disease etiology. In this study, involvement of cyclooxygenase-2 and inducible-nitric oxide synthase is examined during diethylnitrosamine (DEN)-induced hepatic injury and cloudy apple juice (CAJ) supplementation. Liver injury was administered in rats by single dose of DEN (10 ml/kg bwt of 1% DEN), while 10 ml/kg bwt CAJ daily was given after 2 h of latency in DEN-treated animals for two weeks. CAJ was characterized by HPLC and subsequently examined for antioxidant power. During the course of treatment liver function, collagen (hydroxyproline), malondialdehyde, protein oxidation, antioxidant enzymes, ATPases, nitrite levels were investigated along with liver histopathology and electron microscopy. COX-2 and iNOS proteins were also localized in liver specimens. The results demonstrated rich polyphenols and antioxidant activity in CAJ. CAJ supplementation significantly restored liver biochemistry and anatomy as revealed by the refurbished investigated parameters. CAJ treatment also declined COX-2 and iNOS activities in injured animals. Electron microscopy demonstrated rejuvenated hepatocytes, Kupffer cells, RER, mitochondria and nucleus in CAJ supplemented animals. The novel outcomes of this study suggest that CAJ potentiates hepatoprotection by stimulating antioxidant power and regulating the COX-2 and iNOS proteins in the liver during experimental liver injury.
Collapse
Affiliation(s)
- Devoshree Mukherjee
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Riaz Ahmad
- Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
3
|
Martini D, Del Bo’ C, Porrini M, Ciappellano S, Riso P. Role of polyphenols and polyphenol-rich foods in the modulation of PON1 activity and expression. J Nutr Biochem 2017. [DOI: 10.1016/j.jnutbio.2017.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Han KH, Hashimoto N, Fukushima M. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes. World J Gastroenterol 2016; 22:37-49. [PMID: 26755859 PMCID: PMC4698500 DOI: 10.3748/wjg.v22.i1.37] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/25/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway.
Collapse
|
5
|
Gomes de Moura CF, Pidone Ribeiro FA, Lucke G, Boiago Gollucke AP, Fujiyama Oshima CT, Ribeiro DA. Apple juice attenuates genotoxicity and oxidative stress induced by cadmium exposure in multiple organs of rats. J Trace Elem Med Biol 2015; 32:7-12. [PMID: 26302906 DOI: 10.1016/j.jtemb.2015.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/31/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023]
Abstract
The aim of this study was to evaluate the health benefits associated with apple consumption following cadmium exposure. A total of 15 Wistar rats were distributed into three groups (n=5), as follows: control group (non-treated group, CTRL); cadmium group (Cd) and apple juice group (Cd+AJ). The results showed a decrease in the frequency micronucleated cells in bone marrow and hepatocytes in the group exposed to cadmium and treated with apple juice. Apple juice was also able to reduce the 8OHdG levels and to decrease genetic damage in liver and peripheral blood cells. Catalase (CAT) was decreased following apple juice intake. Taken together, our results demonstrate that apple juice seems to be able to prevent genotoxicity and oxidative stress induced by cadmium exposure in multiple organs of Wistar rats.
Collapse
Affiliation(s)
| | | | - Gabriela Lucke
- Department of Biosciences, Federal University of Sao Paulo, UNIFESP, SP, Brazil
| | | | | | - Daniel Araki Ribeiro
- Department of Pathology, Federal University of Sao Paulo, UNIFESP, SP, Brazil; Department of Biosciences, Federal University of Sao Paulo, UNIFESP, SP, Brazil.
| |
Collapse
|
6
|
Lou-Bonafonte JM, Gabás-Rivera C, Navarro MA, Osada J. PON1 and Mediterranean Diet. Nutrients 2015; 7:4068-92. [PMID: 26024295 PMCID: PMC4488773 DOI: 10.3390/nu7064068] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022] Open
Abstract
The Mediterranean diet has been proven to be highly effective in the prevention of cardiovascular diseases. Paraoxonase 1 (PON1) has been implicated in the development of those conditions, especially atherosclerosis. The present work describes a systematic review of current evidence supporting the influence of Mediterranean diet and its constituents on this enzyme. Despite the differential response of some genetic polymorphisms, the Mediterranean diet has been shown to exert a protective action on this enzyme. Extra virgin olive oil, the main source of fat, has been particularly effective in increasing PON1 activity, an action that could be due to low saturated fatty acid intake, oleic acid enrichment of phospholipids present in high-density lipoproteins that favor the activity, and increasing hepatic PON1 mRNA and protein expressions induced by minor components present in this oil. Other Mediterranean diet constituents, such as nuts, fruits and vegetables, have been effective in modulating the activity of the enzyme, pomegranate and its compounds being the best characterized items. Ongoing research on compounds isolated from all these natural products, mainly phenolic compounds and carotenoids, indicates that some of them are particularly effective, and this may enhance the use of nutraceuticals and functional foods capable of potentiating PON1 activity.
Collapse
Affiliation(s)
- José M Lou-Bonafonte
- Departamento de Farmacología y Fisiología, Facultad de Ciencias de la Salud y del Deporte, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Huesca, E-22002, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.
| | - Clara Gabás-Rivera
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain.
| | - María A Navarro
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain.
| | - Jesús Osada
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, E-28029, Spain.
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza, E-50013, Spain.
| |
Collapse
|
7
|
Kujawska M, Ewertowska M, Adamska T, Sadowski C, Ignatowicz E, Jodynis-Liebert J. Antioxidant effect of lycopene-enriched tomato paste on N-nitrosodiethylamine-induced oxidative stress in rats. J Physiol Biochem 2014; 70:981-990. [PMID: 25387411 PMCID: PMC4244575 DOI: 10.1007/s13105-014-0367-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022]
Abstract
Lycopene is a carotenoid pigment produced by vegetables and fruits, with tomatoes and their processed products being the most abundant sources. A high number of conjugated dienes make lycopene a powerful radical scavenger. Its antioxidant properties are considered to be primarily involved in many beneficial health effects. The present study was designed to assess the protective effect of lycopene-enriched tomato paste against N-nitrosodiethylamine (NDEA)-induced oxidative stress in rats. Forty-eight male Wistar rats were divided randomly into six groups. Four groups were treated with tomato paste, per os, for 28 days in doses which were equivalent to 0.5 (groups II and V) and 2.5 mg/kg b.w./day of lycopene (groups III and VI). Rats from groups IV-VI were given intraperitoneally a single dose of NDEA, 150 mg/kg b.w. Group I (control) was given distilled water. Pretreatment with tomato paste protected the antioxidant enzymes: superoxide dismutase, catalase and glutathione reductase. Their activity was recovered by 32-97 %, as compared to NDEA-treated rats. Microsomal lipid peroxidation in the liver was decreased in rats pretreated with a lower dose of tomato paste by 28 %, as compared to animals given NDEA alone. Pretreatment with tomato paste caused a decrease in plasma concentration of protein carbonyls, even below the control level, in rats given NDEA. Moreover, a 10 % reduction of DNA damage in leucocytes caused by NDEA was observed. The tomato paste tested was able to suppress NDEA-induced oxidative stress in rats.
Collapse
Affiliation(s)
- Malgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Str., 60-631, Poznań, Poland,
| | | | | | | | | | | |
Collapse
|
8
|
Abdelaziz DHA, Ali SA. The protective effect of Phoenix dactylifera L. seeds against CCl4-induced hepatotoxicity in rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:736-743. [PMID: 24945397 DOI: 10.1016/j.jep.2014.06.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/18/2014] [Accepted: 06/06/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Egyptian medicine, Phoenix dactylifera L. (date palm) seeds are listed in folk remedies for the management of diabetes, liver diseases and gastrointestinal disorders. The present study was conducted to investigate the protective effect of Phoenix dactylifera L. seeds aqueous suspension against the chemically-induced hepatic injury in rats. METHODS Liver injury was achieved by exposing Wistar rats to CCl4 (10% in olive oil; 0.5 mL/rat; IP) twice a week for 4 weeks. Along with CCl4, aqueous suspensions of raw or roasted Phoenix dactylifera seeds (1.0 g/kg) were administered orally in a daily manner. RESULTS Our results demonstrated that Phoenix dactylifera seeds significantly improved the CCl4-induced alterations in liver function parameters (AST, ALT, ALP and albumin). Moreover, the CCl4-induced oxidative stress, represented by elevated thiobarbituric acid reactive substance (TBARS), nitric oxide and oxidative DNA damage, was ameliorated by Phoenix dactylifera seeds treatment. In addition, Phoenix dactylifera seeds restored the activities of hepatic antioxidant enzymes (superoxide dismutase and glutathione S-transferase) that were declined after CCl4 treatment. Examination of liver histopathology revealed that Phoenix dactylifera seeds attenuate the incidence of liver lesions (including vacuolization and fibroblast proliferation) triggered by CCl4 intoxication. CONCLUSION The Phoenix dactylifera seeds could be a promising candidate for protection against the CCl4-induced liver intoxication, and this hepatoprotective effect might be attributed to the antioxidant and free radical scavenging activities.
Collapse
Affiliation(s)
- Dalia H A Abdelaziz
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| | - Sahar A Ali
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| |
Collapse
|
9
|
Szaefer H, Krajka-Kuźniak V, Ignatowicz E, Adamska T, Markowski J, Baer-Dubowska W. The effect of cloudy apple juice on hepatic and mammary gland phase I and II enzymes induced by DMBA in female Sprague-Dawley rats. Drug Chem Toxicol 2014; 37:472-9. [DOI: 10.3109/01480545.2014.893442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Maingonnat J, Missang C, Baron A, Renard C. Two micro-mechanical techniques for studying the enzymatic maceration kinetics of apple parenchyma. J FOOD ENG 2014. [DOI: 10.1016/j.jfoodeng.2013.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Codoñer-Franch P, Betoret E, López-Jaén AB, Betoret N, Fito P, Valls-Bellés V. Dried apple enriched with mandarin juice counteracts tamoxifen-induced oxidative stress in rats. Int J Food Sci Nutr 2013; 64:815-821. [PMID: 23682866 DOI: 10.3109/09637486.2013.798267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The effect of a product made of dehydrated apples enriched with mandarin juice by vacuum impregnation on markers of oxidative stress (plasma antioxidant capacity, carbonyl groups (CGs), 8-hydroxydeoxyguanosine (8OHdG) and α-tocopherol) was tested in rats. Six groups of animals were studied: one group was fed a standard diet; two groups were supplemented with dehydrated apple either impregnated or not with mandarin juice throughout 28 days; and three groups (one unsupplemented and two supplemented) were additionally treated with tamoxifen (TAM) for 21 days used for induction of oxidative stress. The rats treated with TAM showed an increase in aminotransferases, CGs and 8OHdG. All of these effects were significantly decreased in the animals after apple snack consumption; the addition of mandarin juice into the apple mainly accounts for increased levels of α-tocopherol in plasma and liver. These findings suggest that the food product have a protective action against oxidative stress induced by TAM in rats.
Collapse
|
12
|
Peinado J, López de Lerma N, Peralbo-Molina A, Priego-Capote F, de Castro C, McDonagh B. Sunlight exposure increases the phenolic content in postharvested white grapes. An evaluation of their antioxidant activity in Saccharomyces cerevisiae. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
13
|
López de Lerma N, Peinado J, Peinado RA. In vitro and in vivo antioxidant activity of musts and skin extracts from off-vine dried Vitis vinifera cv. “Tempranillo” grapes. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
14
|
Kim M, Bae M, Na H, Yang M. Environmental toxicants--induced epigenetic alterations and their reversers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2012; 30:323-367. [PMID: 23167630 DOI: 10.1080/10590501.2012.731959] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Epigenetics has been emphasized in the postgenome era to clarify obscure health risks of environmental toxicants including endocrine disrupting chemicals (EDCs). In addition, mixed exposure in real life can modify health consequences of the toxicants. Particularly, some nutritional and dietary materials modify individual susceptibility through changes in the epigenome. Therefore, we focused on some environmental toxicants that induce epigenetic alterations, and introduced chemopreventive materials to reverse the toxicants-induced epigenetic alterations. Methodologically, we used global and specific DNA methylation as epigenetic end points and searched epigenetic modulators in food. We reviewed various epigenetic end points induced by environmental toxicants including alcohol, asbestos, nanomaterials, benzene, EDCs, metals, and ionizing radiation. The epigenetic end points can be summarized into global hypomethylation and specific hypermethylation at diverse tumor suppress genes. Exposure timing, dose, sex, or organ specificity should be considered to use the epigenetic end points as biomarkers for exposure to the epimutagenic toxicants. Particularly, neonatal exposure to the epimutagens can influence their future adult health because of characteristics of the epimutagens, which disrupt epigenetic regulation in imprinting, organogenesis, development, etc. Considering interaction between epimutagenic toxicants and their reversers in food, we suggest that multiple exposures to them can alleviate or mask epigenetic toxicity in real life. Our present review provides useful information to find new end points of environmental toxicants and to prevention from environment-related diseases.
Collapse
Affiliation(s)
- Minju Kim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Yongsan-gu, Seoul, Republic of Korea
| | | | | | | |
Collapse
|