1
|
Mottaghi S, Abbaszadeh H. Grape seed extract in combination with deferasirox ameliorates iron overload, oxidative stress, inflammation, and liver dysfunction in beta thalassemia children. Complement Ther Clin Pract 2023; 53:101804. [PMID: 37832335 DOI: 10.1016/j.ctcp.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND PURPOSE Iron overload in the body is associated with serious and irreversible tissue damage. This study aimed to investigate the iron-chelating, antioxidant, anti-inflammatory, and hepatoprotective activities of grape seed extract (GSE) supplement as well as its safety in β-thalassemia major (β-TM) pediatric patients receiving deferasirox as a standard iron-chelation therapy. MATERIALS AND METHODS The children were randomly allocated to either GSE group (n = 30) or control group (n = 30) to receive GSE (100 mg/day) or placebo capsules, respectively, for 4 weeks. The serum levels of iron, ferritin, total iron-binding capacity (TIBC), alanine transaminase (ALT), aspartate aminotransferase (AST), tumor necrosis factor alpha (TNF-α), high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and glutathione (GSH) as well as superoxide dismutase (SOD) activity and hemoglobin (Hb) concentration were measured pre-and post-intervention. RESULTS GSE supplement significantly attenuated the serum levels of iron (p = 0.030), ferritin (p = 0.017), ALT (p = 0.000), AST (p = 0.000), TNF-α (p = 0.000), and hs-CRP (p = 0.001). The TIBC level (p = 0.020) significantly enhanced in the GSE group compared with the placebo group. Moreover, GSE supplement remarkably improved the oxidative stress markers, MDA (p = 0.000) and GSH (p = 0.001). The changes in the SOD activity (p = 0.590) and Hb concentration (p = 0.670) were not statistically different between the groups. CONCLUSION GSE supplement possesses several health beneficial influences on children with β-TM by alleviating iron burden, oxidative stress, inflammation, and liver dysfunction.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Hamlaoui S, Hamdi Y, Tannich F, Rjeb A, Aouani E, Mezghani S. Grape Seed and Skin Extract Protects Against Doxorubicin Chemotherapy-Induced Oxidative Stress, Inflammation and Metabolic Enzyme Disturbances in Rat Lung. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Zhao S, Cheng CK, Zhang CL, Huang Y. Interplay Between Oxidative Stress, Cyclooxygenases, and Prostanoids in Cardiovascular Diseases. Antioxid Redox Signal 2021; 34:784-799. [PMID: 32323554 DOI: 10.1089/ars.2020.8105] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Endothelial cells lining the lumen of blood vessels play an important role in the regulation of cardiovascular functions through releasing both vasoconstricting and vasodilating factors. The production and function of vasoconstricting factors are largely elevated in hypertension, diabetes, atherosclerosis, and ischemia/reperfusion injuries. Cyclooxygenases (COXs) are the major enzymes producing five different prostanoids that act as either contracting or relaxing substances. Under conditions of increased oxidative stress, the expressions and activities of COX isoforms are altered, resulting in changes in production of various prostanoids and thus affecting vascular tone. This review briefly summarizes the relationship between oxidative stress, COXs, and prostanoids, thereby providing new insights into the pathophysiological mechanisms of cardiovascular diseases (CVDs). Recent Advances: Many new drugs targeting oxidative stress, COX-2, and prostanoids against common CVDs have been evaluated in recent years and they are summarized in this review. Critical Issues: Comprehensive understanding of the complex interplay between oxidative stress, COXs, and prostanoids in CVDs helps develop more effective measures against cardiovascular pathogenesis. Future Directions: Apart from minimizing the undesired effects of harmful prostanoids, future studies shall investigate the restoration of vasoprotective prostanoids as a means to combat CVDs. Antioxid. Redox Signal. 34, 784-799.
Collapse
Affiliation(s)
- Sha Zhao
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chak Kwong Cheng
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cheng-Lin Zhang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Heart and Vascular Institute and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Kadri S, El Ayed M, Limam F, Aouani E, Mokni M. Preventive and curative effects of grape seed powder on stroke using in vitro and in vivo models of cerebral ischemia/reperfusion. Biomed Pharmacother 2020; 125:109990. [PMID: 32070874 DOI: 10.1016/j.biopha.2020.109990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Stroke is a worldwide concern. Many studies pointed out relevant preventive effect of grape seed powder (GSP) against deleterious brain ischemia/reperfusion (I/R) injury, but curative effect has been scarcely approached. The present work aimed at studying the preventive and curative effect of GSP against stroke using in-vitro and in-vivo models. Primary neuron-astrocyte cocultures were used to evaluate in-vitro GSP protective and curative effect on oxygen-glucose-deprivation (OGD). A murine I/R model, in which GSP was administered as delayed post stroke drug, to evaluate its potential clinically translatable therapy was used and behavioral tests were conducted after 15 days. Ultra-structure of hippocampus dentate gyrus using Transmission Electron Microscopy (TEM) was also undertaken. GSP prevented OGD-induced toxicity and cell death in a dose dependent manner and was neuroprotective as assessed by sustained cell viability (70 % ±1 for OGD + GSP and 37 % ±2 for OGD) and modulated cytokines and brain derived neurotrophic factor (BDNF) expression. GSP also promoted behavioral outcomes by increasing step-down inhibitory time from 17s±4 to 50s±11 and rat overall activities by improving scores in open field test to near control level. Furthermore, GSP protected hippocampus dentate gyrus area from I/R-induced drastic alterations as assessed by reduced autophagic vacuoles.
Collapse
Affiliation(s)
- Safwen Kadri
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia.
| | - Mohamed El Ayed
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Ferid Limam
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Ezzedine Aouani
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Meherzia Mokni
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
5
|
Kadri S, El Ayed M, Cosette P, Jouenne T, Elkhaoui S, Zekri S, Limam F, Aouani E, Mokni M. Neuroprotective effect of grape seed extract on brain ischemia: a proteomic approach. Metab Brain Dis 2019; 34:889-907. [PMID: 30796716 DOI: 10.1007/s11011-019-00396-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/04/2019] [Indexed: 01/01/2023]
Abstract
Stroke is one of the leading causes of long-lasting disability in human and oxidative stress an important underlying cause. Molecular insights into pathophysiology of ischemic stroke are still obscure, and the present study investigated the protective effect of high dosage Grape Seed Extract (GSE 2.5 g/kg) on brain ischemia-reperfusion (I/R) injury using a proteomic approach. Ischemia was realized by occlusion of the common carotid arteries for 30 min followed by 1 h reperfusion on control or GSE pre-treated rats, and a label-free quantification followed by mass spectrometry analysis used to evaluate I/R induced alterations in protein abundance and metabolic pathways as well as the protection afforded by GSE. I/R-induced whole brain ionogram dyshomeostasis, ultrastructural alterations, as well as inflammation into hippocampal dentate gyrus area, which were evaluated using ICP-OES, transmission electron microscopy and immuno-histochemistry respectively. I/R altered the whole brain proteome abundance among which 108 proteins were significantly modified (35 up and 73 down-regulated proteins). Eighty-four proteins were protected upon GSE treatment among which 27 were up and 57 down-regulated proteins, suggesting a potent protective effect of GSE close to 78%of the disturbed proteome. Furthermore, GSE efficiently prevented the brain from I/R-induced ion dyshomeostasis, ultrastructural alterations, inflammatory biomarkers as CD56 or CD68 and calcium burst within the hippocampus. To conclude, a potent protective effect of GSE on brain ischemia is evidenced and clinical trials using high dosage GSE should be envisaged on people at high risk for stroke.
Collapse
Affiliation(s)
- Safwen Kadri
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia.
| | - Mohamed El Ayed
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia
| | - Pascal Cosette
- Plateforme Protéomique PISSARO, Institut de Recherche et d'Innovation Biomédicale, Normandie Université, Mont Saint Aignan, France
| | - Thierry Jouenne
- Plateforme Protéomique PISSARO, Institut de Recherche et d'Innovation Biomédicale, Normandie Université, Mont Saint Aignan, France
| | - Salem Elkhaoui
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia
| | - Sami Zekri
- Common Services Unit on Transmission Electron Microscopy, Faculty of Medicineof Tunis, University of Tunis El Manar, Bab Saâdoun, Tunis, Tunisia
| | - Ferid Limam
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia
| | - Ezzedine Aouani
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia
| | - Meherzia Mokni
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia
| |
Collapse
|
6
|
El Ayed M, Kadri S, Smine S, Elkahoui S, Limam F, Aouani E. Protective effects of grape seed and skin extract against high-fat-diet-induced lipotoxicity in rat lung. Lipids Health Dis 2017; 16:174. [PMID: 28903761 PMCID: PMC5598067 DOI: 10.1186/s12944-017-0561-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity is a public health problem characterized by increased fat accumulation in different tissues. Obesity is directly linked to breathing problems and medical complications with lung, including obstructive sleep apnea syndrome, obesity hypoventilation syndrome, chronic obstructive pulmonary disease, asthma….In the present work, we aimed to investigate the effect of high fat diet (HFD) on lung lipotoxicity, oxidative stress, fatty acid composition and proportions in lung and implication in asthma development. The likely protection provided by grape seed extract (GSSE) was also investigated. METHODS In order to assess HFD effect on lung and GSSE protection we used a rat model. We analyzed the lipid plasma profile, lung peroxidation and antioxidant activities (SOD, CAT and POD). We also analyzed transition metals (Ca2+, Mg2+, Zn2+ and iron) and lung free fatty acids using gas chromatography coupled to mass spectrometry (GC-MS). RESULTS HFD induced lipid profile imbalance increasing cholesterol and VLDL-C. HFD also induced an oxidative stress assessed by elevated MDA level and the drop of antioxidant activities such as SOD, CAT and POD. Moreover, HFD induced mineral disturbances by decreasing magnesium level and increasing Calcium and iron levels. HFD induced also disturbances in lung fatty acid composition by increasing oleic, stearic and arachidonic acids. Interestingly, GSSE alleviated all these deleterious effects of HFD treatment. CONCLUSION As a whole, GSSE had a significant preventive effect against HFD-induced obesity, and hence may be used as an anti-obesity agent, and a benefic agent with potential applications against damages in lung tissue.
Collapse
Affiliation(s)
- Mohamed El Ayed
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia.
| | - Safwen Kadri
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Selima Smine
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia.,Proteomic Platform PISSARO, Institut de Recherche et d'Innovation Biomédicale (IRIB), University of Rouen, 76821, Mont Saint Aignan, Cedex, France
| | - Salem Elkahoui
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Ferid Limam
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Ezzedine Aouani
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
7
|
Kim HS. Extracts of Chrysanthemum zawadskii attenuate oxidative damage to vascular endothelial cells caused by a highly reducing sugar. Cytotechnology 2017; 69:915-924. [PMID: 28608258 DOI: 10.1007/s10616-017-0110-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/30/2017] [Indexed: 01/18/2023] Open
Abstract
Endothelial cells are considered candidates for involvement in the pathogenesis of diabetic vascular complications, and prevention of endothelial cell damage may be important in pharmacological attempts to prevent such complications. In the present study, I explored whether extracts of Chrysanthemum zawadskii (CZE) could prevent oxidative damage and dysfunction of a vascular endothelial cell line caused by the highly reducing sugar, 2-deoxy-D-ribose (dRib), and dysfunction of a vascular endothelial cell line. Vascular endothelial cells were treated with dRib in the presence or absence of CZE. Cell viability was monitored using a cell counting kit, and the induction of apoptosis was evaluated with a cell death kit. Prostaglandin E2 and cyclooxygenase-2 levels were measured using enzyme-linked immunosorbent assay kits. Mitochondrial membrane potential [ΔΨ(m)] was determined using a JC-1 kit. Intracellular oxidative stress was measured by fluorometric analysis of dichlorofluorescin oxidation using 2',7'-dichlorofluorescin diacetate as the probe. The expression levels of genes encoding antioxidant enzymes were analyzed by real-time polymerase chain reaction. dRib reduced cell survival and the ΔΨ(m) and markedly increased intracellular levels of reactive oxygen species and apoptosis. However, pretreatment of cells with CZE attenuated all these dRib-induced effects. The anti-oxidant N-acetyl-L-cysteine (NAC) also prevented dRib-induced oxidative cell damage. CZE attenuated the dRib-induced production of the inflammatory mediators cyclooxygenase-2 and Prostaglandin E2. NAC also exhibited anti-inflammatory effects and treatment with CZE caused transcriptional elevation of genes encoding antioxidant enzymes. Taken together, the results suggest that CZE may exert an antioxidant action that reduces dRib-induced cell damage to vascular endothelial cells and may thus aid in preventing diabetes-associated microvascular complications.
Collapse
Affiliation(s)
- Hyun-Sook Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, 298 Daeseong-ro, Cheongwon-gu, Cheongju, Chungbuk, 28503, Republic of Korea.
| |
Collapse
|
8
|
Silvan JM, Mingo E, Martinez-Rodriguez AJ. Grape seed extract (GSE) modulates campylobacter pro-inflammatory response in human intestinal epithelial cell lines. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1312292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Jose Manuel Silvan
- Institute of Food Science Research (CIAL), CSIC-UAM. Department of Biotechnology and Microbiology, Autonoma University of Madrid, Madrid, Spain
| | - Elisa Mingo
- Institute of Food Science Research (CIAL), CSIC-UAM. Department of Biotechnology and Microbiology, Autonoma University of Madrid, Madrid, Spain
| | - Adolfo J. Martinez-Rodriguez
- Institute of Food Science Research (CIAL), CSIC-UAM. Department of Biotechnology and Microbiology, Autonoma University of Madrid, Madrid, Spain
| |
Collapse
|
9
|
Sakr HF, Abbas AM, Bin-Jaliah I. Modulation of the neurological and vascular complications by grape seed extract in a rat model of spinal cord ischemia–reperfusion injury by downregulation of both osteopontin and cyclooxygenase-2. Can J Physiol Pharmacol 2016; 94:719-27. [DOI: 10.1139/cjpp-2015-0498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this study, we investigated the effects of grape seed extract (GSE) on the expression of osteopontin (OPN) and cyclooxygenase-2 (COX-2) in a rat model of spinal cord ischemia–reperfusion injury (SC-IRI). Fifty male rats were divided into 5 groups: control (CON); control + GSE (CON + GSE) (received GSE for 28 days); sham operated (Sham); IRI; and IRI + GSE. SC-IRI was induced by clamping the aorta just above the bifurcation for 45 min, and then the clamp was released for 48 h for reperfusion. IRI + GSE group received GSE for 28 days before SC-IRI. Sensory, motor, and placing/stepping reflex assessment was performed. Prostaglandin E2 (PGE2), thiobarbituric acid reactive substances (TBARs), and total antioxidant capacity (TAC) were measured in spinal cord homogenate. Immunohistochemical examination of the spinal cord for OPN and COX-2 were carried out. SC-IRI resulted in significant increase in plasma nitrite/nitrate level and spinal cord homogenate levels of TBARs and PGE2, and OPN and COX-2 expression with significant decrease in TAC. GSE improves the sensory and motor functions through decreasing OPN and COX-2 expression with reduction of oxidative stress parameters. We conclude a neuroprotective effect of GSE in SC-IRI through downregulating COX-2 and OPN expression plus its antioxidants effects.
Collapse
Affiliation(s)
- Hussein F. Sakr
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Medical Physiology Department, College of Medicine, King Khalid University, KSA
| | - Amr M. Abbas
- Medical Physiology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ismaeel Bin-Jaliah
- Medical Physiology Department, College of Medicine, King Khalid University, KSA
| |
Collapse
|
10
|
Chen JH, Lee MS, Wang CP, Hsu CC, Lin HH. Autophagic effects of Hibiscus sabdariffa leaf polyphenols and epicatechin gallate (ECG) against oxidized LDL-induced injury of human endothelial cells. Eur J Nutr 2016; 56:1963-1981. [PMID: 27318926 DOI: 10.1007/s00394-016-1239-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/25/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE Oxidized low-density lipoprotein (ox-LDL) contributes to the pathogenesis of atherosclerosis by promoting vascular endothelial cell injury. Hibiscus sabdariffa leaf polyphenols (HLP), rich in flavonoids, have been shown to possess antioxidant and antiatherosclerotic activities. In this study, we examined the protective role of HLP and its main compound (-)-epicatechin gallate (ECG) in human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL in vitro. METHODS In a model of ox-LDL-impaired HUVECs, assessments of cell viability, cytotoxicity, cell proliferation, apoptosis, and autophagy were detected. To highlight the mechanisms of the antiapoptotic effects of HLP and ECG, the expressions of molecular proteins were measured by Western blotting, real-time PCR, and so on. RESULTS HLP or ECG improved the survival of HUVECs from ox-LDL-induced viability loss. In addition, HLP or ECG showed potential in reducing ox-LDL-dependent apoptosis. Next, the ox-LDL-induced formation of acidic vesicular organelles and upregulation of the autophagy-related genes were increased by HLP or ECG. The HLP-triggered autophagic flux was further confirmed by increasing the LC3-II level under the pretreatment of an autophagy inhibitor chloroquine. Molecular data indicated the autophagic effect of HLP or ECG might be mediated via class III PI3K/Beclin-1 and PTEN/class I PI3K/Akt cascade signaling, as demonstrated by the usage of a class III PI3K inhibitor 3-methyladenine (3-MA) and a PTEN inhibitor SF1670. CONCLUSIONS Our data imply that ECG-enriched HLP upregulates the autophagic pathway, which in turn led to reduce ox-LDL-induced HUVECs injury and apoptosis and provide a new mechanism for its antiatherosclerotic activity.
Collapse
Affiliation(s)
- Jing-Hsien Chen
- Department of Nutrition, Chung Shan Medical University, Taichung City, Taiwan
| | - Ming-Shih Lee
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Road, Taichung City, 40201, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Chi-Ping Wang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Road, Taichung City, 40201, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Cheng-Chin Hsu
- Department of Nutrition, Chung Shan Medical University, Taichung City, Taiwan
| | - Hui-Hsuan Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Road, Taichung City, 40201, Taiwan. .,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung City, Taiwan.
| |
Collapse
|
11
|
The Protective Role of Autophagy in Matrix Metalloproteinase-Mediated Cell Transmigration and Cell Death in High-Glucose-Treated Endothelial Cells. Inflammation 2016; 39:830-8. [DOI: 10.1007/s10753-016-0313-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Metabolites of Scutellariae Radix Inhibit Injury of Endothelial Cells in Hypoxia Device. J Med Biol Eng 2015. [DOI: 10.1007/s40846-015-0057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Goutzourelas N, Stagos D, Demertzis N, Mavridou P, Karterolioti H, Georgadakis S, Kerasioti E, Aligiannis N, Skaltsounis L, Statiri A, Tsioutsiouliti A, Tsatsakis AM, Hayes AW, Kouretas D. Effects of polyphenolic grape extract on the oxidative status of muscle and endothelial cells. Hum Exp Toxicol 2014; 33:1099-112. [DOI: 10.1177/0960327114533575] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A grape pomace extract enhanced antioxidant mechanisms in muscle and endothelial cells both in the absence and in the presence of oxidative stress-induced agent tert-butyl hydroperoxide (tBHP). In particular, muscle (C2C12) and endothelial (EA.hy926) cells were treated with the extract at noncytotoxic concentrations for 24 h, and the oxidative stress markers, total reactive oxygen species (ROS), glutathione (GSH), thiobarbituric reactive substances (TBARS), and protein carbonyl levels were assessed. The results showed that the grape extract treatment reduced significantly ROS, TBARS, and protein carbonyl levels and increased GSH in C2C12 cells, while it increased GSH and decreased protein carbonyl levels in EA.hy926 cells. In the presence of tBHP, the grape extract treatment in C2C12 cells reduced significantly ROS, TBARS, and protein carbonyls and increased GSH compared with tBHP alone treatment, while, in EA.hy926 cells, the extract decreased significantly TBARS and protein carbonyls but increased GSH. The antioxidant potency of the extract was different between muscle and endothelial cells suggesting that the antioxidant activity depends on cell type. Moreover, the antioxidant activity of the grape extract, in both cell lines, exerted, at least in part, through increase in GSH levels. The present work is the first to report the effects of grape extract shown for skeletal muscle cells.
Collapse
Affiliation(s)
- N Goutzourelas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - D Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - N Demertzis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - P Mavridou
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - H Karterolioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - S Georgadakis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - E Kerasioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - N Aligiannis
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - L Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, School of Pharmacy, University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - A Statiri
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - A Tsioutsiouliti
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - AM Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion, Greece
| | - AW Hayes
- Harvard School of Public Health, Boston, MA, USA
- Spherix Consulting, Inc., Bethesda, MD, USA
| | - D Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
14
|
Milenkovic D, Vanden Berghe W, Boby C, Leroux C, Declerck K, Szarc vel Szic K, Heyninck K, Laukens K, Bizet M, Defrance M, Dedeurwaerder S, Calonne E, Fuks F, Haegeman G, Haenen GRMM, Bast A, Weseler AR. Dietary flavanols modulate the transcription of genes associated with cardiovascular pathology without changes in their DNA methylation state. PLoS One 2014; 9:e95527. [PMID: 24763279 PMCID: PMC3998980 DOI: 10.1371/journal.pone.0095527] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/27/2014] [Indexed: 02/03/2023] Open
Abstract
Background In a recent intervention study, the daily supplementation with 200 mg monomeric and oligomeric flavanols (MOF) from grape seeds for 8 weeks revealed a vascular health benefit in male smokers. The objective of the present study was to determine the impact of MOF consumption on the gene expression profile of leukocytes and to assess changes in DNA methylation. Methodology/Principal Findings Gene expression profiles were determined using whole genome microarrays (Agilent) and DNA methylation was assessed using HumanMethylation450 BeadChips (Illumina). MOF significantly modulated the expression of 864 genes. The majority of the affected genes are involved in chemotaxis, cell adhesion, cell infiltration or cytoskeleton organisation, suggesting lower immune cell adhesion to endothelial cells. This was corroborated by in vitro experiments showing that MOF exposure of monocytes attenuates their adhesion to TNF-α-stimulated endothelial cells. Nuclear factor kappa B (NF-κB) reporter gene assays confirmed that MOF decrease the activity of NF-κB. Strong inter-individual variability in the leukocytes' DNA methylation was observed. As a consequence, on group level, changes due to MOF supplementation could not be found. Conclusion Our study revealed that an 8 week daily supplementation with 200 mg MOF modulates the expression of genes associated with cardiovascular disease pathways without major changes of their DNA methylation state. However, strong inter-individual variation in leukocyte DNA methylation may obscure the subtle epigenetic response to dietary flavanols. Despite the lack of significant changes in DNA methylation, the modulation of gene expression appears to contribute to the observed vascular health effect of MOF in humans.
Collapse
Affiliation(s)
- Dragan Milenkovic
- INRA, UMR 1019, UNH, CRNH Auvergne, Clermont-Ferrand; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Wim Vanden Berghe
- Laboratory of Eukaryotic Gene Expression and Signal Transduction LEGEST, University of Gent, Gent, Belgium
- PPES, Department of Biomedical Sciences, University of Antwerp (UA), Wilrijk, Belgium
| | - Céline Boby
- INRA, UMR1213 Herbivores, Plate-Forme d'Exploration du Métabolisme, Saint-Genès-Champanelle, France
| | - Christine Leroux
- INRA, UMR1213 Herbivores, Plate-Forme d'Exploration du Métabolisme, Saint-Genès-Champanelle, France
| | - Ken Declerck
- PPES, Department of Biomedical Sciences, University of Antwerp (UA), Wilrijk, Belgium
| | | | - Karen Heyninck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction LEGEST, University of Gent, Gent, Belgium
| | - Kris Laukens
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Center Antwerp (Biomina), University of Antwerp/Antwerp University Hospital, Edegem, Belgium
| | - Martin Bizet
- Laboratory of Cancer Epigenetics, Free University of Brussels, Brussels, Belgium
| | - Matthieu Defrance
- Laboratory of Cancer Epigenetics, Free University of Brussels, Brussels, Belgium
| | - Sarah Dedeurwaerder
- Laboratory of Cancer Epigenetics, Free University of Brussels, Brussels, Belgium
| | - Emilie Calonne
- Laboratory of Cancer Epigenetics, Free University of Brussels, Brussels, Belgium
| | - Francois Fuks
- Laboratory of Cancer Epigenetics, Free University of Brussels, Brussels, Belgium
| | - Guy Haegeman
- Laboratory of Eukaryotic Gene Expression and Signal Transduction LEGEST, University of Gent, Gent, Belgium
| | | | - Aalt Bast
- Department of Toxicology, Maastricht University, MD Maastricht, Netherlands
| | - Antje R. Weseler
- Department of Toxicology, Maastricht University, MD Maastricht, Netherlands
- * E-mail:
| |
Collapse
|
15
|
Derry MM, Raina K, Agarwal R, Agarwal C. Characterization of azoxymethane-induced colon tumor metastasis to lung in a mouse model relevant to human sporadic colorectal cancer and evaluation of grape seed extract efficacy. ACTA ACUST UNITED AC 2014; 66:235-42. [PMID: 24670932 DOI: 10.1016/j.etp.2014.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/30/2014] [Accepted: 02/22/2014] [Indexed: 12/11/2022]
Abstract
The second leading cause of cancer-related deaths (both genders combined) in the United States is colorectal cancer (CRC). This emphasizes the need to develop both effective therapies for CRC patients and pre-clinical models mimicking human disease that carry translational potential in drug-development. Notably, at present there are no in situ models of CRC metastasis to lung. In our azoxymethane-induced colon tumorigenesis study in A/J mice assessing grape seed extract (GSE) efficacy, during necropsy we also found multiple lung nodules suggestive of colon tumor metastasis to lung that were significantly inhibited in GSE fed group. Both histopathological and molecular studies were performed to characterize and establish the origin of these lesions in lung. Histologically these nodules were determined as adenocarcinoma of mucin origin. Molecular analyses by immunohistochemistry (IHC) and RT-PCR revealed strong protein and transcript levels of colon specific markers CDX2 and CK20 in these lung nodules compared to uninvolved control lung tissue. Vis-à-vis, these nodules also showed minimally expressed lung specific biomarkers, specifically surfactant D and TTF-1, in IHC analysis. Additionally, 0.25% GSE supplementation in diet (w/w) decreased the incidence of these lung nodules by 53% and their total number by 66%. Together, the characterization of this unique in situ mouse model of CRC metastasis to lung provides translational opportunities in developing effective therapies to clinically manage and treat CRC at the advanced stage. Moreover, GSE efficacy in inhibiting CRC metastasis to lung in this model further supports its translational potential in controlling CRC growth, progression and metastasis in patients.
Collapse
Affiliation(s)
- Molly M Derry
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
16
|
Felice F, Zambito Y, Belardinelli E, D'Onofrio C, Fabiano A, Balbarini A, Di Stefano R. Delivery of natural polyphenols by polymeric nanoparticles improves the resistance of endothelial progenitor cells to oxidative stress. Eur J Pharm Sci 2013; 50:393-9. [PMID: 23988846 DOI: 10.1016/j.ejps.2013.08.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/22/2013] [Accepted: 08/10/2013] [Indexed: 11/25/2022]
Abstract
PURPOSE Bone marrow-derived endothelial progenitor cells (EPCs) circulate into peripheral blood and significantly contribute to neo-vascularisation and re-endothelialisation as part of the process of vascular repair. Several studies have reported decreased EPC number in the presence of oxidative stress. Aim of this study was to evaluate the validity of mucoadhesive polymeric nanoparticles as a delivery system of natural products able to protect EPCs from oxidative stress. METHODS The total polyphenol content and antioxidant capacity of red grape seed extract (GSE) either pre-veraison (p-GSE) or ripe (r-GSE) were measured. Cell viability was evaluated by WST-1 assay. Nanoparticles were prepared by ionotropic crosslinking of two structurally different thiolated quaternary ammonium-chitosan conjugates. A hyaluronic acid solution, containing p-GSE or r-GSE, was added to a stirred solution of each of the two chitosan derivatives to obtain p- or r-GSE loaded nanoparticles (NP) of two types. RESULTS Both GSE types demonstrated strong antioxidant capacity. p-GSE showed a higher content in total polyphenols compared to r-GSE. NP size was in the 310-340 nm range, with 24 h stability, and nearly 100% encapsulation efficiency for both GSE types. NP were internalized by cells to an extent related directly with their surface charge intensity. GSE-NP uptake significantly improved cell viability and resistance to oxidation. CONCLUSIONS Nanotechnology has a great potential in nutraceutical delivery. The present results suggest that NP is a highly promising polyphenol carrier system particularly useful to protect EPCs from oxidative stress, thus improving their survival.
Collapse
Affiliation(s)
- Francesca Felice
- University of Pisa, Department of Surgery, Medical, Molecular, and Critical Area Pathology, via Paradisa, 2 Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Mahmoud YI. Grape seed extract attenuates lung parenchyma pathology in ovalbumin-induced mouse asthma model: an ultrastructural study. Micron 2012; 43:1050-9. [PMID: 22609098 DOI: 10.1016/j.micron.2012.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 04/07/2012] [Accepted: 04/24/2012] [Indexed: 01/31/2023]
Abstract
Due to the growing incidence of asthma and because of the non-specificity and side effects of the conventional drugs, the development of novel agents for the treatment of asthma has become considerably important. Natural plant products offer promising alternatives for the development of effective and safe treatments. Grape seed extract (GSE) is one such phytochemical supplement that has been shown to have potent antioxidant and anti-inflammatory effects. Thus, the present study aimed to investigate the effect of GSE to suppress lung parenchyma pathology and inflammation in ovalbumin-induced murine asthma model. Ovalbumin exposure was associated with many pathological and morphometric alterations in the lungs of asthmatic mice. The alterations involved alveolar size reduction, alveolar wall thickening, cellular infiltration and blood capillary congestion, as well as significant increase in the number of type II pneumocytes and lamellar bodies. However, GSE significantly ameliorated of the pathological changes of ovalbumin-induced asthma. The results support the possibility of GSE as an effective, safe anti-inflammatory dietary supplement to attenuate the pathogenicity of asthma. While these preliminary results appear promising, further studies are required to elucidate the precise mechanism of the modulatory effect of GSE on asthma remodeling.
Collapse
Affiliation(s)
- Yomna Ibrahim Mahmoud
- Zoology Department, Faculty of Science, Ain Shams University, P.O. Box 11566, Abbassia, Cairo, Egypt. yomna
| |
Collapse
|