1
|
Sun B, Tan B, Zhang P, Huang T, Wei H, Li C, Yang W. Effects of hemoglobin extracted from Tegillarca granosa on the gut microbiota in iron deficiency anemia mice. Food Funct 2023; 14:7040-7052. [PMID: 37449470 DOI: 10.1039/d3fo00695f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Iron deficiency anemia (IDA) is a serious threat to the health of humans around the world. Tegillarca granosa (T. granosa) is considered as an excellent source of iron due to its abundant iron-binding protein hemoglobin. This study aimed to investigate the effects of hemoglobin from T. granosa on the gut microbiota and iron bioavailability in IDA mice. Compared to normal mice, IDA mice showed reduced microbiota diversity and altered relative abundance (reduced Muribaculaceae and increased Bacteroides). After 4 weeks of administration, hemoglobin restored the dysbiosis of the intestinal microbiota induced by IDA and decreased the Firmicutes/Bacteroidota ratio and the abundance of Proteobacteria. Analysis of the hemoglobin regeneration efficiency of mice treated with hemoglobin confirmed that hemoglobin exhibited high iron bioavailability, particularly at low-dose administration, suggesting that a small amount of hemoglobin from T. granosa markedly elevated the blood hemoglobin level in mice. These findings suggested that IDA could be alleviated by administration of hemoglobin with excellent iron bioavailability, and its therapeutic mechanism may be partially attributed to the regulation of the intestinal microbiota composition and relative abundance. These results indicated that T. granosa hemoglobin may be a promising iron supplement to treat IDA and promote the utilization of aquatic-derived proteins.
Collapse
Affiliation(s)
- Bolun Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China.
| | - Beibei Tan
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China.
- School of Agriculture and Food, Faculty of Science, University of Melbourne, Australia
| | - Panxue Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China.
| | - Tao Huang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China.
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Huamao Wei
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China.
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Chao Li
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China.
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Wenge Yang
- College of Food and Pharmaceutical Sciences, Ningbo University, 315211, China.
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Effect of hemoglobin extracted from Tegillarca granosa on iron deficiency anemia in mice. Food Res Int 2022; 162:112031. [PMID: 36461251 DOI: 10.1016/j.foodres.2022.112031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 12/13/2022]
Abstract
Iron deficiency anemia (IDA) is the most common nutritional deficiency in the world. This study was aimed to evaluate the therapeutic effects of hemoglobin from Tegillarca granosa (T. granosa) on IDA in mice. Mice were randomly divided into five groups: a normal control group, an anemia model group, a positive (FeSO4) control group, a low-dose and high-dose hemoglobin groups. After 4-week iron supplements administration, it was observed that hemoglobin at 2.0 mg iron/kg body weight had better restorative effective on IDA mice than that of FeSO4 with regard to routine blood parameters and serum biochemical indicators. Meanwhile, the IDA-caused alterations of organ coefficients and liver morphology were ameliorated in mice after hemoglobin supplementation in a dose-dependent manner. Further correlation analysis of indicators showed that serum ferritin (iron storage protein) and soluble transferrin receptor (cellular iron uptake membrane glycoprotein) were susceptible to iron deficiency, indicating possibledisorder of iron metabolism caused by IDA. And levels of serum ferritin and soluble transferrin receptor were restored after administration of hemoglobin. These findings confirmed the safety and effectiveness of T. granosa derived hemoglobin in alleviating IDA in mice, suggesting its great potential as an alternative for iron supplementation.
Collapse
|
3
|
Sun M, Gan J, Li Y, Dai S, Lv C, Zhao G. Fabrication of a donkey spleen ferritin-pectin complex to reduce iron release and enhance the iron supplementation efficacy. Food Funct 2022; 13:8500-8508. [PMID: 35876550 DOI: 10.1039/d2fo01338j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron deficiency is a global issue, influencing more than one-third of the population in the world. Ferritin as a natural iron-containing protein is considered a marvelous iron supplement due to its biocompatibility, biodegradability and bioavailability. However, foodstuffs contain plenty of reductants which could induce iron release from the cavity of ferritin and cause oxidative damage. In this study, we aimed to prevent the iron release from donkey spleen ferritin (DSF) by pectin encapsulation driven by the electrostatic interaction and evaluated the iron supplementation of the DSF-pectin complex (DPC). After DSF was purified, we fabricated the DPC and the iron release was decreased by 53.68% after 60 min when DSF : pectin was 1 : 10 (w/w). TEM analysis showed that ferritin in the DPC is clustered in a linear pattern, and the cell viability assay indicated that the DPC has no toxicity towards Caco-2 cells. In the mouse experiment, the DPC increased the content of serum iron and serum ferritin with no significant difference from the control check. Furthermore, the DPC increased the iron content in the liver, suppressed the expression of hepcidin and increased the expression of ferroportin. These results suggested that the DPC could prevent the interactions between food components and ferritin and is a promising iron supplement to ameliorate iron deficiency.
Collapse
Affiliation(s)
- Mingyang Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Jing Gan
- College of Life Science, Yantai University, Yantai, Shandong 264000, China
| | - Yuehuan Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Shuhan Dai
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| |
Collapse
|
4
|
Zhang XG, Wang N, Ma GD, Liu ZY, Wei GX, Liu WJ. Preparation of S-iron-enriched yeast using siderophores and its effect on iron deficiency anemia in rats. Food Chem 2021; 365:130508. [PMID: 34247046 DOI: 10.1016/j.foodchem.2021.130508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
Efforts to obtain organic trace elements have been made, including yeast enrichment and transformation, but the application of yeast for this purpose is restricted by poor tolerance and low enrichment. Siderophores play an important role in iron transport. Thus, the role of siderophores in iron transport under high-iron conditions and the application of siderophores in the enrichment of elements was explored. The results showed that some siderophores from iron-tolerant strains promoted yeast growth and increased its intracellular iron content. Among them, siderophore TZT-12 (from LK1110) was the best for promoting yeast growth and iron conversion. The siderophore-iron-enriched yeast (S-iron-enriched yeast) effectively restored the iron concentration, and an iron concentration of 59.40 mg/g was obtained by adding TZT-12. Iron deficiency anemia in rats was significantly mitigated with S-iron-enriched yeast compared with ferrous sulfate. These findings provide a new perspective on the preparation of organic trace elements for supplementation or food fortification.
Collapse
Affiliation(s)
- Xin-Guo Zhang
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Nan Wang
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guo-Di Ma
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Zi-Yu Liu
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Guo-Xing Wei
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wen-Jie Liu
- School of Life Science and Engineering, Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
5
|
Caetano-Silva ME, Netto FM, Bertoldo-Pacheco MT, Alegría A, Cilla A. Peptide-metal complexes: obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals. Crit Rev Food Sci Nutr 2020; 61:1470-1489. [PMID: 32370550 DOI: 10.1080/10408398.2020.1761770] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioactive peptides derived from food protein sources have been widely studied in the last years, and scientific researchers have been proving their role in human health, beyond their nutritional value. Several bioactivities have been attributed to these peptides, such as immunomodulatory, antimicrobial, antioxidant, antihypertensive, and opioid. Among them, metal-binding capacity has gained prominence. Mineral chelating peptides have shown potential to be applied in food products so as to decrease mineral deficiencies since peptide-metal complexes could enhance their bioavailability. Furthermore, many studies have been investigating their potential to decrease the Fe pro-oxidant effect by forming a stable structure with the metal and avoiding its interaction with other food constituents. These complexes can be formed during gastrointestinal digestion or can be synthesized prior to intake, with the aim to protect the mineral through the gastrointestinal tract. This review addresses: (i) the amino acid residues for metal-binding peptides and their main protein sources, (ii) peptide-metal complexation prior to or during gastrointestinal digestion, (iii) the function of metal (especially Fe, Ca, and Zn)-binding peptides on the metal bioavailability and (iv) their reactivity and possible pro-oxidant and side effects.
Collapse
Affiliation(s)
| | - Flavia Maria Netto
- Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
6
|
Hu Y, Jia Y, Liao Y, Jiang X, Cheng Z. Fluorometric assay of iron(II) lactate hydrate and ammonium ferric citrate in food and medicine based on poly(sodium-p-styrenesulfonate)-enhanced Ag nanoclusters. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117519. [PMID: 31521986 DOI: 10.1016/j.saa.2019.117519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Poly(sodium-p-styrenesulfonate)-enhanced and D-penicillamine stabilized Ag nanoclusters (PSS-DPA-AgNCs) were prepared using one-step ultraviolet irradiation combined with microwave heating method, and the effects of the AgNCs photo-luminescence performance based on different types of polyelectrolytes and energy suppliers were studied detailedly. The as-prepared AgNCs can be used as a viable fluorescent probe for monitoring indirectly iron(II) lactate hydrate (ILH) and ammonium ferric citrate (AFC), respectively. The fluorescence (FL) quenching of PSS-DPA-AgNCs by Fe3+ (it is obtained from oxidized ILH/ionized AFC) mainly derives from a dynamic quenching process. Excellent linear relationships exist between the FL quenching degree of the AgNCs and the concentrations of ILH/AFC in the range of 0.17-6.00/0.067-3.33 μmol·L-1, and corresponding limit of detection (at 3σ/slope) is 12.4/6.04 nmol·L-1. Moreover, the AgNCs probe was extended to the assays of ILH in tablets, solid beverage or ILH additive and AFC in two kinds of edible salts or syrup with satisfactory results compared with the standard 1, 10-phenanthroline method. In addition, the AgNCs probe reveals a good temperature sensing capability.
Collapse
Affiliation(s)
- Yue Hu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Yong Jia
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China
| | - Xiaohui Jiang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China; Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
7
|
Li B, He H, Shi W, Hou T. Effect of duck egg white peptide-ferrous chelate on iron bioavailability in vivo and structure characterization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1834-1841. [PMID: 30255570 DOI: 10.1002/jsfa.9377] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/05/2018] [Accepted: 09/17/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND In order to utilize the industrial by-product 'salted duck egg white' as novel iron additives, the effects of desalted duck egg white peptides-ferrous chelate (DPs-Fe) on the promotion of iron uptake and the structure were investigated. RESULTS Different doses of DPs-Fe were given and iron sulfate (FeSO4 ) was used as a positive control. After three weeks, hemoglobin (Hb), hematocrit (HCT), red blood cells (RBCs), mean corpuscular volume (MCV), serum iron (SI) and serum ferritin (SF) in iron-deficiency anemia (IDA) rats could be significantly (P < 0.05) increased to the normal levels by DPs-Fe. The gene expressions of divalent metal transporter 1 (DMT1), ferroportin 1 (FPN1) and Hepcidin could be regulated by DPs-Fe. Additionally, DPs-Fe was formed during the chelation process and the structure was characterized. Eight crucial iron-chelating peptides of duck egg white peptides (DPs) were identified by HPLC-ESI-MS/MS, such as Pro-Val-Glu-Glu and Arg-Ser-Ser. It indicated that Glu, Asp, Lys, His, Ser, Cys residues might play crucial roles in the chelating of DPs with iron. CONCLUSION DPs-Fe could be a potential iron supplement, and the Glu, Asp, Lys, His played important roles in binding iron and promoting iron uptake. This research expands the understanding of iron uptake by DPs and provides an opportunity for recycling a discarded processing byproduct. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bo Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, PR China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, PR China
| | - Wen Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, PR China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, PR China
| |
Collapse
|
8
|
Structure characterization of low molecular weight sulfate Ulva polysaccharide and the effect of its derivative on iron deficiency anemia. Int J Biol Macromol 2018; 126:747-754. [PMID: 30584945 DOI: 10.1016/j.ijbiomac.2018.12.214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/29/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022]
Abstract
Sulfate Ulva polysaccharide with low molecular weight was prepared by enzymatic method and name SUE. The structural characterization of SUE and the effect of its derivative SUE-iron (III) on iron deficiency anemia were studied. Results showed SUE with molecular weight of 178 kDa were consisted of 57.9% rhamnose, 12.1% glucose, 16.3% glucuronic acid, and 13.7% xylose. The backbone contained (1 → 3, 4)-linked rhamnose, (1 → 4)-linked xylose, (1 → 6)-linked glucose and sulfate substitution was at C-3 of rhamnose. Due to high contents of sulfate group (23.7 ± 1.1%) and uronic acid, SUE-iron (III) with 20.3% iron content was synthesized. In order to evaluate the effects of SUE-iron (III) supplementation, an IDA animal model was created. After iron supplement administration, the SUE‑iron (III) showed effective effect on returning hemoglobin, red blood cells, serum iron, and erythropoietin to the normal levels. The hematological index of rats showed no difference from that in positive group. Besides, SUE-iron (III) is beneficial to alleviate inflammatory damage caused by IDA. These suggest that SUE-iron (III) might be exploited as safe and effective new iron supplement.
Collapse
|
9
|
Staniek H, Wójciak RW. The Combined Effects of Iron Excess in the Diet and Chromium(III) Supplementation on the Iron and Chromium Status in Female Rats. Biol Trace Elem Res 2018; 184:398-408. [PMID: 29164513 PMCID: PMC6061187 DOI: 10.1007/s12011-017-1203-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022]
Abstract
Inadequate iron supply has significant consequences to health. There are some relations between the metabolism of different trace elements, such as iron, zinc, copper and chromium. However, the direction of these interactions can be antagonistic or synergistic, and it depends on many factors. The aim of the study was to evaluate the combined effects of supplementary of chromium(III) propionate complex (Cr3) with iron excess on the Cr and Fe status in healthy female rats. The 36 healthy female Wistar rats were divided into six experimental groups (six animals in each) with different Fe levels-adequate (45 mg kg-1-100% RDA) and high (excessive-180 mg kg-1-400% RDA). At the same time, they were supplemented with Cr(III) at doses of 1, 50 and 500 mg kg-1 of diet: C1-control (Fe 45 mg kg-1, Cr 1 mg kg-1); C50 (Fe 45 mg kg-1, Cr 50 mg kg-1); C500 (Fe 45 mg kg-1, Cr 500 mg kg-1); H1 (Fe 180 mg kg-1, Cr 1 mg kg-1); H50 (Fe 180 mg kg-1, Cr 50 mg kg-1); H500 (Fe 180 mg kg-1, Cr 500 mg kg-1). The serum iron level and total iron binding capacity (TIBC) were measured with colorimetric methods. The serum ferritin level was measured by means of electrochemiluminescence immunoassay. The serum transferrin level was measured with the ELISA method. Haematological measurements were made with an automated blood analyser. The Cr and Fe tissular levels were measured with the AAS method. The exposure to a high level of Fe(III) alone or in combination with Cr caused Fe accumulation in tissues, especially in the liver and kidneys, but there were no significant changes in the TIBC, transferrin, ferritin concentration in the serum and most haematological parameters. Moreover, the serum, hepatic and renal Cr concentrations decreased. The doses of supplementary Cr(III) given separately or in combination with high level of Fe(III) disturbed the Cr content in the liver and kidneys of healthy female rats. However, they did not change most of the parameters of Fe metabolism, except the Fe kidney concentration. Supplementary Cr3 decreased the renal Fe level in groups with adequate Fe content in the diet. However, the renal Fe levels increased along with a higher Cr level in the diet in groups with high Fe content. The findings proved a relationship between Fe(III) and Cr(III) metabolism in healthy female rats. However, the direction of change varied and depended on relative amounts of these elements in the diet.
Collapse
Affiliation(s)
- Halina Staniek
- Institute of Human Nutrition and Dietetics, Department of Bromatology and Food Toxicology, Poznań University of Life Sciences, ul. Wojska Polskiego 31, 60-624, Poznań, Poland.
| | - Rafał W Wójciak
- Department of Clinical Psychology, Poznań University of Medical Sciences, ul. Bukowska 70, 60-812, Poznań, Poland
| |
Collapse
|
10
|
Hou T, Tako E. The In Ovo Feeding Administration (Gallus Gallus)-An Emerging In Vivo Approach to Assess Bioactive Compounds with Potential Nutritional Benefits. Nutrients 2018; 10:nu10040418. [PMID: 29597266 PMCID: PMC5946203 DOI: 10.3390/nu10040418] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/15/2018] [Accepted: 03/24/2018] [Indexed: 12/22/2022] Open
Abstract
In recent years, the in ovo feeding in fertilized broiler (Gallus gallus) eggs approach was further developed and currently is widely applied in the evaluation process of the effects of functional foods (primarily plant origin compounds) on the functionality of the intestinal brush border membrane, as well as potential prebiotic properties and interactions with the intestinal microbial populations. This review collates the information of potential nutrients and their effects on the mineral absorption, gut development, brush border membrane functionality, and immune system. In addition, the advantages and limitations of the in ovo feeding method in the assessment of potential prebiotic effects of plant origin compounds is discussed.
Collapse
Affiliation(s)
- Tao Hou
- College of Food Science and Technology, HuaZhong Agricultural University, Wuhan 430070, China.
| | - Elad Tako
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Staniek H, Wójciak RW. The combined effect of supplementary Cr(III) propionate complex and iron deficiency on the chromium and iron status in female rats. J Trace Elem Med Biol 2018; 45:142-149. [PMID: 29173471 DOI: 10.1016/j.jtemb.2017.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/24/2022]
Abstract
The aim of the study was to evaluate the combined effect of supplementary chromium(III) and iron deficiency on the chromium and iron status in female rats. The study was carried out on female Wistar rats, which were divided into 6 experimental groups with different Fe levels (deficient 10% RDA and recommended (adequate) 100% RDA). Simultaneously, for six weeks their diets were supplemented with Cr(III) at doses of 1, 50 and 500mgkg-1. The tissular chromium and iron levels were measured with the AAS method. The serum iron and TIBC were measured with colorimetric methods The serum ferritin level was measured by means of electrochemiluminescence immunoassay. The serum transferrin level was measured with the ELISA method. The haematology was measured with an automated blood analyser. Supplementary Cr3 increased the Cr content in the tissues. This effect was weaker in the Fe-deficient groups than in those with the recommended Fe level, but it did not affect the Fe status. Fe deficiency significantly reduced the Fe content in the tissues. Simultaneously, Cr3 supplementation mitigated the symptoms of Fe deficiency. Fe deficiency increased TIBC and transferrin levels but reduced ferritin and most haematological parameters. However, simultaneous addition of high doses of Cr3 did not deepen these adverse changes. Our results show that the trend of changes in the Fe-Cr interaction depends on the content of these elements in the body.
Collapse
Affiliation(s)
- Halina Staniek
- Department of Bromatology and Food Toxicology, Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Ul. Wojska Polskiego 31, 60-624, Poznań, Poland.
| | - Rafał W Wójciak
- Department of Clinical Psychology, Poznań University of Medical Sciences, Ul. Bukowska 70, 60-812, Poznań, Poland
| |
Collapse
|
12
|
Ding B, Yi X, Li L, Yang H. Assessment of Ferrous Glycinate Liposome Absorption Using in Situ Single-Pass Perfusion Model. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2017. [DOI: 10.1515/ijfe-2016-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractLiposomes could be employed to improve the absorption of iron. The purpose of this study was to estimate the intestinal permeability of ferrous glycinate liposomes and to assess the effects of phytic acid, zinc and particle size on iron absorption usingin situsingle-pass perfusion in rats. The results showed that the absorption of ferrous glycinate liposomes was obviously higher than that of ferrous glycinate. The inhibitory effects of phytic acid and zinc on iron absorption were reduced by incorporating ferrous glycinate into liposomes. The particle size of ferrous glycinate liposomes was also a main factor for affecting iron absorption, and the intestinal permeability of the liposomes decreased with its particle size increasing. The results suggested that liposomes could be a potent delivery system to decrease the inhibitory effects of phytic acid and zinc and to enhance iron absorption. Furthermore, liposomes could alter the absorption pathways of ferrous glycinate.
Collapse
|
13
|
Mazhar M, Faizi S, Gul A, Kabir N, Simjee SU. Effects of naturally occurring flavonoids on ferroportin expression in the spleen in iron deficiency anemia in vivo. RSC Adv 2017. [DOI: 10.1039/c7ra02138k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Polyphenols with iron supplement exert variable effects on key players of iron homeostasis in iron deficiency anemia.
Collapse
Affiliation(s)
- Maryam Mazhar
- Dr Panjwani Center for Molecular Medicine and Drug Research
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi-75270
- Pakistan
| | - Shaheen Faizi
- H.E.J. Research Institute for Chemistry
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi-75270
- Pakistan
| | - Anum Gul
- Dr Panjwani Center for Molecular Medicine and Drug Research
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi-75270
- Pakistan
| | - Nurul Kabir
- Dr Panjwani Center for Molecular Medicine and Drug Research
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi-75270
- Pakistan
| | - Shabana U. Simjee
- Dr Panjwani Center for Molecular Medicine and Drug Research
- International Center for Chemical and Biological Sciences
- University of Karachi
- Karachi-75270
- Pakistan
| |
Collapse
|
14
|
Song S, Yang L, Ye M, Chen X, Shi F, Shaikh F. Antioxidant activity of a Lachnum YM226 melanin-iron complex and its influence on cytokine production in mice with iron deficiency anemia. Food Funct 2016; 7:1508-14. [PMID: 26887341 DOI: 10.1039/c5fo01274k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study aims to investigate the protective effects of an orally administered Lachnum YM226 melanin-iron complex (LM-Fe) against iron deficiency anemia (IDA) in mice. The IDA mouse model was established by feeding mice with iron-deficient food. Different doses of LM-Fe were given to the anaemic mice via intragastric administration, with FeCl3 and FeSO4 used as positive controls. After the iron supplement administration, it was observed that LM-Fe could significantly improve the decreased haemoglobin (Hb) level, and normalize the serum iron (SI) level, total iron-binding capacity (TIBC) and serum ferritin (SF) of the anaemic mice in a dose-dependent manner. In addition, treatment with LM-Fe significantly increased the antioxidant enzyme activities of superoxidase dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in plasma to normal or better. Furthermore, the levels of tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were obviously decreased in the LM-Fe supplemented groups compared with the model group, while the level of interleukin-2 (IL-2) was significantly increased. In conclusion, LM-Fe was efficient at ameliorating the anemia symptoms, improving the activities of antioxidant enzymes and adjusting the immune dysfunction of anaemic mice. Thus, these results demonstrated that LM-Fe might be exploited as an efficient and multifunctional iron supplement.
Collapse
Affiliation(s)
- Sheng Song
- College of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Liu Yang
- College of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Ming Ye
- College of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xue Chen
- Department of Chemical Engineering and Food Processing, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, China
| | - Fang Shi
- College of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Farnaz Shaikh
- College of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
15
|
Xiao C, Lei X, Wang Q, Du Z, Jiang L, Chen S, Zhang M, Zhang H, Ren F. Effects of a Tripeptide Iron on Iron-Deficiency Anemia in Rats. Biol Trace Elem Res 2016; 169:211-7. [PMID: 26109335 DOI: 10.1007/s12011-015-0412-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
Abstract
This study aims to investigate the effects of a tripeptide iron (REE-Fe) on iron-deficiency anemia rats. Sprague-Dawley rats were randomly divided into seven groups: a normal control group, an iron-deficiency control group, and iron-deficiency groups treated with ferrous sulfate (FeSO4), ferrous glycinate (Fe-Gly), or REE-Fe at low-, medium-, or high-dose groups. The rats in the iron-deficiency groups were fed on an iron-deficient diet to establish iron-deficiency anemia (IDA) model. After the model established, different iron supplements were given to the rats once a day by intragastric administration for 21 days. The results showed that REE-Fe had effective restorative action returning body weight, organ coefficients, and hematological parameters in IDA rats to normal level. In addition, comparing with FeSO4 or Fe-Gly, high-dose REE-Fe was more effective on improving the levels of renal coefficient, total iron-binding capacity, and transferrin. Furthermore, the liver hepcidin messenger RNA (mRNA) expression in the high-dose group was significantly higher (p < 0.05) than that in the FeSO4 or Fe-Gly group and showed no significant difference (p > 0.05) with the normal control group. The findings suggest that REE-Fe is an effective source of iron supplement for IDA rats and might be exploited as a new iron fortifier.
Collapse
Affiliation(s)
- Chen Xiao
- Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 287, No. 17 Qinghua East Road, Haidian, Beijing, 100083, People's Republic of China
| | - Xingen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Qingyu Wang
- Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 287, No. 17 Qinghua East Road, Haidian, Beijing, 100083, People's Republic of China
| | - Zhongyao Du
- Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 287, No. 17 Qinghua East Road, Haidian, Beijing, 100083, People's Republic of China
| | - Lu Jiang
- Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 287, No. 17 Qinghua East Road, Haidian, Beijing, 100083, People's Republic of China
| | - Silu Chen
- Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 287, No. 17 Qinghua East Road, Haidian, Beijing, 100083, People's Republic of China
| | - Mingjie Zhang
- Beijing Higher Institution Engineering Research Center of Animal Product, Beijing, 100083, People's Republic of China
| | - Hao Zhang
- Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 287, No. 17 Qinghua East Road, Haidian, Beijing, 100083, People's Republic of China.
| | - Fazheng Ren
- Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, P.O. Box 287, No. 17 Qinghua East Road, Haidian, Beijing, 100083, People's Republic of China
| |
Collapse
|
16
|
Zhang XG, Wei GX, Wang WN, Ma GD, Tang P, Chen XQ. Effects of Fe-YM1504 on iron deficiency anemia in rats. Food Funct 2016; 7:3184-92. [DOI: 10.1039/c6fo00423g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Iron deficiency anemia (IDA) is one of the most serious forms of malnutrition.
Collapse
Affiliation(s)
- Xin-Guo Zhang
- School of Life Science and Engineering
- Lanzhou University of Technology
- Key Laboratory of Screening and Processing in new Tibetan medicine of Gansu Province
- Gansu
- P.R. China
| | - Guo-Xing Wei
- School of Life Science and Engineering
- Lanzhou University of Technology
- Key Laboratory of Screening and Processing in new Tibetan medicine of Gansu Province
- Gansu
- P.R. China
| | - Wen-Na Wang
- School of Life Science and Engineering
- Lanzhou University of Technology
- Key Laboratory of Screening and Processing in new Tibetan medicine of Gansu Province
- Gansu
- P.R. China
| | - Guo-Di Ma
- School of Life Science and Engineering
- Lanzhou University of Technology
- Key Laboratory of Screening and Processing in new Tibetan medicine of Gansu Province
- Gansu
- P.R. China
| | - Peng Tang
- School of Life Science and Engineering
- Lanzhou University of Technology
- Key Laboratory of Screening and Processing in new Tibetan medicine of Gansu Province
- Gansu
- P.R. China
| | - Xiao-Qian Chen
- School of Life Science and Engineering
- Lanzhou University of Technology
- Key Laboratory of Screening and Processing in new Tibetan medicine of Gansu Province
- Gansu
- P.R. China
| |
Collapse
|