1
|
Iwaniak P, Owe-Larsson M, Urbańska EM. Microbiota, Tryptophan and Aryl Hydrocarbon Receptors as the Target Triad in Parkinson's Disease-A Narrative Review. Int J Mol Sci 2024; 25:2915. [PMID: 38474162 DOI: 10.3390/ijms25052915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
In the era of a steadily increasing lifespan, neurodegenerative diseases among the elderly present a significant therapeutic and socio-economic challenge. A properly balanced diet and microbiome diversity have been receiving increasing attention as targets for therapeutic interventions in neurodegeneration. Microbiota may affect cognitive function, neuronal survival and death, and gut dysbiosis was identified in Parkinson's disease (PD). Tryptophan (Trp), an essential amino acid, is degraded by microbiota and hosts numerous compounds with immune- and neuromodulating properties. This broad narrative review presents data supporting the concept that microbiota, the Trp-kynurenine (KYN) pathway and aryl hydrocarbon receptors (AhRs) form a triad involved in PD. A disturbed gut-brain axis allows the bidirectional spread of pro-inflammatory molecules and α-synuclein, which may contribute to the development/progression of the disease. We suggest that the peripheral levels of kynurenines and AhR ligands are strongly linked to the Trp metabolism in the gut and should be studied together with the composition of the microbiota. Such an approach can clearly delineate the sub-populations of PD patients manifesting with a disturbed microbiota-Trp-KYN-brain triad, who would benefit from modifications in the Trp metabolism. Analyses of the microbiome, Trp-KYN pathway metabolites and AhR signaling may shed light on the mechanisms of intestinal distress and identify new targets for the diagnosis and treatment in early-stage PD. Therapeutic interventions based on the combination of a well-defined food regimen, Trp and probiotics seem of potential benefit and require further experimental and clinical research.
Collapse
Affiliation(s)
- Paulina Iwaniak
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Maja Owe-Larsson
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Ewa M Urbańska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
2
|
Mirzababaei A, Mahmoodi M, Abaj F, Barkhidarian B, Dehghani A, Khalili P, Roumi Z, Mirzaei K. The association of dietary nitrates/nitrites intake and the gut microbial metabolite trimethylamine N-oxide and kynurenine in adults: a population-based study. Front Nutr 2024; 11:1346074. [PMID: 38450240 PMCID: PMC10915207 DOI: 10.3389/fnut.2024.1346074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024] Open
Abstract
Background Dietary nitrate and nitrite may affect the gut microbiota and its metabolites, such as trimethylamine N-oxide (TMAO) and kynurenine (KYN). However, this association and the exact mechanism are still unclear. Therefore, this study aimed to assess the association between dietary consumption of nitrite and nitrate on TMAO and KYN levels in adults. Methods This cross-sectional study was employed on a subsample baseline phase of the Tehran University of Medical Sciences (TUMS) Employee's Cohort Study (TEC). A total of 250 adults aged 18 years or older were included in the current analysis. Data on the dietary intakes were collected using a validated dish-based food frequency questionnaire (FFQ), and dietary intakes of nitrite and nitrate were estimated using the FFQ with 144 items. Serum profiles and TMAO and KYN were measured using a standard protocol. Results The findings of this study demonstrate a significant association between the intake of animal sources of nitrate and nitrite and the likelihood of having elevated levels of TMAO and KYN. Specifically, after adjustment, individuals with the highest intake adherence to nitrates from animal sources exhibited increased odds of having the highest level of TMAO (≥51.02 pg/ml) (OR = 1.51, 95% CI = 0.59-3.88, P = 0.03) and KYN (≥417.41 pg/ml) (OR = 1.75, 95% CI = 0.73-4.17, P = 0.02). Additionally, subjects with the highest animal intake from nitrite sources have 1.73 and 1.45 times higher odds of having the highest levels of TMAO and KYN. These results emphasize the potential implications of animal-derived nitrate and nitrite consumption on the levels of TMAO and KYN. Conclusion The present evidence indicates that a high level of nitrate and nitrite intake from animal sources can increase the odds of high levels of TMAO and KYN. Further studies suggest that we should better evaluate and understand this association.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahmoodi
- Department of Cellular and Molecular Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Abaj
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Bahareh Barkhidarian
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Dehghani
- Department of Community Nutrition, Faculty of Nutrition and Food Science, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pardis Khalili
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Roumi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ilavská L, Morvová M, Paduchová Z, Muchová J, Garaiova I, Ďuračková Z, Šikurová L, Trebatická J. The kynurenine and serotonin pathway, neopterin and biopterin in depressed children and adolescents: an impact of omega-3 fatty acids, and association with markers related to depressive disorder. A randomized, blinded, prospective study. Front Psychiatry 2024; 15:1347178. [PMID: 38414497 PMCID: PMC10896889 DOI: 10.3389/fpsyt.2024.1347178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Depressive disorder is a severe mental condition. In addition to genetic factors, immunological-inflammatory factors, oxidative stress, and disturbances in neurotransmitter metabolism, kynurenine and serotonin pathways may play a role. The exact mechanisms, especially in depressed children and adolescents, are not fully understood. Our primary hypothesis was whether the metabolites of tryptophan degradation in children and adolescents with depressive disorder might be influenced by omega-3 FAs compared to omega-6 FAs during a 12-week supplementation. A secondary hypothesis was to investigate whether tryptophan metabolites in children and adolescents are associated with markers of inflammatory response, oxidative stress, cortisol, and the serum omega-6/omega-3 FA ratio. Metabolites of tryptophan degradation and pteridines, neopterin, and biopterin in urine were analyzed with an HPLC system. Surprisingly, omega-3 FAs stimulated both kynurenine (kynurenine/tryptophan ratio) and serotonin (5-hydroxytryptophan) pathways, whereas omega-6 FAs only increased the kynurenine/tryptophan ratio. Neopterin and biopterin were not different from the healthy controls. Biopterin increased after omega-3 FA supplementation. Serotonin was positively correlated with lipoperoxidation and a marker of oxidative protein damage. Of the monitored tryptophan metabolites, only 5-hydroxyindolacetic acid was positively correlated with the severity of depression, total cholesterol, and negatively with brain-derived neurotrophic factor and glutathione peroxidase. In conclusion, in children and adolescents, both supplemented FAs stimulated the kynurenine pathway (kynurenine/tryptophan ratio) and kynurenine formation. However, the serotonin pathway (5-hydroxytryptophan) was stimulated only by omega-3 FA. Tryptophan metabolism is associated with oxidative stress, inflammation, total cholesterol, and cortisol. We are the first to point out the association between the kynurenine pathway (KYN/TRP ratio) and the omega-6/omega-3 FA ratio. The metabolite 5-HIAA could play a role in the pathophysiology of depressive disorder in children and adolescents. Clinical Trial Registration https://www.isrctn.com/ISRCTN81655012, identifier ISRCTN81655012.
Collapse
Affiliation(s)
- Lucia Ilavská
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - Marcela Morvová
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - Zuzana Paduchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jana Muchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Iveta Garaiova
- Research and Development Department, Cultech Ltd., Port Talbot, United Kingdom
| | - Zdenka Ďuračková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Libuša Šikurová
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
| | - Jana Trebatická
- Department of Paediatric Psychiatry, Faculty of Medicine of Comenius University and The National Institute of Children's Diseases, Bratislava, Slovakia
| |
Collapse
|
4
|
Niu B, Pan T, Xiao Y, Wang H, Zhu J, Tian F, Lu W, Chen W. The therapeutic potential of dietary intervention: based on the mechanism of a tryptophan derivative-indole propionic acid on metabolic disorders. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38189263 DOI: 10.1080/10408398.2023.2299744] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tryptophan (TRP) contributes to individual immune homeostasis and good condition via three complex metabolism pathways (5-hydroxytryptamine (5-HT), kynurenine (KP), and gut microbiota pathway). Indole propionic acid (IPA), one of the TRP derivatives of the microbiota pathway, has raised more attention because of its impact on metabolic disorders. Here, we retrospect increasing evidence that TRP metabolites/IPA derived from its proteolysis impact host health and disease. IPA can activate the immune system through aryl hydrocarbon receptor (AHR) and/or Pregnane X receptor (PXR) as a vital mediator among diet-caused host and microbe cross-talk. Different levels of IPA in systemic circulation can predict the risk of NAFLD, T2DM, and CVD. IPA is suggested to alleviate cognitive impairment from oxidative damage, reduce gut inflammation, inhibit lipid accumulation and attenuate the symptoms of NAFLD, putatively enhance the intestinal epithelial barrier, and maintain intestinal homeostasis. Now, we provide a general description of the relationships between IPA and various physiological and pathological processes, which support an opportunity for diet intervention for metabolic diseases.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tong Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
O'Keeffe M, Oterhals Å, Weishaupt H, Leh S, Ulvik A, Ueland PM, Halstensen A, Marti HP, Gudbrandsen OA. A diet containing cod backbone proteins attenuated the development of mesangial sclerosis and tubular dysfunction in male obese BTBR ob/ob mice. Eur J Nutr 2023; 62:3227-3240. [PMID: 37550593 PMCID: PMC10611847 DOI: 10.1007/s00394-023-03227-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
PURPOSE The obese black and tan, brachyuric (BTBR) ob/ob mouse spontaneously develops features comparable to human diabetic nephropathy. The primary aim of the present study was to investigate if a diet containing fish proteins would attenuate or delay the development of glomerular hypertrophy (glomerulomegaly), mesangial sclerosis and albuminuria in obese BTBR ob/ob mice. METHODS Obese BTBR.CgLepob/WiscJ male mice were fed diets containing 25% of protein from Atlantic cod backbones and 75% of protein from casein (Cod-BB group), or casein as the sole protein source (control group). Kidneys were analysed morphologically, and markers for renal dysfunction were analysed biochemically in urine and serum. RESULTS The Cod-BB diet attenuated the development of mesangial sclerosis (P 0.040) without affecting the development of glomerular hypertrophy and albuminuria. The urine concentration of cystatin C (relative to creatinine) was lower in mice fed the Cod-BB diet (P 0.0044). CONCLUSION A diet containing cod backbone protein powder attenuated the development of mesangial sclerosis and tubular dysfunction in obese BTBR ob/ob mice, but did not prevent the development of glomerular hypertrophy and albuminuria in these mice.
Collapse
Affiliation(s)
- Maria O'Keeffe
- Dietary Protein Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, 5021, Bergen, Norway
| | | | - Hrafn Weishaupt
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Sabine Leh
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | | | - Alfred Halstensen
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Oddrun Anita Gudbrandsen
- Dietary Protein Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
6
|
Holthuijsen DDB, van Roekel EH, Bours MJL, Ueland PM, Breukink SO, Janssen-Heijnen MLG, Keulen ETP, Gsur A, Kok DE, Ulvik A, Weijenberg MP, Eussen SJPM. Longitudinal associations of macronutrient and micronutrient intake with plasma kynurenines in colorectal cancer survivors up to 12 months posttreatment. Am J Clin Nutr 2023; 118:865-880. [PMID: 37923499 DOI: 10.1016/j.ajcnut.2023.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The tryptophan-kynurenine pathway is increasingly recognized to play a role in health-related quality of life (HRQoL) after cancer. Because tryptophan is an essential amino acid, and vitamins and minerals act as enzymatic cofactors in the tryptophan-kynurenine pathway, a link between diet and kynurenines is plausible. OBJECTIVES This study aimed to investigate the longitudinal associations of macronutrient and micronutrient intake with metabolites of the kynurenine pathway in colorectal cancer (CRC) survivors up to 12 mo posttreatment. METHODS In a prospective cohort of stage I-III CRC survivors (n = 247), repeated measurements were performed at 6 wk, 6 mo, and 12 mo posttreatment. Macronutrient and micronutrient intake was measured by 7-d dietary records. Plasma concentrations of tryptophan and kynurenines were analyzed using liquid chromatography tandem mass spectrometry (LC/MS-MS). Longitudinal associations were analyzed using linear mixed models adjusted for sociodemographic, clinical, and lifestyle factors. RESULTS After adjustment for multiple testing, higher total protein intake was positively associated with kynurenic acid (KA) (β as standard deviation [SD] change in KA concentration per 1 SD increase in total protein intake: 0.12; 95% CI: 0.04, 0.20), xanthurenic acid (XA) (standardized β: 0.22; 95% CI: 0.11, 0.33), 3-hydroxyanthranilic acid (HAA) (standardized β: 0.15; 95% CI: 0.04, 0.27) concentrations, and the kynurenic acid-to-quinolinic acid ratio (KA/QA) (standardized β: 0.12; 95% CI: 0.02,0.22). In contrast, higher total carbohydrate intake was associated with lower XA concentrations (standardized β: -0.18; 95% CI: -0.30, -0.07), a lower KA/QA (standardized β: -0.23; 95% CI: -0.34, -0.13), and a higher kynurenine-to-tryptophan ratio (KTR) (standardized β: 0.20; 95% CI: 0.10, 0.30). Higher fiber intake was associated with a higher KA/QA (standardized β: 0.11; 95% CI: 0.02, 0.21) and a lower KTR (standardized β: -0.12; 95% CI: -0.20, -0.03). Higher total fat intake was also associated with higher tryptophan (Trp) concentrations (standardized β: 0.18; 95% CI: 0.06, 0.30) and a lower KTR (standardized β: -0.13; 95% CI: -0.22, -0.03). For micronutrients, positive associations were observed for zinc with XA (standardized β: 0.13; 95% CI: 0.04, 0.21) and 3-hydroxykynurenine (HK) (standardized β: 0.12; 95% CI: 0.03, 0.20) concentrations and for magnesium with KA/QA (standardized β: 0.24; 95% CI: 0.13, 0.36). CONCLUSIONS Our findings show that intake of several macronutrients and micronutrients is associated with some metabolites of the kynurenine pathway in CRC survivors up to 12 mo posttreatment. These results may be relevant for enhancing HRQoL after cancer through potential diet-induced changes in kynurenines. Further studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- Daniëlle D B Holthuijsen
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
| | - Eline H van Roekel
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Martijn J L Bours
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | | | - Stéphanie O Breukink
- Department of Surgery, GROW School for Oncology and Reproduction, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Maryska L G Janssen-Heijnen
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands; Department of Clinical Epidemiology, VieCuri Medical Centre, Venlo, The Netherlands
| | - Eric T P Keulen
- Department of Internal Medicine and Gastroenterology, Zuyderland Medical Centre Sittard-Geleen, Geleen, The Netherlands
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Dieuwertje E Kok
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Matty P Weijenberg
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands; Department of Epidemiology, CAPHRI School for Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
7
|
Parolisi S, Montanari C, Borghi E, Cazzorla C, Zuvadelli J, Tosi M, Barone R, Bensi G, Bonfanti C, Dionisi Vici C, Biasucci G, Burlina A, Carbone MT, Verduci E. Possible role of tryptophan metabolism along the microbiota-gut-brain axis on cognitive & behavioral aspects in Phenylketonuria. Pharmacol Res 2023; 197:106952. [PMID: 37804926 DOI: 10.1016/j.phrs.2023.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cognitive and psychiatric disorders are well documented across the lifetime of patients with inborn errors of metabolism (IEMs). Gut microbiota impacts behavior and cognitive functions through the gut-brain axis (GBA). According to recent research, a broad spectrum of GBA disorders may be influenced by a perturbed Tryptophan (Trp) metabolism and are associated with alterations in composition or function of the gut microbiota. Furthermore, early-life diets may influence children's neurodevelopment and cognitive deficits in adulthood. In Phenylketonuria (PKU), since the main therapeutic intervention is based on a life-long restrictive diet, important alterations of gut microbiota have been observed. Studies on PKU highlight the impact of alterations of gut microbiota on the central nervous system (CNS), also investigating the involvement of metabolic pathways, such as Trp and kynurenine (KYN) metabolisms, involved in numerous neurodegenerative disorders. An alteration of Trp metabolism with an imbalance of the KYN pathway towards the production of neurotoxic metabolites implicated in numerous neurodegenerative and inflammatory diseases has been observed in PKU patients supplemented with Phe-free amino acid medical foods (AA-MF). The present review investigates the possible link between gut microbiota and the brain in IEMs, focusing on Trp metabolism in PKU. Considering the evidence collected, cognitive and behavioral well-being should always be monitored in routine IEMs clinical management. Further studies are required to evaluate the possible impact of Trp metabolism, through gut microbiota, on cognitive and behavioral functions in IEMs, to identify innovative dietetic strategies and improve quality of life and mental health of these patients.
Collapse
Affiliation(s)
- Sara Parolisi
- UOSD Metabolic Diseases, AORN Santobono-Pausilipon, Naples, Italy
| | - Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Elisa Borghi
- Department of Health Science, University of Milan, Milan, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, DIDAS Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Juri Zuvadelli
- Clinical Department of Pediatrics, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Martina Tosi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Science, University of Milan, Milan, Italy
| | - Rita Barone
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, AOU Policlinico "G.Rodolico-San Marco", University of Catania, Catania, Italy
| | - Giulia Bensi
- Paediatrics & Neonatology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Cristina Bonfanti
- Rare metabolic disease unit, Pediatric Department, San Gerardo Hospital, Monza, Italy
| | | | - Giacomo Biasucci
- Paediatrics & Neonatology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, DIDAS Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Maria T Carbone
- UOSD Metabolic Diseases, AORN Santobono-Pausilipon, Naples, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Science, University of Milan, Milan, Italy.
| |
Collapse
|
8
|
Baranwal G, Goodlett BL, Arenaz CM, Creed HA, Navaneethabalakrishnan S, Rutkowski JM, Alaniz RC, Mitchell BM. Indole Propionic Acid Increases T Regulatory Cells and Decreases T Helper 17 Cells and Blood Pressure in Mice with Salt-Sensitive Hypertension. Int J Mol Sci 2023; 24:9192. [PMID: 37298145 PMCID: PMC10252743 DOI: 10.3390/ijms24119192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Hypertension affects over a billion adults worldwide and is a major risk factor for cardiovascular disease. Studies have reported that the microbiota and its metabolites regulate hypertension pathophysiology. Recently, tryptophan metabolites have been identified to contribute to and inhibit the progression of metabolic disorders and cardiovascular diseases, including hypertension. Indole propionic acid (IPA) is a tryptophan metabolite with reported protective effects in neurodegenerative and cardiovascular diseases; however, its involvement in renal immunomodulation and sodium handling in hypertension is unknown. In the current study, targeted metabolomic analysis revealed decreased serum and fecal IPA levels in mice with L-arginine methyl ester hydrochloride (L-NAME)/high salt diet-induced hypertension (LSHTN) compared to normotensive control mice. Additionally, kidneys from LSHTN mice had increased T helper 17 (Th17) cells and decreased T regulatory (Treg) cells. Dietary IPA supplementation in LSHTN mice for 3 weeks resulted in decreased systolic blood pressure, along with increased total 24 h and fractional sodium excretion. Kidney immunophenotyping demonstrated decreased Th17 cells and a trend toward increased Treg cells in IPA-supplemented LSHTN mice. In vitro, naïve T cells from control mice were skewed into Th17 or Treg cells. The presence of IPA decreased Th17 cells and increased Treg cells after 3 days. These results identify a direct role for IPA in attenuating renal Th17 cells and increasing Treg cells, leading to improved sodium handling and decreased blood pressure. IPA may be a potential metabolite-based therapeutic option for hypertension.
Collapse
Affiliation(s)
- Gaurav Baranwal
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA (B.L.G.)
| | - Bethany L. Goodlett
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA (B.L.G.)
| | - Cristina M. Arenaz
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA (B.L.G.)
| | - Heidi A. Creed
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA (B.L.G.)
| | | | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA (B.L.G.)
| | - Robert C. Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M University School of Medicine, Bryan, TX 77807, USA
| | - Brett M. Mitchell
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX 77807, USA (B.L.G.)
| |
Collapse
|
9
|
Holthuijsen DDB, Bours MJL, van Roekel EH, Breukink SO, Janssen-Heijnen MLG, Keulen ETP, Ueland PM, Midttun Ø, Brezina S, Gigic B, Gsur A, Kok DE, Ose J, Ulrich CM, Weijenberg MP, Eussen SJPM. Longitudinal Associations of Adherence to the Dietary World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) and Dutch Healthy Diet (DHD) Recommendations with Plasma Kynurenines in Colorectal Cancer Survivors after Treatment. Nutrients 2022; 14:5151. [PMID: 36501181 PMCID: PMC9738623 DOI: 10.3390/nu14235151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022] Open
Abstract
The tryptophan-kynurenine pathway has been linked to cancer aetiology and survivorship, and diet potentially affects metabolites of this pathway, but evidence to date is scarce. Among 247 stage I-III CRC survivors, repeated measurements were performed at 6 weeks, 6 months, and 1 year post-treatment. Adherence to the World Cancer Research Fund/ American Institute for Cancer Research (WCRF) and Dutch Healthy Diet (DHD) recommendations was operationalized using seven-day dietary records. Plasma kynurenines of nine metabolites were analysed. Longitudinal associations of adherence to these dietary patterns and plasma kynurenines were analysed using confounder-adjusted linear mixed-models. In general, higher adherence to the dietary WCRF/AICR and DHD recommendations was associated with lower concentrations of kynurenines with pro-oxidative, pro-inflammatory, and neurotoxic properties (3-hydroxykynurenine (HK) and quinolinic acid (QA)), and higher concentrations of kynurenines with anti-oxidative, anti-inflammatory, and neuroprotective properties (kynurenic acid (KA) and picolinic acid (Pic)), but associations were weak and not statistically significant. Statistically significant positive associations between individual recommendations and kynurenines were observed for: nuts with kynurenic-acid-to-quinolinic-acid ratio (KA/QA); alcohol with KA/QA, KA, and xanthurenic acid (XA); red meat with XA; and cheese with XA. Statistically significant inverse associations were observed for: nuts with kynurenine-to-tryptophan ratio (KTR) and hydroxykynurenine ratio; alcohol with KTR; red meat with 3-hydroxyanthranilic-to-3-hydroxykynurenine ratio; ultra-processed foods with XA and KA/QA; and sweetened beverages with KA/QA. Our findings suggest that CRC survivors might benefit from adhering to the dietary WCRF and DHD recommendations in the first year after treatment, as higher adherence to these dietary patterns is generally, but weakly associated with more favourable concentrations of kynurenines and their ratios. These results need to be validated in other studies.
Collapse
Affiliation(s)
- Daniëlle D. B. Holthuijsen
- Department of Epidemiology, CARIM School for Cardivascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Martijn J. L. Bours
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Eline H. van Roekel
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Stéphanie O. Breukink
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Surgery, GROW School for Oncology and Reproduction, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands
| | - Maryska L. G. Janssen-Heijnen
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Clinical Epidemiology, VieCuri Medical Centre, 5912 BL Venlo, The Netherlands
| | - Eric T. P. Keulen
- Department Internal Medicine and Gastroentology, Zuyderland Medical Centre Sittard-Geleen, 6162 BG Geleen, The Netherlands
| | | | | | - Stefanie Brezina
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Biljana Gigic
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, 69120 Heidelberg, Germany
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Dieuwertje E. Kok
- Division of Human Nutrition and Health, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Jennifer Ose
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT 84108, USA
| | | | - Matty P. Weijenberg
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Simone J. P. M. Eussen
- Department of Epidemiology, CARIM School for Cardivascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Epidemiology, CAPHRI School for Care and Public Health Research Institute, Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
10
|
Vikøren LA, Drotningsvik A, Midttun Ø, McCann A, Bergseth MT, Austgulen MH, Mellgren G, Ueland PM, Gudbrandsen OA. Baked cod consumption delayed the development of kidney and liver dysfunction and affected plasma amino acid concentrations, but did not affect blood pressure, blood glucose or liver triacylglycerol concentrations in obese fa/fa Zucker rats. Nutr Res 2021; 92:72-83. [PMID: 34274556 DOI: 10.1016/j.nutres.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Obesity is associated with changes in amino acid metabolism, and studies show that ingestion of fish proteins influence amino acid composition in plasma and urine, in addition to affecting risk factors for metabolic syndrome. Since the majority of fish proteins consumed by humans are as fish fillet, it is of interest to investigate if cod fillet intake affects amino acid composition and metabolic disorders. We hypothesized that a modified AIN-93G diet containing cod fillet would affect amino acid compositions in plasma and urine in obese rats, and also affect risk factors for metabolic syndrome when compared to rats fed a regular AIN-93G diet with casein as the protein source. Obese Zucker fa/fa rats, a rat model of metabolic syndrome, received diets containing 25% protein from lyophilized baked cod fillet and 75% protein from casein (Baked cod diet), or a Control diet with casein for four weeks. The Baked cod diet affected the amino acid composition in plasma, with e.g., lower glycine, histidine, homoarginine, homocysteine, methionine, proline and tyrosine concentrations, but did not affect amino acid concentrations in urine. The concentrations of markers for kidney and liver dysfunction were lower in the Baked cod group, however blood pressure development, fasting and postprandial glucose, and hepatic triacylglycerol concentrations were similar to the Control group. To conclude, substituting 25% of dietary protein with baked cod fillet affected concentrations of some amino acids in plasma and delayed development of kidney and liver dysfunction, but did not affect blood pressure, glucose concentration or fatty liver.
Collapse
Affiliation(s)
- Linn A Vikøren
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Aslaug Drotningsvik
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | | | | | - Marthe T Bergseth
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Maren H Austgulen
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Haukeland University Hospital, 5020 Bergen, Norway; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | | | - Oddrun A Gudbrandsen
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway.
| |
Collapse
|
11
|
Lin J, Sun-Waterhouse D, Cui C. The therapeutic potential of diet on immune-related diseases: based on the regulation on tryptophan metabolism. Crit Rev Food Sci Nutr 2021; 62:8793-8811. [PMID: 34085885 DOI: 10.1080/10408398.2021.1934813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tryptophan (TRP), as an essential amino acid, plays crucial roles in maintaining immune homeostasis due to its complex metabolism pathway, including the microbial metabolism, 5-hydroxytryptamine and kynurenine pathways (KP). Metabolites from these pathways can act antioxidant and endogenous ligand of aryl hydrocarbon receptor (including microbiota metabolites: indole, indole aldehyde, indole acetic acid, indole acrylic acid, indole lactate, indole pyruvate acid, indole propionic acid, skatole, tryptamine, and indoxyl sulfate; and KP metabolites: kynurenine, kynurenic acid, 3-hydroxyanthranilic acid, xanthurenic acid, and cinnabarinic acid) for regulating immune response. In immune-related diseases, the production of pro-inflammatory cytokine activates indoleamine-2,3-dioxygenase, a rate-limiting enzyme of KP, leading to abnormal TRP metabolism in vivo. Many recent studies found that TRP metabolism could be regulated by diet, and the diet regulation on TRP metabolism could therapy related diseases. Accordingly, this review provides a critical overview of the relationships among diet, TRP metabolism and immunity with the aim to seek a treatment opportunity for immune-related diseases.
Collapse
Affiliation(s)
- Junjie Lin
- College of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Technology, South China University of Technology, Guangzhou, China
| | - Chun Cui
- College of Food Science and Technology, South China University of Technology, Guangzhou, China.,Guangdong Wei-Wei Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
12
|
Kiluk M, Lewkowicz J, Pawlak D, Tankiewicz-Kwedlo A. Crosstalk between Tryptophan Metabolism via Kynurenine Pathway and Carbohydrate Metabolism in the Context of Cardio-Metabolic Risk-Review. J Clin Med 2021; 10:jcm10112484. [PMID: 34199713 PMCID: PMC8199979 DOI: 10.3390/jcm10112484] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Scientific interest in tryptophan metabolism via the kynurenine pathway (KP) has increased in the last decades. Describing its metabolites helped to increase their roles in many diseases and disturbances, many of a pro-inflammatory nature. It has become increasingly evident that KP can be considered an important part of emerging mediators of diabetes mellitus and metabolic syndrome (MS), mostly stemming from chronic systemic low-grade inflammation resulting in the aggravation of cardiovascular complications. An electronic literature search of PubMed and Embase up to March 2021 was performed for papers reporting the effects of tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA), xanthurenic acid (XA), anthranilic acid (AA), and quinolinic acid (QA), focusing on their roles in carbohydrate metabolism and the cardiovascular system. In this review, we discussed the progress in tryptophan metabolism via KP research, focusing particular attention on the roles in carbohydrate metabolism and its complications in the cardiovascular system. We examined the association between KP and diabetes mellitus type 2 (T2D), diabetes mellitus type 1 (T1D), and cardiovascular diseases (CVD). We concluded that tryptophan metabolism via KP serves as a potential diagnostic tool in assessing cardiometabolic risk for patients with T2D.
Collapse
Affiliation(s)
- Małgorzata Kiluk
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, 15-089 Białystok, Poland; (M.K.); (J.L.)
| | - Janina Lewkowicz
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, 15-089 Białystok, Poland; (M.K.); (J.L.)
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Anna Tankiewicz-Kwedlo
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, 15-089 Białystok, Poland
- Correspondence: ; Tel.: +48-85-748-56-01
| |
Collapse
|
13
|
Helland A, Bratlie M, Hagen IV, Midttun Ø, Sveier H, Mellgren G, Ueland PM, Gudbrandsen OA. Effect of high intake of cod or salmon on serum total neopterin concentration: a randomised clinical trial. Eur J Nutr 2021; 60:3237-3248. [PMID: 33576844 PMCID: PMC8354862 DOI: 10.1007/s00394-021-02497-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/22/2021] [Indexed: 12/31/2022]
Abstract
Purpose Primarily, to investigate the effect of high intake of cod (lean fish) or salmon (fatty fish) on serum concentration of total neopterin, a marker of cellular immune activation that is associated with cardiovascular disease. Second, to investigate effects of high cod/salmon intake on antioxidant vitamins and elements essential for activity of antioxidant enzymes. Methods In this randomised clinical trial, 63 participants with overweight/obesity consumed 750 g/week of either Atlantic cod (N = 22) or Atlantic salmon (N = 22) or were instructed to continue their normal eating habits but avoid fish intake (Control group, N = 19) for 8 weeks. Food intake was recorded, and fasting serum were collected at baseline and endpoint. Results Serum total neopterin concentration was reduced in the Cod group (median change − 2.65 (25th, 75th percentiles − 3.68, − 0.45) nmol/l, P = 0.018) but not in the Salmon group (median change 0.00 (25th, 75th percentiles − 4.15, 3.05) nmol/l, P = 0.59) when compared with the Control group after 8 weeks. The estimated daily intake of selenium, iron, magnesium and zinc were similar between all groups. Increased serum concentration of selenium was observed only after cod intake when compared to the Control group (P = 0.017). Changes in serum concentrations of copper, iron, magnesium, all-trans retinol, α-tocopherol and γ-tocopherol were similar between the groups. Conclusion A high intake of cod, but not of salmon, lowered serum total neopterin concentration when compared to the Control group. Clinical trial registration This trial was registered at clinicaltrials.gov as NCT02350595
Collapse
Affiliation(s)
- Anita Helland
- Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, 5021, Bergen, Norway
| | - Marianne Bratlie
- Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, 5021, Bergen, Norway
| | - Ingrid V Hagen
- Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, 5021, Bergen, Norway
| | | | - Harald Sveier
- Lerøy Seafood Group ASA, PO Box 7600, 5020, Bergen, Norway
| | - Gunnar Mellgren
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway.,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021, Bergen, Norway
| | | | - Oddrun A Gudbrandsen
- Department of Clinical Medicine, University of Bergen, Haukeland University Hospital, 5021, Bergen, Norway.
| |
Collapse
|
14
|
Abstract
Although seafood is considered to be an important part of a balanced diet, many national food consumption surveys suggest that seafood is not consumed in sufficient amounts. As consumers are moving to diversify their diet from animal-based protein, it is important to understand the factors influencing consumption of marine foods. This review aims to assess the characteristics of seafood consumers as well as the influences on seafood consumption in Europe, USA, Canada, Australia and New Zealand. Systematic search strategies were used to identify relevant journal articles from three electronic databases (PubMed, Web of Science and Embase). Three searches were carried out and identified 4405 unique publications from which 121 met the criteria for the review process. The reviewed studies revealed that seafood consumers were more likely to be older, more affluent and more physically active and were less likely to smoke compared with non-seafood consumers. Sex and BMI did not appear to have a directional association with seafood consumption. The most commonly reported barriers to seafood consumption were cost, followed by sensory or physical barriers, health and nutritional beliefs, habits, availability and cooking skills. The most commonly reported influences were beliefs about the contribution of seafood to health, environmental influences and personal preferences. Based on the findings of this review, future intervention strategies to increase seafood consumption may need to consider affordability and education in terms of health, nutrition and cooking skills. More research is needed to explore the effectiveness of specific interventions at increasing the consumption of seafood.
Collapse
|
15
|
Noerman S, Kolehmainen M, Hanhineva K. Profiling of Endogenous and Gut Microbial Metabolites to Indicate Metabotype-Specific Dietary Responses: A Systematic Review. Adv Nutr 2020; 11:1237-1254. [PMID: 32271864 PMCID: PMC7490160 DOI: 10.1093/advances/nmaa031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/21/2020] [Accepted: 03/03/2020] [Indexed: 12/27/2022] Open
Abstract
Upon dietary exposure, the endogenous metabolism responds to the diet-derived nutrients and bioactive compounds, such as phytochemicals. However, the responses vary remarkably due to the interplay with other dietary components, lifestyle exposures, and intrinsic factors, which lead to differences in endogenous regulatory metabolism. These physiological processes are evidenced as a signature profile composed of various metabolites constituting metabolic phenotypes, or metabotypes. The metabolic profiling of biological samples following dietary intake hence would provide information about diet-that is, as the intake biomarkers and the ongoing physiological reactions triggered by this intake-thereby enable evaluation of the metabolic basis required to distinguish the different metabotypes. The capacity of nontargeted metabolomics to also encompass the unprecedented metabolite species has enabled the profiling of multiple metabolites and the corresponding metabotypes with a single analysis, decoding the complex interplay between diet, other relevant factors, and health. In this systematic review, we screened 345 articles published in English in January 2007-July 2018, which applied the metabolomics approach to profile the changes of endogenous metabolites in the blood related to dietary interventions, either derived by metabolism of gut microbiota or the human host. We excluded all the compounds that were directly derived from diet, and also the dietary interventions focusing on supplementation with individual compounds. After the removal of less relevant studies and assessment of eligibility, 49 articles were included in this review. First, we mention the contribution of individual factors, either modifiable or nonmodifiable factors, in shaping metabolic profile. Then, how different aspects of the diet would affect the metabolic profiles are disentangled. Next, the classes of endogenous metabolites altered following included dietary interventions are listed. We also discuss the current challenges in the field, along with future research opportunities.
Collapse
Affiliation(s)
- Stefania Noerman
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland,Address correspondence to SN (e-mail: )
| | - Marjukka Kolehmainen
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Kati Hanhineva
- Department of Clinical Nutrition, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland,Address correspondence to KH ()
| |
Collapse
|
16
|
Weyh C, Krüger K, Strasser B. Physical Activity and Diet Shape the Immune System during Aging. Nutrients 2020; 12:nu12030622. [PMID: 32121049 PMCID: PMC7146449 DOI: 10.3390/nu12030622] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022] Open
Abstract
With increasing age, the immune system undergoes a remodeling process, termed immunosenescence, which is accompanied by considerable shifts in leukocyte subpopulations and a decline in various immune cell functions. Clinically, immunosenescence is characterized by increased susceptibility to infections, a more frequent reactivation of latent viruses, decreased vaccine efficacy, and an increased prevalence of autoimmunity and cancer. Physiologically, the immune system has some adaptive strategies to cope with aging, while in some settings, maladaptive responses aggravate the speed of aging and morbidity. While a lack of physical activity, decreased muscle mass, and poor nutritional status facilitate immunosenescence and inflammaging, lifestyle factors such as exercise and dietary habits affect immune aging positively. This review will discuss the relevance and mechanisms of immunoprotection through physical activity and specific exercise interventions. In the second part, we will focus on the effect of dietary interventions through the supplementation of the essential amino acid tryptophan, n-3 polyunsaturated fatty acids, and probiotics (with a special focus on the kynurenine pathway).
Collapse
Affiliation(s)
- Christopher Weyh
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, University of Giessen, 35394 Giessen, Germany;
- Correspondence:
| | - Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, A-1020 Vienna, Austria;
| |
Collapse
|
17
|
Abstract
We provide an overview of studies on seafood intake in relation to obesity, insulin resistance and type 2 diabetes. Overweight and obesity development is for most individuals the result of years of positive energy balance. Evidence from intervention trials and animal studies suggests that frequent intake of lean seafood, as compared with intake of terrestrial meats, reduces energy intake by 4–9 %, sufficient to prevent a positive energy balance and obesity. At equal energy intake, lean seafood reduces fasting and postprandial risk markers of insulin resistance, and improves insulin sensitivity in insulin-resistant adults. Energy restriction combined with intake of lean and fatty seafood seems to increase weight loss. Marine n-3 PUFA are probably of importance through n-3 PUFA-derived lipid mediators such as endocannabinoids and oxylipins, but other constituents of seafood such as the fish protein per se, trace elements or vitamins also seem to play a largely neglected role. A high intake of fatty seafood increases circulating levels of the insulin-sensitising hormone adiponectin. As compared with a high meat intake, high intake of seafood has been reported to reduce plasma levels of the hepatic acute-phase protein C-reactive protein level in some, but not all studies. More studies are needed to confirm the dietary effects on energy intake, obesity and insulin resistance. Future studies should be designed to elucidate the potential contribution of trace elements, vitamins and undesirables present in seafood, and we argue that stratification into responders and non-responders in randomised controlled trials may improve the understanding of health effects from intake of seafood.
Collapse
|
18
|
Bjørndal B, Bruheim I, Lysne V, Ramsvik MS, Ueland PM, Nordrehaug JE, Nygård OK, Berge RK. Plasma choline, homocysteine and vitamin status in healthy adults supplemented with krill oil: a pilot study. Scandinavian Journal of Clinical and Laboratory Investigation 2018; 78:527-532. [PMID: 30261756 DOI: 10.1080/00365513.2018.1512716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Plasma concentrations of metabolites along the choline oxidation and tryptophan degradation pathways have been linked to lifestyle diseases and dietary habits. This study aimed to investigate how krill oil, a source of ω-3 polyunsaturated fatty acids (PUFAs) with a high phosphatidylcholine content, affected these parameters. The pilot study was conducted as a 28 days intervention in 17 healthy volunteers (18-36 years), who received a supplement of 4.5 g krill oil per day, providing 833 mg ω-3 PUFAs, and 1750 mg phosphatidylcholine. Krill oil supplementation increased fasting plasma choline (+28.4%, p < .001), betaine (+26.6%, p < .001), dimethylglycine (+33.7%, p < .001) and sarcosine (+16.8%, p < .001), whereas no statistically significant changes were seen for plasma glycine, serine, methionine, total homocysteine, cysteine, cystathionine, methionine sulfoxide, folate, cobalamin, B2-, B3-, and B6 vitamers, tryptophan, kynurenines, nicotinamide, vitamin A and vitamin E. In summary, krill oil supplementation influenced choline metabolite levels, but not plasma metabolites of the tryptophan-kynurenine-nicotinamide pathways and vitamins. These observations should be confirmed in a placebo-controlled trial, including an ω-3 PUFA supplement without phospholipids to explore the potential additive effects of the different active ingredients.
Collapse
Affiliation(s)
- Bodil Bjørndal
- a Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Inge Bruheim
- b Rimfrost AS , Fosnavåg , Norway.,c Møreforskning AS , Ålesund , Norway
| | - Vegard Lysne
- a Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Marie S Ramsvik
- a Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Per M Ueland
- a Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Jan E Nordrehaug
- a Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Ottar K Nygård
- a Department of Clinical Science , University of Bergen , Bergen , Norway.,d Department of Heart Disease , Haukeland University Hospital , Bergen , Norway.,e KG Jebsen Centre for Diabetes Research, University of Bergen , Bergen , Norway
| | - Rolf K Berge
- a Department of Clinical Science , University of Bergen , Bergen , Norway.,d Department of Heart Disease , Haukeland University Hospital , Bergen , Norway
| |
Collapse
|
19
|
Tong Q, Song J, Yang G, Fan L, Xiong W, Fang J. Simultaneous determination of tryptophan, kynurenine, kynurenic acid, xanthurenic acid and 5-hydroxytryptamine in human plasma by LC-MS/MS and its application to acute myocardial infarction monitoring. Biomed Chromatogr 2017; 32. [PMID: 29193181 DOI: 10.1002/bmc.4156] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/26/2017] [Accepted: 11/19/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Qing Tong
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Jia Song
- The Center for Biomedical Research, Tongji Hospital Affiliated with Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Guangjie Yang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Li Fan
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Wei Xiong
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - Jianguo Fang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| |
Collapse
|
20
|
Strasser B, Becker K, Fuchs D, Gostner JM. Kynurenine pathway metabolism and immune activation: Peripheral measurements in psychiatric and co-morbid conditions. Neuropharmacology 2017; 112:286-296. [DOI: 10.1016/j.neuropharm.2016.02.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 12/14/2022]
|
21
|
James EL, Lane JAE, Michalek RD, Karoly ED, Parkinson EK. Replicatively senescent human fibroblasts reveal a distinct intracellular metabolic profile with alterations in NAD+ and nicotinamide metabolism. Sci Rep 2016; 6:38489. [PMID: 27924925 PMCID: PMC5141431 DOI: 10.1038/srep38489] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 11/11/2016] [Indexed: 12/30/2022] Open
Abstract
Cellular senescence occurs by proliferative exhaustion (PEsen) or following multiple cellular stresses but had not previously been subject to detailed metabolomic analysis. Therefore, we compared PEsen fibroblasts with proliferating and transiently growth arrested controls using a combination of different mass spectroscopy techniques. PEsen cells showed many specific alterations in both the NAD+ de novo and salvage pathways including striking accumulations of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) in the amidated salvage pathway despite no increase in nicotinamide phosphoribosyl transferase or in the NR transport protein, CD73. Extracellular nicotinate was depleted and metabolites of the deamidated salvage pathway were reduced but intracellular NAD+ and nicotinamide were nevertheless maintained. However, sirtuin 1 was downregulated and so the accumulation of NMN and NR was best explained by reduced flux through the amidated arm of the NAD+ salvage pathway due to reduced sirtuin activity. PEsen cells also showed evidence of increased redox homeostasis and upregulated pathways used to generate energy and cellular membranes; these included nucleotide catabolism, membrane lipid breakdown and increased creatine metabolism. Thus PEsen cells upregulate several different pathways to sustain their survival which may serve as pharmacological targets for the elimination of senescent cells in age-related disease.
Collapse
Affiliation(s)
- Emma L James
- Centre for Clinical &Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| | - James A E Lane
- Centre for Clinical &Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| | - Ryan D Michalek
- Metabolon, Inc. 617 Davis Drive, Suite 400, Durham, NC, 27713, USA
| | - Edward D Karoly
- Metabolon, Inc. 617 Davis Drive, Suite 400, Durham, NC, 27713, USA
| | - E Kenneth Parkinson
- Centre for Clinical &Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| |
Collapse
|