1
|
Wang L, Tang C, Zhang Q, Pan Q. Ferroptosis as a molecular target of epigallocatechin gallate in diseases. Arch Physiol Biochem 2024:1-13. [PMID: 39264116 DOI: 10.1080/13813455.2024.2401892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
CONTEXT Ferroptosis is a novel form of cell death characterised by iron overload and lipid peroxidation. It is closely associated with many diseases, including cardiovascular diseases, tumours, and neurological diseases. The use of natural chemicals to modulate ferroptosis is of great concern because of the critical role ferroptosis plays in disease. The main active ingredient in green tea is epigallocatechin gallate (EGCG), which is the most abundant catechin in green tea. EGCG shows a wide range of biological and therapeutic effects in various diseases, including anti-inflammatory, antioxidant, anticancer, and cardioprotective. OBJECTIVE The purpose of this article is to summarise the existing information on the relationship between EGCG and ferroptosis. METHODS Articles related to EGCG and ferroptosis were searched in PubMed and Web of Science databases, and the literature was analysed. RESULTS AND CONCLUSION EGCG could improve ferroptosis-related diseases and affect the development of ferroptosis by regulating the nuclear factor erythroid 2-related factor 2, autophagy, microRNA, signal transducer and activator of transcription 1, and protein kinase D1 signalling pathways.
Collapse
Affiliation(s)
- Lili Wang
- Wuhan Wuchang Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Chunlian Tang
- Wuhan Wuchang Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Qizhi Zhang
- Medical College of Wuhan University of Science and Technology, Wuhan, China
| | - Qun Pan
- Wuhan Wuchang Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Villagrán-Andrade KM, Núñez-Carro C, Blanco FJ, de Andrés MC. Nutritional Epigenomics: Bioactive Dietary Compounds in the Epigenetic Regulation of Osteoarthritis. Pharmaceuticals (Basel) 2024; 17:1148. [PMID: 39338311 PMCID: PMC11434976 DOI: 10.3390/ph17091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional epigenomics is exceptionally important because it describes the complex interactions among food compounds and epigenome modifications. Phytonutrients or bioactive compounds, which are secondary metabolites of plants, can protect against osteoarthritis by suppressing the expression of inflammatory and catabolic mediators, modulating epigenetic changes in DNA methylation, and the histone or chromatin remodelling of key inflammatory genes and noncoding RNAs. The combination of natural epigenetic modulators is crucial because of their additive and synergistic effects, safety and therapeutic efficacy, and lower adverse effects than conventional pharmacology in the treatment of osteoarthritis. In this review, we have summarized the chondroprotective properties of bioactive compounds used for the management, treatment, or prevention of osteoarthritis in both human and animal studies. However, further research is needed into bioactive compounds used as epigenetic modulators in osteoarthritis, in order to determine their potential value for future clinical applications in osteoarthritic patients as well as their relation with the genomic and nutritional environment, in order to personalize food and nutrition together with disease prevention.
Collapse
Affiliation(s)
- Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
3
|
El Oirdi M. Harnessing the Power of Polyphenols: A New Frontier in Disease Prevention and Therapy. Pharmaceuticals (Basel) 2024; 17:692. [PMID: 38931359 PMCID: PMC11206774 DOI: 10.3390/ph17060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
There are a wide variety of phytochemicals collectively known as polyphenols. Their structural diversity results in a broad range of characteristics and biological effects. Polyphenols can be found in a variety of foods and drinks, including fruits, cereals, tea, and coffee. Studies both in vitro and in vivo, as well as clinical trials, have shown that they possess potent antioxidant activities, numerous therapeutic effects, and health advantages. Dietary polyphenols have demonstrated the potential to prevent many health problems, including obesity, atherosclerosis, high blood sugar, diabetes, hypertension, cancer, and neurological diseases. In this paper, the protective effects of polyphenols and the mechanisms behind them are investigated in detail, citing the most recent available literature. This review aims to provide a comprehensive overview of the current knowledge on the role of polyphenols in preventing and managing chronic diseases. The cited publications are derived from in vitro, in vivo, and human-based studies and clinical trials. A more complete understanding of these naturally occurring metabolites will pave the way for the development of novel polyphenol-rich diet and drug development programs. This, in turn, provides further evidence of their health benefits.
Collapse
Affiliation(s)
- Mohamed El Oirdi
- Department of Life Sciences, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia;
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
4
|
Xie X, Fu J, Gou W, Qin Y, Wang D, Huang Z, Wang L, Li X. Potential mechanism of tea for treating osteoporosis, osteoarthritis, and rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1289777. [PMID: 38420363 PMCID: PMC10899483 DOI: 10.3389/fmed.2024.1289777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/08/2024] [Indexed: 03/02/2024] Open
Abstract
Osteoporosis (OP), osteoarthritis (OA), and rheumatoid arthritis (RA) are common bone and joint diseases with a high incidence and long duration. Thus, these conditions can affect the lives of middle-aged and elderly people. Tea drinking is a traditional lifestyle in China, and the long-term intake of tea and its active ingredients is beneficial to human health. However, the mechanisms of action of tea and its active ingredients against OP, OA, and RA are not completely elucidated. This study aimed to assess the therapeutic role and related mechanisms of tea and its active ingredients in OP, OA, and RA. Moreover, it expanded the potential mechanisms of tea efficacy based on network pharmacology and molecular docking. Results showed that tea has potential anti-COX properties and hormone-like effects. Compared with a single component, different tea components synergize or antagonize each other, thereby resulting in a more evident dual effect. In conclusion, tea has great potential in the medical and healthcare fields. Nevertheless, further research on the composition, proportion, and synergistic mechanism of several tea components should be performed.
Collapse
Affiliation(s)
- Xinyu Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiehui Fu
- Department of Sports Medicine (Orthopedics), Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, China
| | - Weiying Gou
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yifei Qin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dingzhen Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zuer Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lili Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xihai Li
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
5
|
Farhana A, Alsrhani A, Alghsham RS, Derafa W, Khan YS, Rasheed Z. Gold Nanoparticles Downregulate IL-6 Expression/Production by Upregulating microRNA-26a-5p and Deactivating the RelA and NF-κBp50 Transcription Pathways in Activated Breast Cancer Cells. Int J Mol Sci 2024; 25:1404. [PMID: 38338683 PMCID: PMC10855246 DOI: 10.3390/ijms25031404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs (miRNAs) are involved in the modulation of pathogenic genes by binding to their mRNA sequences' 3' untranslated regions (3'UTR). Interleukin-6 (IL-6) is known to promote cancer progression and treatment resistance. In this study, we aimed to explore the therapeutic effects of gold nanoparticles (GNP) against IL-6 overexpression and the modulation of miRNA-26a-5p in breast cancer (BC) cells. GNP were synthesized using the trisodium citrate method and characterized through UV-Vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM). To predict the binding of miR-26a-5p in the IL-6 mRNA's 3'UTR, we utilized bioinformatics algorithms. Luciferase reporter clone assays and anti-miRNA-26a-5p transfection were employed to validate the binding of miR26a-5p in the IL-6 mRNA's 3'UTR. The activity of RelA and NF-κBp50 was assessed and confirmed using Bay 11-7082. The synthesized GNP were spherical with a mean size of 28.3 nm, exhibiting high stability, and were suitable for BC cell treatment. We found that miR-26a-5p directly regulated IL-6 overexpression in MCF-7 cells activated with PMA. Treatment of MCF-7 cells with GNP resulted in the inhibition of IL-6 overexpression and secretion through the increase of miR26a-5p. Furthermore, GNP deactivated NF-κBp65/NF-κBp50 transcription activity. The newly engineered GNP demonstrated safety and showed promise as a therapeutic approach for reducing IL-6 overexpression. The GNP suppressed IL-6 overexpression and secretion by deactivating NF-κBp65/NF-κBp50 transcription activity and upregulating miR-26a-5p expression in activated BC cells. These findings suggest that GNP have potential as a therapeutic intervention for BC by targeting IL-6 expression and associated pathways.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Ruqaih S. Alghsham
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia; (R.S.A.); (Z.R.)
| | - Wassila Derafa
- Department of Chemistry, College of Science, Jouf University, Aljouf 72388, Saudi Arabia;
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia; (R.S.A.); (Z.R.)
| |
Collapse
|
6
|
Martino E, D’Onofrio N, Balestrieri A, Colloca A, Anastasio C, Sardu C, Marfella R, Campanile G, Balestrieri ML. Dietary Epigenetic Modulators: Unravelling the Still-Controversial Benefits of miRNAs in Nutrition and Disease. Nutrients 2024; 16:160. [PMID: 38201989 PMCID: PMC10780859 DOI: 10.3390/nu16010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
In the context of nutrient-driven epigenetic alterations, food-derived miRNAs can be absorbed into the circulatory system and organs of recipients, especially humans, and potentially contribute to modulating health and diseases. Evidence suggests that food uptake, by carrying exogenous miRNAs (xenomiRNAs), regulates the individual miRNA profile, modifying the redox homeostasis and inflammatory conditions underlying pathological processes, such as type 2 diabetes mellitus, insulin resistance, metabolic syndrome, and cancer. The capacity of diet to control miRNA levels and the comprehension of the unique characteristics of dietary miRNAs in terms of gene expression regulation show important perspectives as a strategy to control disease susceptibility via epigenetic modifications and refine the clinical outcomes. However, the absorption, stability, availability, and epigenetic roles of dietary miRNAs are intriguing and currently the subject of intense debate; additionally, there is restricted knowledge of their physiological and potential side effects. Within this framework, we provided up-to-date and comprehensive knowledge on dietary miRNAs' potential, discussing the latest advances and controversial issues related to the role of miRNAs in human health and disease as modulators of chronic syndromes.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Antonino Colloca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Celestino Sardu
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.S.); (R.M.)
| | - Raffaele Marfella
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.S.); (R.M.)
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| |
Collapse
|
7
|
Gabbianelli R, Shahar E, de Simone G, Rucci C, Bordoni L, Feliziani G, Zhao F, Ferrati M, Maggi F, Spinozzi E, Mahajna J. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents. Nutrients 2023; 15:4719. [PMID: 38004113 PMCID: PMC10675658 DOI: 10.3390/nu15224719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Ehud Shahar
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| | - Gaia de Simone
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Chiara Rucci
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Giulia Feliziani
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Fanrui Zhao
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
8
|
Wu L, Tang R, Xiong W, Song S, Guo Q, Zhang Q. Paeoniflorin shows chondroprotective effects under IL-1β stress by regulating circ-PREX1/miR-140-3p/WNT5B axis. J Orthop Surg Res 2023; 18:766. [PMID: 37817257 PMCID: PMC10566156 DOI: 10.1186/s13018-023-04238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic and degenerative bone and joint disease, and paeoniflorin shows anti-arthritis role in OA. This study planned to investigate the mechanism related to chondroprotective role of paeoniflorin in OA. METHODS Real-time quantitative PCR and western blotting were performed to measure expression levels of circ-PREX1, microRNA (miR)-140-3p, Wingless-type MMTV integration site family, member 5B (WNT5B), B cell lymphoma (Bcl)-2, and Bcl-2 Associated X Protein (Bax). MTT assay, EdU assay, flow cytometry and enzyme-linked immunosorbent assay evaluated cell viability, proliferation, apoptosis and inflammatory response, respectively. Dual-luciferase reporter assay and RNA immunoprecipitation assay identified the relationship among circ-PREX1, miR-140-3p, and WNT5B. RESULTS IL-1β highly induced apoptosis rate, Bax expression and TNF-α product, accompanied with decreased cell viability, cell proliferation and IL-10 secretion, whereas these effects were partially reversed after paeoniflorin pretreatment. Expression of circ-PREX1 was upregulated and miR-140-3p was downregulated in cartilage tissues of patients with knee OA (KOA) and IL-1β-induced human chondrocytes (C28/I2). Circ-PREX1 overexpression and miR-140-3p silencing attenuated the suppressive effect of paeoniflorin in IL-1β-induced C28/I2 cells. Furthermore, miR-140-3p was negatively regulated by circ-PREX1. WNT5B was a downstream target of miR-140-3p and could be modulated by the circ-PREX1/miR-140-3p pathway in IL-1β-induced C28/I2 cells. CONCLUSION Paeoniflorin might protect human chondrocytes from IL-1β-induced inflammatory injury via circ-PREX1-miR-140-3p-WNT5B pathway, suggesting a potential preventative agent and a novel target for the treatment of KOA.
Collapse
Affiliation(s)
- Lan'e Wu
- Xiong Wei-biao Workroom, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, Jiangxi, People's Republic of China
| | - Runke Tang
- Department of Rehabilitation, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, No. 90, Bayi Road, Nanchang City, 330003, Jiangxi Province, People's Republic of China.
| | - Weibiao Xiong
- Xiong Wei-biao Workroom, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, Jiangxi, People's Republic of China
| | - Shuhua Song
- Department of Dermatology, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, Jiangxi, People's Republic of China
| | - Qian Guo
- Xiong Wei-biao Workroom, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, Jiangxi, People's Republic of China
| | - Qingqing Zhang
- Xiong Wei-biao Workroom, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, Jiangxi, People's Republic of China
| |
Collapse
|
9
|
Su J, Yu M, Wang H, Wei Y. Natural anti-inflammatory products for osteoarthritis: From molecular mechanism to drug delivery systems and clinical trials. Phytother Res 2023; 37:4321-4352. [PMID: 37641442 DOI: 10.1002/ptr.7935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects millions globally. The present nonsteroidal anti-inflammatory drug treatments have different side effects, leading researchers to focus on natural anti-inflammatory products (NAIPs). To review the effectiveness and mechanisms of NAIPs in the cellular microenvironment, examining their impact on OA cell phenotype and organelles levels. Additionally, we summarize relevant research on drug delivery systems and clinical randomized controlled trials (RCTs), to promote clinical studies and explore natural product delivery options. English-language articles were searched on PubMed using the search terms "natural products," "OA," and so forth. We categorized search results based on PubChem and excluded "natural products" which are mix of ingredients or compounds without the structure message. Then further review was separately conducted for molecular mechanisms, drug delivery systems, and RCTs later. At present, it cannot be considered that NAIPs can thoroughly prevent or cure OA. Further high-quality studies on the anti-inflammatory mechanism and drug delivery systems of NAIPs are needed, to determine the appropriate drug types and regimens for clinical application, and to explore the combined effects of different NAIPs to prevent and treat OA.
Collapse
Affiliation(s)
- Jianbang Su
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Minghao Yu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haochen Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Sorrenti V, Buriani A, Fortinguerra S, Davinelli S, Scapagnini G, Cassidy A, De Vivo I. Cell Survival, Death, and Proliferation in Senescent and Cancer Cells: the Role of (Poly)phenols. Adv Nutr 2023; 14:1111-1130. [PMID: 37271484 PMCID: PMC10509428 DOI: 10.1016/j.advnut.2023.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023] Open
Abstract
Cellular senescence has long been considered a permanent state of cell cycle arrest occurring in proliferating cells subject to different stressors, used as a cellular defense mechanism from acquiring potentially harmful genetic faults. However, recent studies highlight that senescent cells might also alter the local tissue environment and concur to chronic inflammation and cancer risk by secreting inflammatory and matrix remodeling factors, acquiring a senescence-associated secretory phenotype (SASP). Indeed, during aging and age-related diseases, senescent cells amass in mammalian tissues, likely contributing to the inevitable loss of tissue function as we age. Cellular senescence has thus become one potential target to tackle age-associated diseases as well as cancer development. One important aspect characterizing senescent cells is their telomere length. Telomeres shorten as a consequence of multiple cellular replications, gradually leading to permanent cell cycle arrest, known as replicative senescence. Interestingly, in the large majority of cancer cells, a senescence escape strategy is used and telomere length is maintained by telomerase, thus favoring cancer initiation and tumor survival. There is growing evidence showing how (poly)phenols can impact telomere maintenance through different molecular mechanisms depending on dose and cell phenotypes. Although normally, (poly)phenols maintain telomere length and support telomerase activity, in cancer cells this activity is negatively modulated, thus accelerating telomere attrition and promoting cancer cell death. Some (poly)phenols have also been shown to exert senolytic activity, thus suggesting both antiaging (directly eliminating senescent cells) and anticancer (indirectly, via SASP inhibition) potentials. In this review, we analyze selective (poly)phenol mechanisms in senescent and cancer cells to discriminate between in vitro and in vivo evidence and human applications considering (poly)phenol bioavailability, the influence of the gut microbiota, and their dose-response effects.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Maria Paola Belloni Center for Personalized Medicine, Padova, Italy.
| | | | | | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Aedin Cassidy
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
11
|
Farhana A, Alsrhani A, Rasheed N, Rasheed Z. Gold nanoparticles attenuate the interferon-γ induced SOCS1 expression and activation of NF-κB p65/50 activity via modulation of microRNA-155-5p in triple-negative breast cancer cells. Front Immunol 2023; 14:1228458. [PMID: 37720228 PMCID: PMC10500308 DOI: 10.3389/fimmu.2023.1228458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
Objective Triple-negative breast cancer (TNBC) is a very aggressive form of cancer that grows and spreads very fast and generally relapses. Therapeutic options of TNBC are limited and still need to be explored completely. Gold nanoparticles conjugated with citrate (citrate-AuNPs) are reported to have anticancer potential; however, their role in regulating microRNAs (miRNAs) in TNBC has never been investigated. This study investigated the potential of citrate-AuNPs against tumorigenic inflammation via modulation of miRNAs in TNBC cells. Methods Gold nanoparticles were chemically synthesized using the trisodium-citrate method and were characterized by UV-Vis spectrophotometry and dynamic light scattering studies. Targetscan bioinformatics was used to analyze miRNA target genes. Levels of miRNA and mRNA were quantified using TaqMan assays. The pairing of miRNA in 3'untranslated region (3'UTR) of mRNA was validated by luciferase reporter clone, containing the entire 3'UTR of mRNA, and findings were further re-validated via transfection with miRNA inhibitors. Results Newly synthesized citrate-AuNPs were highly stable, with a mean size was 28.3 nm. The data determined that hsa-miR155-5p is a direct regulator of SOCS1 (suppressor-of-cytokine-signaling) expression and citrate-AuNPs inhibits SOCS1 mRNA/protein expression via modulating hsa-miR155-5p expression. Transfection of TNBC MDA-MB-231 cells with anti-miR155-5p markedly increased SOCS1 expression (p<0.001), while citrate-AuNPs treatment significantly inhibited anti-miR155-5p transfection-induced SOCS1 expression (p<0.05). These findings were validated by IFN-γ-stimulated MDA-MB-231 cells. Moreover, the data also determined that citrate-AuNPs also inhibit IFN-γ-induced NF-κB p65/p50 activation in MDA-MB-231 cells transfected with anti-hsa-miR155-5p. Conclusion Newly generated citrate-AuNPs were stable and non-toxic to TNBC cells. Citrate-AuNPs inhibit IFN-γ-induced SOCS1 mRNA/protein expression and deactivate NF-κB p65/50 activity via negative regulation of hsa-miR155-5p. These novel pharmacological actions of citrate-AuNPs on IFN-γ-stimulated TNBC cells provide insights that AuNPs inhibit IFN-γ induced inflammation in TNBC cells by modulating the expression of microRNAs.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Naila Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Consultant, Calamvale, QLD, Australia
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
12
|
Liu H, Guan H, He F, Song Y, Li F, Sun-Waterhouse D, Li D. Therapeutic actions of tea phenolic compounds against oxidative stress and inflammation as central mediators in the development and progression of health problems: A review focusing on microRNA regulation. Crit Rev Food Sci Nutr 2023; 64:8414-8444. [PMID: 37074177 DOI: 10.1080/10408398.2023.2202762] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Many health problems including chronic diseases are closely associated with oxidative stress and inflammation. Tea has abundant phenolic compounds with various health benefits including antioxidant and anti-inflammatory properties. This review focuses on the present understanding of the impact of tea phenolic compounds on the expression of miRNAs, and elucidates the biochemical and molecular mechanisms underlying the transcriptional and post-transcriptional protective actions of tea phenolic compounds against oxidative stress- and/or inflammation-mediated diseases. Clinical studies showed that drinking tea or taking catechin supplement on a daily basis promoted the endogenous antioxidant defense system of the body while inhibiting inflammatory factors. The regulation of chronic diseases based on epigenetic mechanisms, and the epigenetic-based therapies involving different tea phenolic compounds, have been insufficiently studied. The molecular mechanisms and application strategies of miR-27 and miR-34 involved in oxidative stress response and miR-126 and miR-146 involved in inflammation process were preliminarily investigated. Some emerging evidence suggests that tea phenolic compounds may promote epigenetic changes, involving non-coding RNA regulation, DNA methylation, histone modification, ubiquitin and SUMO modifications. However, epigenetic mechanisms and epigenetic-based disease therapies involving phenolic compounds from different teas, and the potential cross-talks among the epigenetic events, remain understudied.
Collapse
Affiliation(s)
- Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Fatao He
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Ye Song
- All-China Federation of Supply & Marketing Co-operatives, Jinan Fruit Research Institute, Jinan, P.R. China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, P.R. China
| |
Collapse
|
13
|
Sousa-Filho CPB, Silva V, Bolin AP, Rocha ALS, Otton R. Green tea actions on miRNAs expression – An update. Chem Biol Interact 2023; 378:110465. [PMID: 37004950 DOI: 10.1016/j.cbi.2023.110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023]
Abstract
Compounds derived from plants have been widely studied in the context of metabolic diseases and associated clinical conditions. In this regard, although the effects of Camellia sinensis plant, from which various types of teas, such as green tea, originate, have been vastly reported in the literature, the mechanisms underlying these effects remain elusive. A deep search of the literature showed that green tea's action in different cells, tissues, and diseases is an open field in the research of microRNAs (miRNAs). miRNAs are important communicator molecules between cells in different tissues implicated in diverse cellular pathways. They have emerged as an important linkage between physiology and pathophysiology, raising the issue of polyphenols can act also by changing miRNA expression. miRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. Therefore, the aim of this review is to present the studies that show the main compounds of green tea modulating the expression of miRNAs in inflammation, adipose tissue, skeletal muscle, and liver. We provide an overview of a few studies that have tried to demonstrate the role of miRNAs associated with the beneficial effects of compounds from green tea. We have emphasized that there is still a considerable gap in the literature investigating the role and likely involvement of miRNAs in the extensive beneficial health effects of green tea compounds already described, indicating miRNAs as potential polyphenols' mediators with a promising field to be investigated.
Collapse
Affiliation(s)
| | - Victoria Silva
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Anaysa Paola Bolin
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Rosemari Otton
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil.
| |
Collapse
|
14
|
Zhang W, Wang YD, Xing YJ, Liu PJ, Yang JH. Silencing of circ-NT5C2 retards the progression of IL-1β-induced osteoarthritis in an in vitro cell model by targeting the miR-142-5p/NAMPT axis. Microbiol Immunol 2023; 67:129-141. [PMID: 36540014 DOI: 10.1111/1348-0421.13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is a degenerative disease that occurs mostly in the elderly, and its specific pathogenesis is still unknown, but recent studies have found that circular RNA generally display aberrant expression in OA. Our study explored the expression characteristics and mechanism of action of circ-NT5C2 in OA. Circ-NT5C2, microRNA-142-5p (miR-142-5p), and nicotinamide phosphoribosyltransferase (NAMPT) mRNA levels were measured using RT-qPCR. Western blot was employed to assess the protein level of NAMPT and extracellular matrix (ECM) production-related markers. The viability, proliferation, apoptosis and inflammation were examined using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, and enzyme-linked immunosorbent assay, respectively. Relationship between miR-142-5p and circ-NT5C2 or NAMPT was demonstrated by dual-luciferase reporter system and RNA immunoprecipitation assay. We reported that circ-NT5C2 and NAMPT were greatly upregulated, and miR-142-5p level was constrained in OA tissues and in a cell model. Circ-NT5C2 silencing alleviated IL-1β-induced inhibitory effects on chondrocyte proliferation and ECM generation, meanwhile the promotional role of IL-1β on chondrocyte apoptosis and inflammation was also weakened. The targeting relationship of miR-142-5p with either circ-NT5C2 or NAMPT was confirmed. Knockdown of miR-142-5p reversed the suppressive effects of circ-NT5C2 silencing on the OA progression in vitro, and NAMPT overexpression also attenuated the effects of miR-142-5p upregulation in an OA cell model. Collectively, circ-NT5C2 accelerated the OA process by targeting the miR-142-5p/NAMPT axis. This study provides valuable information to find a better treatment for OA.
Collapse
Affiliation(s)
- Wei Zhang
- The Second Department of Bone Engineering, Xingyuan Hospital, Yulin City, China
| | - Yan-Dong Wang
- The Second Department of Bone Engineering, Xingyuan Hospital, Yulin City, China
| | - Yong-Jun Xing
- The Second Department of Bone Engineering, Xingyuan Hospital, Yulin City, China
| | - Peng-Jun Liu
- The Second Department of Bone Engineering, Xingyuan Hospital, Yulin City, China
| | - Jian-Hui Yang
- Department of Pain, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Chen WT, Yang MJ, Tsuei YW, Su TC, Siao AC, Kuo YC, Huang LR, Chen Y, Chen SJ, Chen PC, Cheng CF, Ku HC, Kao YH. Green Tea Epigallocatechin Gallate Inhibits Preadipocyte Growth via the microRNA-let-7a/HMGA2 Signaling Pathway. Mol Nutr Food Res 2023; 67:e2200336. [PMID: 36825504 DOI: 10.1002/mnfr.202200336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/19/2023] [Indexed: 02/25/2023]
Abstract
SCOPE This study investigates the effect of epigallocatechin gallate (EGCG) on white and beige preadipocyte growth and explores the involvement of the miR-let-7a/HMGA2 pathway. METHODS AND RESULTS 3T3-L1 and D12 cells are treated with EGCG. The effect of EGCG on cell proliferation and viability is evaluated, as well as microRNA (miRNA)-related signaling pathways. EGCG inhibits 3T3-L1 and D12 preadipocyte growth, upregulates miR-let-7a expression, and downregulates high-mobility group AT-hook 2 (HMGA2) mRNA and protein levels in a time- and dose-dependent manner. In addition, overexpression of miR-let-7a significantly inhibits the growth of 3T3-L1 and D12 cells and decreases HMGA2 mRNA and protein levels. MiR-let-7a inhibitor antagonizes the inhibitory effects of EGCG on the number and viability of 3T3-L1 and D12 cells. Furthermore, miR-let-7a inhibitor reverses the EGCG-induced increase in miR-let-7a expression levels and decrease in HMGA2 mRNA and protein levels. HMGA2 overexpression induces an increase in cell number and viability and antagonizes EGCG-suppressed cell growth and HMGA2 expression in 3T3-L1 and D12 preadipocytes. CONCLUSION EGCG inhibits the growth of 3T3-L1 and D12 preadipocytes by modulating the miR-let-7a and HMGA2 pathways.
Collapse
Affiliation(s)
- Wen-Ting Chen
- Department of Life Sciences, National Central University, Taoyuan, 320, Taiwan
| | - Meei-Ju Yang
- Tea Research and Extension Station, Council of Agriculture, Executive Yuan Number 324 Chung-Hsing RD., Taoyuan, 326, Taiwan
| | - Yi-Wei Tsuei
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, 325, Taiwan
| | - Tsung-Chen Su
- Tea Research and Extension Station, Council of Agriculture, Executive Yuan Number 324 Chung-Hsing RD., Taoyuan, 326, Taiwan
| | - An-Ci Siao
- Department of Life Sciences, National Central University, Taoyuan, 320, Taiwan
| | - Yow-Chii Kuo
- Department of Gastroenterology, Landseed Hospital, Taoyuan, 324, Taiwan
| | - Ling-Ru Huang
- Department of Life Sciences, National Central University, Taoyuan, 320, Taiwan
| | - Yi Chen
- Department of Life Sciences, National Central University, Taoyuan, 320, Taiwan
| | - Sy-Jou Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chuan Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 23142, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.,Department of Pediatrics, Tzu Chi University, Hualien, 97004, Taiwan
| | - Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 23142, Taiwan
| | - Yung-Hsi Kao
- Department of Life Sciences, National Central University, Taoyuan, 320, Taiwan
| |
Collapse
|
16
|
Acute green tea intake attenuates circulating microRNA expression induced by a high-fat, high-saturated meal in obese women: A randomized crossover study. J Nutr Biochem 2023; 112:109203. [PMID: 36347450 DOI: 10.1016/j.jnutbio.2022.109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
The objective of this study was to assess whether acute green tea (GT) supplementation attenuates inflammatory and oxidative stress biomarkers induced by high-fat, high-saturated (HFHS) meals in obese women, and to assess its ability to modulate circulating microRNA (miRNA) expression. This was a randomized, double-blind, crossover study. The study included obese women over 18 years old who had no comorbidities. In the first moment, patients were instructed to take 2 capsules of placebo or GT (738 mg) at 10:00 p.m. and to fast overnight. The next morning, a blood sample was collected, and an HFHS meal was offered to the patients. Another blood sample was collected 5 hours after the meal. In the second moment, patients who received placebo in the first moment now received the GT and vice-versa. Serum inflammatory and oxidative stress biomarkers were measured, and circulating levels of miRNA were evaluated. Fifteen women with mean age of 35.5±9.9 years were included in the final analysis. There was no difference regarding inflammatory and oxidative stress biomarkers. However, patients who consumed GT had lower circulating expression of 62 miRNAs compared with patients who did not consume GT. Predictive analysis of target genes showed 1,757 targets regulated by the 62 miRNAs. Notably, 5 miRNAs (miR-1297, miR-192-5p, miR-373-3p, miR-595 and miR-1266-5p) regulate genes associated with TGF-beta, CARM1, RSK, and BMP pathways. Our study showed that GT inhibited the expression of miRNAs induced by HFHS meal intake. These results shed light on the mechanisms involved in the beneficial effects of GT ingestion.
Collapse
|
17
|
Fraga LN, Anacleto SL, Milenkovic D, Lajolo FM, Hassimotto NMA. Citrus flavanone metabolites protect pancreatic β-cells against cholesterol stress through a multi-proteomic mechanism. Food Funct 2022; 13:12983-13001. [PMID: 36448600 DOI: 10.1039/d2fo02479a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Citrus flavanones may improve oxidative stress and insulin resistance induced by western diets. However, there is a paucity of studies investigating the change in protein expression levels. This study evaluated the protection and the mechanisms of action of citrus flavanone metabolites, hesperetin 7-glucuronide (H7G) and 3-(4'-hydroxyphenyl) propanoic acid (PA), on pancreatic β-cell function under oxidative stress induced by cholesterol using the global proteomics approach. Cholesterol induced changes in the global proteomic profile in the pancreatic β-cell line Min6. On the other hand, proteomics analysis identified 254 proteins differentially expressed with H7G and 352 with PA treatments, most of them were opposite to the changes induced by cholesterol. Bioinformatics analysis showed that these proteins are implicated in cell functions like cell signaling (insulin signaling, p30MAPK signaling, and others), metabolism (glucokinase and glutathione metabolisms), and inflammation pathways (TNF-α and NF-κB pathways). Also, the results of molecular docking suggest that H7G and PA could bind to putative transcription factors (PPAR-γ, STAT-3, CREB1, NF-κB, NFYA) and cell signaling proteins (IKK, RAS, Pi3K, ERK), which results in changes in protein expression observed. Altogether, these data suggest that the treatment with H7G and PA protects pancreatic β-cells against stress induced by cholesterol through multi-proteomic mechanisms of action.
Collapse
Affiliation(s)
- Layanne Nascimento Fraga
- Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil. .,Food Research Center (FoRC-CEPID), University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, 05508-900, São Paulo, SP, Brazil
| | - Sara Lima Anacleto
- Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil. .,Food Research Center (FoRC-CEPID), University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, 05508-900, São Paulo, SP, Brazil
| | - Dragan Milenkovic
- Department of Nutrition, University of California Davis, 95616 Davis, CA, USA
| | - Franco Maria Lajolo
- Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil. .,Food Research Center (FoRC-CEPID), University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, 05508-900, São Paulo, SP, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-900 São Paulo, SP, Brazil. .,Food Research Center (FoRC-CEPID), University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
18
|
Yang D, Cao G, Ba X, Jiang H. Epigallocatechin-3- O-gallate promotes extracellular matrix and inhibits inflammation in IL-1β stimulated chondrocytes by the PTEN/miRNA-29b pathway. PHARMACEUTICAL BIOLOGY 2022; 60:589-599. [PMID: 35260041 PMCID: PMC8920401 DOI: 10.1080/13880209.2022.2039722] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CONTEXT Epigallocatechin-3-O-gallate (EGCG) exhibits anti-arthritic activity. MiR-29b-3p provokes chondrocyte apoptosis and promotes the initiation and development of osteoarthritis (OA). OBJECTIVE To explore the roles of EGCG and miR-29b-3p in interleukin-1β (IL-1β)-stimulated chondrocytes. MATERIALS AND METHODS HE and Safranin O staining were used to detect the pathological changes of cartilage tissue in OA patients and healthy people. OA-like chondrocyte injury was mimicked by 5 ng/mL IL-1β stimulation for 24 h in vitro, and after transfection with miR-29b-3p mimics and pcDNA-PTEN, IL-1β-stimulated chondrocytes were pre-treated with EGCG (20 and 50 μM) for 2 h. Cell viability, colony numbers, apoptosis rate, the levels of IL-6 and matrix metalloproteinase-13 (MMP-13), miR-19b-3p, PTEN and apoptosis-associated proteins in chondrocytes were evaluated. RESULTS MiR-29b-3p level was upregulated in cartilage tissues of OA patients (3.5-fold change, p < 0.001) and IL-1β stimulated chondrocytes (two fold change, p < 0.001). The matrix staining was weakened and unevenly distributed, and the chondrocytes were arranged disorderly in the tissues of patients with OA. EGCG (20 and 50 μM) increases viability and decreases the levels of miR-29b-3p and MMP-13 and IL-6 in IL-1β stimulated chondrocytes (p < 0.05). MiR-29b-3p mimics reversed the effects above 50 μM EGCG (p < 0.05). Furthermore, PTEN overexpression abrogated the effects of miR-29b-3p mimics on viability, colony numbers, apoptosis rate and the levels of Bcl-2, MMP-13, IL-6, Bax and cleaved caspase 3 in IL-1β-stimulated chondrocytes (p < 0.01). DISCUSSION AND CONCLUSIONS EGCG is a potential candidate for the treatment of OA, which also can be explored in a novel therapeutic method for other degenerative or inflammatory disorders.
Collapse
Affiliation(s)
- Dong Yang
- Department of Orthopaedics, Liyang Peoples’ Hospital, Changzhou, PR China
- CONTACT Dong Yang Department of Orthopaedics, Liyang Peoples’ Hospital, No. 70, Jianshe West Road, Liyang, Changzhou, Jiangsu Province213361, PR China
| | - Guanghua Cao
- Department of Orthopaedics, Liyang Peoples’ Hospital, Changzhou, PR China
| | - Xiaorong Ba
- Department of Orthopaedics, Liyang Peoples’ Hospital, Changzhou, PR China
| | - Haibo Jiang
- Department of Orthopaedics, Liyang Peoples’ Hospital, Changzhou, PR China
| |
Collapse
|
19
|
Wang Y, Han Y, Lv R, He C, Zuo Z, Chen Y, Huang J. Herbal Tea Essences (HTE) Ameliorate HFD-Induced Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9315318. [PMID: 39280956 PMCID: PMC11401730 DOI: 10.1155/2022/9315318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 09/18/2024]
Abstract
Tea is one of the most popular beverages in the world. The health-promoting effects of tea and its individual constituents, including antiobesity and antihyperlipidaemia effects, have been well accepted. In this study, we evaluated the effects of herbal tea essence (HTE), a commercial product extracted from black tea, on HFD-induced obesity in mice. HTE effectively reduces the gain in body weight and improves glucose tolerance and insulin sensitivity after HFD treatment. HTE inhibits lipid accumulation in the body and reduces serum lipid contents. Furthermore, HTE negatively regulates the expression levels of genes that control lipogenesis and gluconeogenesis and upregulates the expression of genes for lipid β oxidation. The regulatory effects of HTE on these genes may occur through activation of the AKT, IRS-1, and AMPK signalling pathways. Our observations suggest that HTE could be a promising option for nutritional intervention in the treatment of obesity.
Collapse
Affiliation(s)
- Yue Wang
- Clinical Research Center for Chronic Glomerular Disease, Department of Nephrology, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Han
- The Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen 361101, Fujian, China
- Xiamen Key Laboratory of Genetic Testing, Xiamen 361101, Fujian, China
| | - Rongfu Lv
- Xiamen Herbt Biotechnology Company Limited, Xiamen, Fujian 361005, China
| | - Chengyong He
- Clinical Research Center for Chronic Glomerular Disease, Department of Nephrology, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhenghong Zuo
- Clinical Research Center for Chronic Glomerular Disease, Department of Nephrology, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Ying Chen
- Clinical Research Center for Chronic Glomerular Disease, Department of Nephrology, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiyi Huang
- Clinical Research Center for Chronic Glomerular Disease, Department of Nephrology, The Fifth Hospital of Xiamen, Xiang'an Branch of the First Affiliated Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
20
|
Al Robaee AA, Alzolibani AA, Rasheed Z. MicroRNA-183-5p regulates MITF expression in vitiligo skin depigmentation. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:703-723. [PMID: 35442159 DOI: 10.1080/15257770.2022.2066126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microphthalmia-associated transcription factor (MITF) is a master regulatory factor for melanocytes. MITF regulates multiple pigmentary genes for maintaining cellular homeostasis. MicroRNAs (miRNAs) play crucial roles in numerous biological processes however their molecular/cellular mechanisms to regulate pigmentation have not been fully explored. This study was undertaken to investigate the role of miRNAs in skin depigmentation via regulation of MITF gene. Depigmentation in C57BL/6 black mice was induced by an autoimmune response against tyrosinase. Bioinformatics approach was used to detect miRNAs conserved in 3'untraslated region (3'UTR) of MITF mRNA. The iMC23 mouse melanocytes were used for transfection experiments. The data demonstrated that the MITF mRNA/protein was markedly low in lesional skin of depigmented mice (p < 0.05). Targetscan genomic database determined that 3'UTR of mouse MITF constitutes 4819 nucleotide bases and has 23 conserved sites for different miRNAs To validate the pairing of these predicted miRNAs with MITF mRNA, five miRNAs were deregulated in lesional skin (p < 0.05). Among them, mmu-miR-181a-5p and mmu-miR-183-5p were up-regulated, whereas mmu-miR-26a-5p, mmu-miR-26b-5p and mmu-miR-32-5p were down-regulated (p < 0.05). To verify these results, the iMC23 mouse melanocytes were used. Transfection of iMC23 cells with specific miRNAs mimics or inhibitors or with 3'UTR reporter clone of MITF, showed only mmu-miR-183-5p binds to 3'UTR of MITF mRNA and regulates its expression in iMC23 melanocytes. In conclusions, this is the first study shows that miR-183-5p is a direct regulator of MITF in iMC23 melanocytes. Thus, miR-183-5p is an important regulator of melanocytes homeostasis and may be a novel target for autoimmune depigmentation therapy.
Collapse
Affiliation(s)
- Ahmad A Al Robaee
- Department of Dermatology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
21
|
Al Nohair SF, Ahmed SS, Ismail MS, El Maadawy AA, Albatanony MA, Rasheed Z. Potential of honey against the onset of autoimmune diabetes and its associated nephropathy, pancreatitis, and retinopathy in type 1 diabetic animal model. Open Life Sci 2022; 17:351-361. [PMID: 35480484 PMCID: PMC8989157 DOI: 10.1515/biol-2022-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/23/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
Honey has been used as a traditional remedy for various health benefits. This study investigated the potential of honey against the onset of autoimmune diabetes and its associated secondary complications in type 1 diabetic (T1D) experimental animals. Autoimmune diabetes was induced in Sprague Dawley rats, and at the same time, the rats were treated with honey or metformin. Sandwich ELISAs were used to estimate blood glucose, hemoglobin A1C (HbA1c), total cholesterol, and triglycerides. Histopathological examinations determined the T1D-induced lesions on kidneys, pancreas, cornea, and retina. Treatment of rats with honey during the course of T1D induction showed a significant reduction in fasting-blood-glucose and HbA1c (p < 0.01), and total lipid profile was also improved (p < 0.05). Not only these, but honey also reduced the T1D-induced lesions in the kidney, pancreas, and cornea/retina (p < 0.05). Metformin showed similar effects and was used as a positive control. In conclusion, honey showed therapeutic potential against the onset of autoimmune diabetes, as it reduces blood glucose/HbA1c and improves the lipid profile by reducing the plasma levels of total cholesterol, low-density lipoproteins (LDL), very low-density lipoprotein (VLDL), and triglycerides. Moreover, it also showed protective potential against the development of diabetic nephropathy, pancreatitis, and retinopathy.
Collapse
Affiliation(s)
- Sultan Fahad Al Nohair
- Department of Family and Community Medicine, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Syed Suhail Ahmed
- Department of Medical Microbiology, College of Medicine, Qassim University, Buraidah, Qassim, Saudi Arabia
| | - Mohamed Saleh Ismail
- Department of Nutrition and Food Sciences, Menoufia University, Shebin El-Kom, Egypt
| | - Ahdab Abdo El Maadawy
- Home Economics Dept, Faculty of Specific Education, Zagazig University, Zagazig, Egypt
| | - Manal A. Albatanony
- Department of Family Medicine, College of Medicine, Qassim University, Unaizah, Saudi Arabia
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, P.O. Box 6655, Buraidah-51452, Saudi Arabia
| |
Collapse
|
22
|
Sirše M. Effect of Dietary Polyphenols on Osteoarthritis-Molecular Mechanisms. Life (Basel) 2022; 12:436. [PMID: 35330187 PMCID: PMC8955436 DOI: 10.3390/life12030436] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis is a common crippling and degenerative disease resulting in irreversible functional changes due to damage of the cartilage and other tissues of the joint. With limited safe and effective pharmaceutical treatments, the demand and use for alternative therapeutic approaches with symptomatic relief for OA patients have increased. Clinical, pre-clinical, and in vitro studies have demonstrated that polyphenols can exert pain-relieving symptoms coupled with increased functional capacity in OA models. This review will highlight studies carried out in the last five years to define the efficacies and underlying mechanisms in polyphenols such as quercetin, resveratrol, curcumin, epigallocatechin-3-gallate, rosmarinic acid, genistein, ginger, berries, silver fir, pine bark, and Boswellia. Most of these studies indicate that polyphenols exhibit their beneficial roles through regulating changes at the biochemical and molecular levels, inducing or inhibiting various signaling pathways related to inflammation and oxidative stress. Polyphenols have also been implicated in modulating microRNA at the posttranscriptional level to counteract OA pathogenesis.
Collapse
Affiliation(s)
- Mateja Sirše
- Department of Orthopaedics, University Medical Centre Maribor, Ljubljanska Street 5, 2000 Maribor, Slovenia
| |
Collapse
|
23
|
Lofft Z, Taibi A, Massara P, Tokar T, Paetau‐Robinson I, Khoo C, Comelli EM. Cranberry proanthocyanidin and its microbial metabolite 3,4‐dihydroxyphenylacetic acid, but not 3‐(4‐hydroxyphenyl)‐propionic acid, partially reverse pro‐inflammatory microRNA responses in human intestinal epithelial cells. Mol Nutr Food Res 2022; 66:e2100853. [DOI: 10.1002/mnfr.202100853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/13/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zoe Lofft
- Department of Nutritional Sciences University of Toronto ON Canada
| | - Amel Taibi
- Department of Nutritional Sciences University of Toronto ON Canada
| | - Paraskevi Massara
- Department of Nutritional Sciences University of Toronto ON Canada
- Translational Medicine Program Hospital for Sick Children Toronto Canada
| | - Tomas Tokar
- Krembil Research Institute University Health Network Toronto ON M5T 0S8 Canada
| | | | - Christina Khoo
- Ocean Spray Cranberries, Inc. Lakeville‐Middleboro MA USA
| | - Elena M. Comelli
- Department of Nutritional Sciences University of Toronto ON Canada
- Joannah and Brian Lawson Centre for Child Nutrition University of Toronto ON Canada
| |
Collapse
|
24
|
Aljohani ASM, Abdellatif AAH, Rasheed Z, Abdulmonem WA. Gold-Nanoparticle-Conjugated Citrate Inhibits Tumor Necrosis Factor- α Expression via Suppression of Nuclear Factor Kappa B (NF- κB) Activation in Breast Cancer Cells. J Biomed Nanotechnol 2022; 18:581-588. [PMID: 35484745 DOI: 10.1166/jbn.2022.3266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the leading causes of death worldwide is cancer. Excessive production of tumor necrosis factor (TNF)-α is known to activate nuclear transcription factor (NF)-κB, which plays a lethal role in the onset of multiple disorders including cancer. In this study, we aimed to determine the therapeutic role of novel gold nanoparticles conjugated with citrate (AuNPs-CIT) on the elevated expression of TNF-α in breast cancer cells. AuNPs-CIT were synthesized by the citrate-reduction method and were characterized by UV-VIS spectroscopic analysis, zeta-potential analysis, and size analysis. The potential of these newly generated AuNPs-CIT particles was tested on phorbol 12-myristate 13-acetate (PMA)-stimulated cancer cells. Our data showed that the AuNPs-CIT were spherical, with a mean size of 21.3±0.65 nm and a stabilized zetapotential at -41.4±0.98 mV. These newly generated AuNPs-CIT nanoparticles inhibited PMA-induced activation and nuclear translocation of NF-κB p65 in MCF-7 cells. They also have the tendency to block TNF-α expression in stimulated cancer cells. In conclusion, AuNPs-CIT inhibits PMA-induced TNF-α mRNA and protein expression via deactivation of NF-κB signaling in breast cancer cells. These findings suggest that AuNPs-CIT might be useful in cancer treatment.
Collapse
Affiliation(s)
- Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Kingdom of Saudi Arabia
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Kingdom of Saudi Arabia
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraydah 51452, Kingdom of Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Kingdom of Saudi Arabia
| |
Collapse
|
25
|
Ahmed SS, Al Nohair SF, Abdulmonem WA, Alhomaidan HT, Rasheed N, Ismail MS, Albatanony MA, Rasheed Z. Honey polyphenolic fraction inhibits cyclooxygenase-2 expression via upregulation of microRNA-26a-5p expression in pancreatic islets. EUR J INFLAMM 2022. [DOI: 10.1177/20587392221076473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives Honey total polyphenolic fraction (HTPF) is reported to have anti-disease potential, however the role of HTPF in the regulation of microRNAs (miRNAs) has never been investigated. This study was undertaken to investigate the potential of HTPF against inflammation via regulation of miRNAs in pancreatic islets of Langerhans. Methods Pancreatic islets were isolated from C57BL/6 mice and HTPF was purified from honey. Bioinformatics algorithms were used to determine miRNA target genes. Expression of miRNA and mRNA was determined using their specific taqman assays. Pairing between miRNA and 3′ untranslated region (3′UTR) of mRNA was confirmed using luciferase reporter clone containing the 3′UTR of mRNA sequences and results were verified by transfection of mouse pancreatic β-cell line Min6 with miRNA inhibitors. Results The data showed that mmu-miR-26a-5p is a direct regulator of cyclooxygenase-2 (COX-2) expression and HTPF inhibits COX-2 expression or prostaglandin E2 (PGE2) production via up-regulating mmu-miR-26a-5p expression. Transfection of islets with anti-miR-26a-5p significantly enhanced COX-2 expression and PGE2 production ( p < .01), while HTPF treatment significantly inhibited anti-miR-26a-5p transfection-induced COX-2 expression or PGE2 production ( p < .05). These findings were further verified in pancreatic β-cells Min6. Moreover, the data also determined that HTPF also inhibits glucose-induced nuclear transcription factor (NF)-κB activity. Conclusion HTPF suppresses glucose-induced PGE2 production and activation of NF-κB via negative regulation of COX-2 and mmu-miR26a-5p. These novel pharmacological actions of HTPF on glucose-stimulated pancreatic islets provide new suggestions that HTPF or HTPF-derived compounds inhibit glucose induced inflammation in pancreas by up-regulating the expression of microRNAs.
Collapse
Affiliation(s)
- Syed Suhail Ahmed
- Department of Medical Microbiology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Sultan Fahad Al Nohair
- Department of Family and Community Medicine, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Homaidan T Alhomaidan
- Department of Family and Community Medicine, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Naila Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mohamed S Ismail
- Department of Nutrition and Food Sciences, Menoufia University, Shebin El-Kom, Egypt
| | - Manal A Albatanony
- Department of Family Medicine, College of Medicine, Qassim University, Unaizah, Saudi Arabia
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
26
|
Postnikov PV, Efimova YA, Pronina IV. Circulating MicroRNAs as a New Class of Biomarkers of Physiological Reactions of the Organism to the Intake of Dietary Supplements and Drugs. Microrna 2022; 11:25-35. [PMID: 35466889 DOI: 10.2174/2211536611666220422123437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The analysis of individual microRNAs (miRNAs) as a diagnostic and prognostic tool for the effective treatment of various diseases has aroused particular interest in the scientific community. The determination of circulating miRNAs makes it possible to assess biological changes associated with nutritional processes, the intake of dietary supplements and drugs, etc. The profile of circulating miRNAs reflects the individual adaptation of the organism to the effect of specific environmental conditions. OBJECTIVE The objective of this study is to systematize the data and show the importance of circulating miRNAs as new potential biomarkers of the organism's response to the intake of various dietary supplements, drugs, and consider the possibility of their use in doping control. METHODS A systematic analysis of scientific publications (ncbi.nlm.nih.gov) on the miRNA expression profile in response to the intake of dietary supplements and drugs most often used by athletes, and supposed their role as potential markers in modern doping control was carried out. RESULTS The profile of circulating miRNAs is highly dependent on the intake of a particular drug, and, therefore, may be used as a marker of the effects of biologically active supplements and drugs including the substances from the Prohibited List of the World Anti-Doping Agency (WADA). CONCLUSION Monitoring of circulating miRNAs can serve as a high-precision marker for detecting doping abuse in elite sports. However, it is necessary to conduct additional studies on the effect of complex drugs on the profile of circulating miRNAs and individual circulating miRNAs on a particular biological process.
Collapse
Affiliation(s)
- Pavel V Postnikov
- National Antidoping Laboratory (Institute), M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Yulia A Efimova
- Department of Analytical Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Moscow, Russia
| | - Irina V Pronina
- National Antidoping Laboratory (Institute), M.V. Lomonosov Moscow State University, Moscow, Russia
- Laboratory of Transcriptomics and Pathogenomics, Federal State Budgetary Scientific Institution \'Institute of General Pathology and Pathophysiology", Moscow, Russia
| |
Collapse
|
27
|
Oladeji LO, Stoker AM, Stannard JP, Cook JL. A Hyperosmolar Saline Solution Fortified with Anti-Inflammatory Components Mitigates Articular Cartilage Pro-Inflammatory and Degradative Responses in an In Vitro Model of Knee Arthroscopy. Cartilage 2021; 13:1646S-1653S. [PMID: 33899552 PMCID: PMC8804770 DOI: 10.1177/19476035211011521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate differences in pro-inflammatory and degradative mediator production from osteoarthritic knee articular cartilage explants treated with a hyperosmolar saline solution supplemented with anti-inflammatory components (l-glutamine, ascorbic acid, sodium pyruvate, epigallocatechin gallate [EGCG], and dexamethasone) or normal saline using an in vitro model for knee arthroscopy. DESIGN Full-thickness 6 mm articular cartilage explants (n = 12/patient) were created from femoral condyle and tibial plateau samples collected from patients who received knee arthroplasty. One explant half was treated for 3 hours with hyperosmolar saline (600 mOsm/L) supplemented with anti-inflammatory components and the corresponding half with normal saline (308 mOsm/L). Explants were cultured for 3 days and then collected for biomarker analyses. Media biomarker concentrations were normalized to the wet weight of the tissue (mg) and were analyzed by a paired t test with significance set at P < 0.05. RESULTS Cartilage was collected from 9 females and 2 males (mean age = 68 years). Concentrations of MCP-1 (P < 0.001), IL-8 (P = 0.03), GRO-α (P = 0.02), MMP-1 (P < 0.001), MMP-2 (P < 0.001), and MMP-3 (P < 0.001) were significantly lower in explant halves treated with the enhanced hyperosmolar solution. When considering only those cartilage explants in the top tercile of tissue metabolism, IL-6 (P = 0.005), IL-8 (P = 0.0001), MCP-1 (P < 0.001), GRO-α (P = 0.0003), MMP-1 (P < 0.001), MMP-2 (P < 0.001), MMP-3 (P < 0.001), and GAG expression (P = 0.0001) was significantly lower in cartilage explant halves treated with the enhanced hyperosmolar solution. CONCLUSIONS Treatment of cartilage explants with a hyperosmolar saline arthroscopic irrigation solution supplemented with anti-inflammatory components was associated with significant decreases in inflammatory and degradative mediator production and mitigation of proteoglycan loss.
Collapse
Affiliation(s)
- Lasun O Oladeji
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - Aaron M Stoker
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - James P Stannard
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| | - James L Cook
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA.,Thompson Laboratory for Regenerative Orthopaedics, University of Missouri, Columbia, MO, USA
| |
Collapse
|
28
|
Sun K, Guo Z, Hou L, Xu J, Du T, Xu T, Guo F. Iron homeostasis in arthropathies: From pathogenesis to therapeutic potential. Ageing Res Rev 2021; 72:101481. [PMID: 34606985 DOI: 10.1016/j.arr.2021.101481] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
Iron is an essential element for proper functioning of cells within mammalian organ systems; in particular, iron homeostasis is critical for joint health. Excess iron can induce oxidative stress damage, associated with the pathogenesis of iron-storage and ageing-related diseases. Therefore, iron levels in body tissues and cells must be tightly regulated. In the past decades, excess iron content within joints has been found in some patients with joint diseases including hemophilic arthropathy, hemochromatosis arthropathy, and osteoarthritis (OA). Currently, increased evidence has shown that iron accumulation is closely associated with multiple pathological changes of these arthropathies. This review summarizes system-level and intracellular regulation of iron homeostasis, and emphasizes the role of iron in synovial alterations, cartilage degeneration, and subchondral bone of several arthropathies. Of note, we discuss the potential link between iron homeostasis and OA pathogenesis. Finally, we discuss the therapeutic potential of maintaining iron homeostasis in these arthropathies.
Collapse
|
29
|
Marín-Hinojosa C, Eraso CC, Sanchez-Lopez V, Hernández LC, Otero-Candelera R, Lopez-Campos JL. Nutriepigenomics and chronic obstructive pulmonary disease: potential role of dietary and epigenetics factors in disease development and management. Am J Clin Nutr 2021; 114:1894-1906. [PMID: 34477827 DOI: 10.1093/ajcn/nqab267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Over recent decades, a number of studies have revealed the possible role of different types of diets, as well as the nutritional elements they are made up of, in the pathogenesis of chronic obstructive pulmonary disease (COPD). To date, dietary factors have been identified to play a role in the prevention of COPD, with evidence from antioxidant nutrients, vitamins, and fiber intake. Additionally, certain dietary patterns such as the Mediterranean diet, together with other Western diets, provide evidence of the influence on COPD development, promoting lung health through nutritional approaches, and giving us an opportunity for intervention. The effect of diet on COPD is conveyed by 3 mechanisms: regulation of inflammation, oxidative stress, and carbon dioxide produced/oxygen intake. Current advances have begun to highlight the possible role of diet in modifying gene expression in certain individuals that predisposes them to COPD through epigenetic modifications. The relation between dietary intake and epigenetic factors has therefore outlined nutriepigenomics as a possible missing link in the relation between environmental exposure to smoke and the appearance of a subsequent chronic bronchial obstruction. This review summarizes the evidence regarding the influence of dietary patterns and nutrients and epigenetic regulatory mechanisms on COPD development and prevention with the aim of encouraging clinical research on the impact of dietary modifications on COPD-related clinical outcomes. This review highlights the importance of proposing and carrying out future studies focused on the modulating effects of certain nutrients on epigenetic changes in patients with specific COPD phenotypes (bronchiectasis, emphysema, asthma/COPD, chronic bronchitis), and their individual responses to cigarette smoking, environmental pollution, or other noxious particles. The objectives of these future studies must be directed to the development of novel therapeutic approaches and personalized management of COPD.
Collapse
Affiliation(s)
- Carmen Marín-Hinojosa
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Candelaria Caballero Eraso
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Veronica Sanchez-Lopez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Carrasco Hernández
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Remedios Otero-Candelera
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Luis Lopez-Campos
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
30
|
Siracusa R, Monaco F, D’Amico R, Genovese T, Cordaro M, Interdonato L, Gugliandolo E, Peritore AF, Crupi R, Cuzzocrea S, Impellizzeri D, Fusco R, Di Paola R. Epigallocatechin-3-Gallate Modulates Postoperative Pain by Regulating Biochemical and Molecular Pathways. Int J Mol Sci 2021; 22:ijms22136879. [PMID: 34206850 PMCID: PMC8268037 DOI: 10.3390/ijms22136879] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/11/2023] Open
Abstract
Treating postoperative (PO) pain is a clinical challenge. Inadequate PO pain management can lead to worse outcomes, for example chronic post-surgical pain. Therefore, acquiring new information on the PO pain mechanism would increase the therapeutic options available. In this paper, we evaluated the role of a natural substance, epigallocatechin-3-gallate (EGCG), on pain and neuroinflammation induced by a surgical procedure in an animal model of PO pain. We performed an incision of the hind paw and EGCG was administered for five days. Mechanical allodynia, thermal hyperalgesia, and motor dysfunction were assessed 24 h, and three and five days after surgery. At the same time points, animals were sacrificed, and sera and lumbar spinal cord tissues were harvested for molecular analysis. EGCG administration significantly alleviated hyperalgesia and allodynia, and reduced motor disfunction. From the molecular point of view, EGCG reduced the activation of the WNT pathway, reducing WNT3a, cysteine-rich domain frizzled (FZ)1 and FZ8 expressions, and both cytosolic and nuclear β-catenin expression, and the noncanonical β-catenin–independent signaling pathways, reducing the activation of the NMDA receptor subtype NR2B (pNR2B), pPKC and cAMP response element-binding protein (pCREB) expressions at all time points. Additionally, EGCG reduced spinal astrocytes and microglia activation, cytokines overexpression and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) pathway, downregulating inducible nitric oxide synthase (iNOS) activation, cyclooxygenase 2 (COX-2) expression, and prostaglandin E2 (PGE2) levels. Thus, EGCG administration managing the WNT/β-catenin signaling pathways modulates PO pain related neurochemical and inflammatory alterations.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (R.S.); (R.D.); (T.G.); (L.I.); (A.F.P.); (S.C.); (R.F.); (R.D.P.)
| | - Francesco Monaco
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (F.M.); (M.C.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (R.S.); (R.D.); (T.G.); (L.I.); (A.F.P.); (S.C.); (R.F.); (R.D.P.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (R.S.); (R.D.); (T.G.); (L.I.); (A.F.P.); (S.C.); (R.F.); (R.D.P.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (F.M.); (M.C.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (R.S.); (R.D.); (T.G.); (L.I.); (A.F.P.); (S.C.); (R.F.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (R.S.); (R.D.); (T.G.); (L.I.); (A.F.P.); (S.C.); (R.F.); (R.D.P.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (R.S.); (R.D.); (T.G.); (L.I.); (A.F.P.); (S.C.); (R.F.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (R.S.); (R.D.); (T.G.); (L.I.); (A.F.P.); (S.C.); (R.F.); (R.D.P.)
- Correspondence: ; Tel.: +39-090-676-5208
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (R.S.); (R.D.); (T.G.); (L.I.); (A.F.P.); (S.C.); (R.F.); (R.D.P.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (R.S.); (R.D.); (T.G.); (L.I.); (A.F.P.); (S.C.); (R.F.); (R.D.P.)
| |
Collapse
|
31
|
Abdellatif AAH, Alsharidah M, Al Rugaie O, Tawfeek HM, Tolba NS. Silver Nanoparticle-Coated Ethyl Cellulose Inhibits Tumor Necrosis Factor-α of Breast Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2035-2046. [PMID: 34012256 PMCID: PMC8128348 DOI: 10.2147/dddt.s310760] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
Introduction Cancer is one of the leading causes of death worldwide. In many cases, cancer is related to the elevated expression of a significant cytokine known as tumor necrosis factor-α (TNF-α). Breast cancer in particular is linked to increased proliferation of tumor cells, high incidence of malignancies, more metastases, and generally poor prognosis for the patient. The research sought to assess the effect of silver nanoparticles reduced with ethyl cellulose polymer (AgNPs-EC) on TNF-α expression in MCF-7 human breast cancer cells. Methods The AgNPs-EC were produced using the green synthesis reduction method, and their formation was proofed via UV–VIS spectroscopy. Furthermore, AgNPs-EC were characterized for their size, charge, morphology, Ag ion release, and stability. The MCF-7 cells were treated with AgNPs-EC. Then, the expression of TNF-α genes was determined through PCR in real time, and protein expression was studied using ELISA. Results The AgNPs-EC were spherical with an average size of 150±5.1 nm and a zeta-potential of −41.4±0.98 mV. AgNPs-EC had an inhibitory effect on cytokine mRNA and protein expression levels, which suggests that they could be used safely in the fight against cancer. AgNPs-EC cytotoxicity was also found to be non-toxic to MCF-7. Conclusion Our data determined AgNPs-EC as a novel inhibitor of TNF-α production. These results are promising for developing novel therapeutic approaches for the future treatment of cancer with safe materials.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, AlQassim, 51911, Saudi Arabia
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Nahla Sameh Tolba
- Department of Pharmaceutics, Faculty of Pharmacy, Sadat City University, Sadat City, Egypt
| |
Collapse
|
32
|
Kwak YH, Kwak DK, Moon HS, Kim NY, Yee JS, Yoo JH. Significant Changes in Serum MicroRNAs after High Tibial Osteotomy in Medial Compartmental Knee Osteoarthritis: Potential Prognostic Biomarkers. Diagnostics (Basel) 2021; 11:258. [PMID: 33562261 PMCID: PMC7914593 DOI: 10.3390/diagnostics11020258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
High tibial osteotomy (HTO) is an effective alternative for medial compartmental knee osteoarthritis (OA). Circulating microRNAs (miRNAs) are known to serve as OA-related biomarkers. The present study investigated the differential expression of serum miRNAs before and after HTO to identify potential miRNAs as prognostic biomarkers. miRNA-polymerase chain reaction (PCR) arrays were used to screen for miRNAs in the serum at preoperative and 6-month postoperative time points from six patients, and the differentially expressed miRNAs identified in the profiling stage were validated using real-time PCR at post-operative months 6 and 18 in 27 other HTO-treated patients. Among 84 miRNAs involved in the inflammatory process, three (miR-19b-3p, miR-29c-3p, and miR-424-5p) showed differential expression patterns in the profiling stage (p = 0.011, 0.015, and 0.021, respectively). Levels of these three and four other miRNAs (miR-140-3p, miR-454-3p, miR-let-7e-5p, and miR-885-5p) known to be related to OA progression were evaluated in the serum of 27 patients. Only four miRNAs (miR-19b-3p, miR-140-3p, miR-454-3p, and miR-let-7e-5p) were significantly upregulated at postoperative month 6 (p = 0.003, 0.005, 0.004, and 0.004, respectively), and only miR-140-3p was significantly upregulated up to 18 months after operation (p = 0.003). Together, this study reveals the significantly upregulated serum miRNAs after HTO as potential prognostic biomarkers; however, further studies are warranted to elucidate their clinical implications.
Collapse
Affiliation(s)
- Yoon Hae Kwak
- Division of Orthopaedic Surgery, Severance Children’s Hospital, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Dae-Kyung Kwak
- Department of Orthopaedic Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea; (D.-K.K.); (H.-S.M.); (J.-S.Y.)
| | - Hyun-Soo Moon
- Department of Orthopaedic Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea; (D.-K.K.); (H.-S.M.); (J.-S.Y.)
| | - Nan Young Kim
- Hallym Institute of Translational Genomics & Bioinformatics, Hallym University Medical Center, Anyang 14068, Korea;
| | - Jae-Sung Yee
- Department of Orthopaedic Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea; (D.-K.K.); (H.-S.M.); (J.-S.Y.)
| | - Je-Hyun Yoo
- Department of Orthopaedic Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Korea; (D.-K.K.); (H.-S.M.); (J.-S.Y.)
| |
Collapse
|
33
|
Therapeutic Single Compounds for Osteoarthritis Treatment. Pharmaceuticals (Basel) 2021; 14:ph14020131. [PMID: 33562161 PMCID: PMC7914480 DOI: 10.3390/ph14020131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoarthritis (OA) is an age-related degenerative disease for which an effective disease-modifying therapy is not available. Natural compounds derived from plants have been traditionally used in the clinic to treat OA. Over the years, many studies have explored the treatment of OA using natural extracts. Although various active natural extracts with broad application prospects have been discovered, single compounds are more important for clinical trials than total natural extracts. Moreover, although natural extracts exhibit minimal safety issues, the cytotoxicity and function of all single compounds in a total extract remain unclear. Therefore, understanding single compounds with the ability to inhibit catabolic factor expression is essential for developing therapeutic agents for OA. This review describes effective single compounds recently obtained from natural extracts and the possibility of developing therapeutic agents against OA using these compounds.
Collapse
|
34
|
Singh Y, Salker MS, Lang F. Green Tea Polyphenol-Sensitive Calcium Signaling in Immune T Cell Function. Front Nutr 2021; 7:616934. [PMID: 33585537 PMCID: PMC7876374 DOI: 10.3389/fnut.2020.616934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/17/2020] [Indexed: 12/25/2022] Open
Abstract
Polyphenol compounds found in green tea have a great therapeutic potential to influence multiple human diseases including malignancy and inflammation. In this mini review, we describe effects of green tea and the most important component EGCG in malignancy and inflammation. We focus on cellular mechanisms involved in the modification of T cell function by green tea polyphenol EGCG. The case is made that EGCG downregulates calcium channel activity by influencing miRNAs regulating expression of the channel at the post-transcriptional level.
Collapse
Affiliation(s)
- Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | | | - Florian Lang
- Institute of Vegetative and Clinical Physiology, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
35
|
Huang HT, Cheng TL, Yang CD, Chang CF, Ho CJ, Chuang SC, Li JY, Huang SH, Lin YS, Shen HY, Yu TH, Kang L, Lin SY, Chen CH. Intra-Articular Injection of (-)-Epigallocatechin 3-Gallate (EGCG) Ameliorates Cartilage Degeneration in Guinea Pigs with Spontaneous Osteoarthritis. Antioxidants (Basel) 2021; 10:178. [PMID: 33530594 PMCID: PMC7910837 DOI: 10.3390/antiox10020178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease that causes an enormous burden of disease worldwide. (-)-Epigallocatechin 3-gallate (EGCG) has been reported to reduce post-traumatic OA progression through its anti-inflammatory property. Aging is the most crucial risk factor of OA, and the majority of OA incidences are related to age and not trauma. In this study, we assess whether EGCG can ameliorate cartilage degradation in primary OA. In an in-vitro study, real-time PCR was performed to assess the expression of genes associated with human articular chondrocyte homeostasis. A spontaneously occurring OA model in guinea pigs was used to investigate the effect of EGCG in vivo. OA severity was evaluated using Safranin O staining and Osteoarthritis Research Society International (OARSI) scores, as well as by immunohistochemical (IHC) analysis to determine the protein level of type II collagen (Col II), matrix metalloproteinase 13 (MMP-13), and p16 ink4a in articular cartilage. In the in-vitro study, EGCG increased the gene expression of aggrecan and Col II and decreased the expression of interleukin-1, cyclooxygenase 2, MMP-13, alkaline phosphatase, Col X, and p16 Ink4a; EGCG treatment also attenuated the degraded cartilage with a lower OARSI score. Meanwhile, IHC results showed that EGCG exerted an anti-OA effect by reducing ECM degradation, cartilage inflammation, and cell senescence with a less-immunostained Col II, MMP-13, and p16 Ink4a. In conclusion, these findings suggest that EGCG may be a potential disease-modifying OA drug for the treatment of primary OA.
Collapse
Affiliation(s)
- Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Chung-Da Yang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Cheng-Jung Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Jhong-You Li
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Shih-Hao Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Hsin-Yi Shen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
| | - Tsung-Han Yu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
36
|
Abdellatif AAH, Rasheed Z, Alhowail AH, Alqasoumi A, Alsharidah M, Khan RA, Aljohani ASM, Aldubayan MA, Faisal W. Silver Citrate Nanoparticles Inhibit PMA-Induced TNFα Expression via Deactivation of NF-κB Activity in Human Cancer Cell-Lines, MCF-7. Int J Nanomedicine 2020; 15:8479-8493. [PMID: 33154638 PMCID: PMC7608585 DOI: 10.2147/ijn.s274098] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background The nuclear factor kappa-B (NF-κB) is a major transcription factor responsible for the production of numerous inflammatory mediators, including the tumor necrosis factor (TNFα), which has a lethal association with cancer’s onset. The silver nanoparticles (AgNPs) are widely used in cancer treatment and several other biomedical applications. Objective The study aimed to determine the effects of silver citrate nanoparticles (AgNPs-CIT) on NF-κB activation together with TNFα mRNA/protein expressions in the phorbol myristate acetate (PMA)-stimulated MCF-7 human breast cancer cell-lines. Methods The AgNPs-CIT were synthesized by the reduction method, and the prepared AgNPs-CIT were characterized for their shape, absorption in UV-VIS electromagnetic radiations, size distribution, ζ-potential, and antioxidant activity. The MCF-7 cell-lines were pretreated with AgNPs-CIT and stimulated with PMA. The TNFα mRNA expressions were determined by real-time PCR, whereas the protein production was determined by the ELISA. The NF-κB activity was distinctly observed by highly-specific DNA-based ELISA, and by NF-κB-specific inhibitor, Bay 11–7082. Results The prepared AgNPs-CIT were spherical and have an absorption wavelength range of 381–452 nm wherein the particles size ranged between 19.2±0.1 to 220.77±0.12 nm with the charge range −9.99±0.8 to −34.63±0.1 mV. The prepared AgNPs-CIT showed comparative antioxidant activity at >40% inhibitions level of the DPPH radicals. The AgNPs-CIT were found to be non-toxic to MCF-7 cell-lines and inhibited PMA-induced activation of the NF-κBp65, and also the mRNA/protein expression of TNFα. Conclusion This is the first report that showed AgNPs-CIT inhibited TNFα expression via deactivation of the NF-κB signaling event in stimulated breast cancer cells. The results have important implications for the development of novel therapeutic strategies for the prevention/treatment of cancers and/or inflammatory disorders.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Kingdom of Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraydah 51452, Kingdom of Saudi Arabia
| | - Ahmad H Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Kingdom of Saudi Arabia
| | - Abdulmajeed Alqasoumi
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Kingdom of Saudi Arabia
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah 51452, Kingdom of Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Kingdom of Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Maha A Aldubayan
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Kingdom of Saudi Arabia
| | - Waleed Faisal
- School of Pharmacy, University College Cork, Cork, Ireland.,Faculty of Pharmacy, Minya University, Minya, Egypt
| |
Collapse
|
37
|
Impacts of Green Tea on Joint and Skeletal Muscle Health: Prospects of Translational Nutrition. Antioxidants (Basel) 2020; 9:antiox9111050. [PMID: 33126483 PMCID: PMC7692648 DOI: 10.3390/antiox9111050] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis and sarcopenia are two major joint and skeletal muscle diseases prevalent during aging. Osteoarthritis is a multifactorial progressive degenerative and inflammatory disorder of articular cartilage. Cartilage protection and pain management are the two most important strategies in the management of osteoarthritis. Sarcopenia, a condition of loss of muscle mass and strength, is associated with impaired neuromuscular innervation, the transition of skeletal muscle fiber type, and reduced muscle regenerative capacity. Management of sarcopenia requires addressing both skeletal muscle quantity and quality. Emerging evidence suggests that green tea catechins play an important role in maintaining healthy joints and skeletal muscle. This review covers (i) the prevalence and etiology of osteoarthritis and sarcopenia, such as excessive inflammation and oxidative stress, mitochondrial dysfunction, and reduced autophagy; (ii) the effects of green tea catechins on joint health by downregulating inflammatory signaling mediators, upregulating anabolic mediators, and modulating miRNAs expression, resulting in reduced chondrocyte death, collagen degradation, and cartilage protection; (iii) the effects of green tea catechins on skeletal muscle health via maintaining a dynamic balance between protein synthesis and degradation and boosting the synthesis of mitochondrial energy metabolism, resulting in favorable muscle homeostasis and mitigation of muscle atrophy with aging; and (iv) the current study limitations and future research directions.
Collapse
|
38
|
Al Robaee AA, Alzolibani AA, Rasheed Z. Autoimmune response against tyrosinase induces depigmentation in C57BL/6 black mice. Autoimmunity 2020; 53:459-466. [DOI: 10.1080/08916934.2020.1836489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ahmad A. Al Robaee
- Department of Dermatology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
39
|
Polyphenols as Potential Agents in the Management of Temporomandibular Disorders. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155305] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Temporomandibular disorders (TMD) consist of multifactorial musculoskeletal disorders associated with the muscles of mastication, temporomandibular joint (TMJ), and annexed structures. This clinical condition is characterized by temporomandibular pain, restricted mandibular movement, and TMJ synovial inflammation, resulting in reduced quality of life of affected people. Commonly, TMD management aims to reduce pain and inflammation by using pharmacologic therapies that show efficacy in pain relief but their long-term use is frequently associated with adverse effects. For this reason, the use of natural compounds as an effective alternative to conventional drugs appears extremely interesting. Indeed, polyphenols could represent a potential therapeutic strategy, related to their ability to modulate the inflammatory responses involved in TMD. The present work reviews the mechanisms underlying inflammation-related TMD, highlighting the potential role of polyphenols as a promising approach to develop innovative management of temporomandibular diseases.
Collapse
|
40
|
Chang YC, Liu HW, Chan YC, Hu SH, Liu MY, Chang SJ. The green tea polyphenol epigallocatechin-3-gallate attenuates age-associated muscle loss via regulation of miR-486-5p and myostatin. Arch Biochem Biophys 2020; 692:108511. [PMID: 32710883 DOI: 10.1016/j.abb.2020.108511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG), the most abundant catechin component in green tea, has been reported to attenuate age-associated insulin resistance, lipogenesis and loss of muscle mass through restoring Akt activity in skeletal muscle in our previous and present studies. Accumulated data has suggested that polyphenols regulate signaling pathways involved in aging process such as inflammation and oxidative stress via modulation of miRNA expression. Here we found that miRNA-486-5p was significantly decreased in both aged senescence accelerated mouse-prone 8 (SAMP8) mice and late passage C2C12 cells. Thus, we further investigated the regulatory effect of EGCG on miRNA-486-5p expression in age-regulated muscle loss. SAMP8 mice were fed with chow diet containing without or with 0.32% EGCG from aged 32 weeks for 8 weeks. Early passage (<12 passages) and late passage (>30 passages) of C2C12 cells were treated without or with EGCG at concentrations of 50 μM for 24h. Our data showed that EGCG supplementation increased miRNA-486-5p expression in both aged SAMP8 mice and late passage C2C12 cells. EGCG stimulated AKT phosphorylation and inhibited FoxO1a-mediated MuRF1 and Atrogin-1 transcription via up-regulating the expression of miR-486 in skeletal muscle of 40-wk-old SAMP8 mice as well as late passage C2C12 cells. In addition, myostatin expression was increased in late passage C2C12 cells and anti-myostatin treatment upregulated the expression of miR-486-5p. Our results identify a unique mechanism of a dietary constituent of green tea and suggest that use of EGCG or compounds derived from it attenuates age-associated muscle loss via myostatin/miRNAs/ubiquitin-proteasome signaling.
Collapse
Affiliation(s)
- Yun-Ching Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Department of Nursing, Shu-Zen College of Medicine and Management, Kaohsiung, Taiwan.
| | - Hung-Wen Liu
- Department of Physical Education, National Taiwan Normal University, Taipei, Taiwan.
| | - Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan.
| | - Shu-Hui Hu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ming-Yi Liu
- Department of Long Term Care, Wu Feng University, Chiayi County, Taiwan; Department of Senior Welfare and Services, Southern Taiwan University of Science and Technology. No. 1, Nan-Tai Street, Yongkang Dist., Tainan City, Taiwan.
| | - Sue-Joan Chang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
41
|
Al Abdulmonem W, Rasheed Z, Aljohani ASM, Omran OM, Rasheed N, Alkhamiss A, A M Al Salloom A, Alhumaydhi F, Alblihed MA, Al Ssadh H, Khan MI, Fernández N. Absence of CD74 Isoform at 41kDa Prevents the Heterotypic Associations between CD74 and CD44 in Human Lung Adenocarcinoma-derived Cells. Immunol Invest 2020; 50:891-905. [PMID: 32646312 DOI: 10.1080/08820139.2020.1790594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lung cancer is a leading cause of cancer-associated death in all over the globe. This study was undertaken to determine the expression and interaction of membrane-bound receptors CD74 and CD44 in human lung adenocarcinoma cells and their associated signaling was also attempted. Levels of CD74 and CD44 were studied in human lung adenocarcinoma-evolved cells A549 and H460. CD74-mediated downstream signaling was studied by the nuclear-transcription-factor NF-κB and prostaglandin E2 (PGE2) production. Flow-cytometric analysis showed that both CD74 and CD44 were perfectly expressed in A549 cells. Importantly, Western immunoblotting showed that A549 cells expressed only two isoforms of CD74 at 33 and 35 kDa but isoform at 41 kDa was absent. These results were verified in H460 cells. Confocal microscopy showed CD74 and CD44 was colocalized but heterotypic interaction between them was missing in both A549 and H460 cells. Activation of NF-κB and production of PGE2 in human lung cancer cells were comparable with other cancer cells. In conclusion, this is the first study that shows A549 and H460 cells expressed two distinctive isoforms of CD74 but isoform at 41 kDa was absent. Due to the absence of this isoform, the direct physical interaction between them CD74 and CD44 was lacking. Furthermore, the data also demonstrated that lacking of direct physical interaction between CD74 and CD44 had no effect on NF-κB activation and PGE2 production indicating that CD74-mediated downstream signaling occurs either through coreceptors or indirect interaction with CD44 in human lung cancer cells. ABBREVIATION CD: cluster of differentiation; SCLC: small cell lung cancer; NSCLC: nonsmall cell lung cancer; SCC: squamous cell carcinoma; ADC: adenocarcinoma; LCC: large cell carcinoma.
Collapse
Affiliation(s)
- Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Ola M Omran
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Naila Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Fahad Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohamd A Alblihed
- Department of Medical Biochemistry, School of Medicine Taif University, Taif, Saudi Arabia
| | - Hussain Al Ssadh
- School of Biological Sciences, University of Essex, Colchester, UK
| | - Muhammad Ismail Khan
- Faculty of Medicine, School of Public Health, University of Queensland, Brisbane, Australia
| | - Nelson Fernández
- School of Biological Sciences, University of Essex, Colchester, UK
| |
Collapse
|
42
|
L-Theanine Reduced the Development of Knee Osteoarthritis in Rats via Its Anti-Inflammation and Anti-Matrix Degradation Actions: In Vivo and In Vitro Study. Nutrients 2020; 12:nu12071988. [PMID: 32635404 PMCID: PMC7400703 DOI: 10.3390/nu12071988] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/30/2022] Open
Abstract
The etiology of osteoarthritis (OA) is multifactorial, with no effective disease-modifying-drugs. L-theanine has been reported to inhibit inflammatory responses in some diseases and this study aimed to investigate the effect of L-theanine on Interleukin-1(IL-1)β-stimulated chondrocytes, and in an injury-induced OA rat model. Primary chondrocytes were stimulated by IL-1β (10 ng/mL) for 24 h and then co-cultured with L-theanine for 24 h. The effects of L-theanine on IL-1β-stimulated expression of pro-inflammatory cytokines and hydrolytic enzyme were analyzed using Western blotting, quantitative polymerase chain reaction (q-PCR) and enzyme-linked immunosorbent assay (ELISA) kits. An immunofluorescence assay was used to detect nuclear factor kappa B (NF-κB) phosphorylation. OA was induced by anterior cruciate ligament transection (ACLT) surgery in rats and celecoxib was used as a positive control. OA severity was measured using the Osteoarthritis Research Society International (OARSI) grading system to describe histological changes. The results showed that L-theanine decreased the expression of pro-inflammatory mediators, including cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE-2), inducible nitric oxide synthase (iNOS), and nitric oxide (NO), both in vivo and in vitro. L-theanine treatment inhibited IL-1β-induced upregulation of matrix metalloproteinases (MMP)-3 and MMP-13, as well as inhibited NF-κB p65 activation. In vivo animal model showed that L-theanine administration (200 mg/kg) significantly alleviated OA lesions and decreased OARSI score. Our data indicated that L-theanine decreased inflammatory cytokines and protected extracellular matrix degradation through inhibition of the NF-κB pathway, and L-theanine may be considered a promising therapeutic strategy in OA prevention.
Collapse
|
43
|
Cione E, La Torre C, Cannataro R, Caroleo MC, Plastina P, Gallelli L. Quercetin, Epigallocatechin Gallate, Curcumin, and Resveratrol: From Dietary Sources to Human MicroRNA Modulation. Molecules 2019; 25:molecules25010063. [PMID: 31878082 PMCID: PMC6983040 DOI: 10.3390/molecules25010063] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Epidemiologic studies suggest that dietary polyphenol intake is associated with a lower incidence of several non-communicable diseases. Although several foods contain complex mixtures of polyphenols, numerous factors can affect their content. Besides the well-known capability of these molecules to act as antioxidants, they are able to interact with cell-signaling pathways, modulating gene expression, influencing the activity of transcription factors, and modulating microRNAs. Here we deeply describe four polyphenols used as nutritional supplements: quercetin, resveratrol, epigallocatechin gallate (ECGC), and curcumin, summarizing the current knowledge about them, spanning from dietary sources to the epigenetic capabilities of these compounds on microRNA modulation.
Collapse
Affiliation(s)
- Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Chiara La Torre
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
- Department of Health Science, School of Medicine, University of Magna Graecia, Clinical Pharmacology Unit, Mater Domini Hospital, 88100 Catanzaro, Italy
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018-2022, University of Calabria, Edificio Polifunzionale, 87036 Rende (CS), Italy
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University of Magna Graecia, Clinical Pharmacology Unit, Mater Domini Hospital, 88100 Catanzaro, Italy
| |
Collapse
|
44
|
Qian W, Qian Q, Cai X, Han R, Yang W, Zhang X, Zhao H, Zhu R. Astragaloside IV inhibits oxidized low‑density lipoprotein‑induced endothelial damage via upregulation of miR‑140‑3p. Int J Mol Med 2019; 44:847-856. [PMID: 31257467 PMCID: PMC6657972 DOI: 10.3892/ijmm.2019.4257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/13/2019] [Indexed: 01/21/2023] Open
Abstract
Oxidized low‑density lipoprotein (ox‑LDL)‑mediated endothelial cell injury has an important role in the vascular complications of type 2 diabetes. Astragaloside IV (ASV) is an active component of Radix Astragali, which has been demonstrated to exert protective effects against endothelial damage. The present study explored whether microRNAs (miRNAs) are involved in mediating the protective effects of ASV on ox‑LDL‑induced damage in human umbilical vein endothelial cells (HUVECs). RNA sequencing and reverse transcription‑quantitative PCR analyses revealed that ox‑LDL treatment significantly downregulated miR‑140‑3p expression in HUVECs. miR‑140‑3p overexpression promoted cell proliferation and inhibited apoptosis in ox‑LDL‑induced HUVECs. However, inhibition of miR‑140‑3p expression could reverse the effects of ASV on ox‑LDL‑induced HUVECs and reactivate ASV‑inhibited PI3K/Akt signaling in ox‑LDL‑induced HUVECs. In addition, Krüppel‑like factor 4 (KLF4) was identified as a target of miR‑140‑3p in ox‑LDL‑treated HUVECs. Subsequent experiments revealed that KLF4 overexpression partially counteracted the protective effects of miR‑140‑3p or ASV treatment in ox‑LDL‑induced HUVECs. Taken together, the current findings demonstrated that the protective effects of ASV on HUVECs were dependent on miR‑140‑3p upregulation and subsequent inhibition of KLF4 expression, which in turn suppressed the PI3K/Akt signaling pathway. The present results shed light to the molecular mechanism by which ASV alleviated ox‑LDL‑induced endothelial cell damage.
Collapse
Affiliation(s)
- Weibin Qian
- Department of Lung Disease,Correspondence to: Dr Weibin Qian, Department of Lung Disease, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 42 Cultural West Road, Jinan, Shandong 250011, P.R. China, E-mail:
| | - Qiuhai Qian
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011
| | - Xinrui Cai
- Department of Traditional Chinese Medicine,Dr Xinrui Cai, Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, 17 Yuxing Road, Jinan, Shandong 250062, P.R. China, E-mail:
| | - Ru Han
- Personnel Section, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250062
| | - Wenjun Yang
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011
| | - Xinyue Zhang
- Department of Chinese Internal Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355
| | - Hongmin Zhao
- Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine of Hebei, Cangzhou, Hebei 061899, P.R. China
| | - Ranran Zhu
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011
| |
Collapse
|
45
|
Small molecules from natural products targeting the Wnt/β-catenin pathway as a therapeutic strategy. Biomed Pharmacother 2019; 117:108990. [DOI: 10.1016/j.biopha.2019.108990] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
|
46
|
Zheng Y, Xiao L, Yu C, Jin P, Qin D, Xu Y, Yin J, Liu Z, Du Q. Enhanced Antiarthritic Efficacy by Nanoparticles of (-)-Epigallocatechin Gallate-Glucosamine-Casein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6476-6486. [PMID: 31117504 DOI: 10.1021/acs.jafc.9b02075] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This work aims to improve the antiarthritic activity of (-)-epigallocatechin gallate (EGCG) and glucosamine (GA) through fabrication and optimization of casein protein nanoparticles (EGC-NPs). Optimized EGC-NPs were obtained with a EGCG/GA/casein ratio of 1:2:8 (w/w/w). The EGC-NPs gave a mean size of 186 ± 3.5 nm and an entrapment efficiency of 86.8 ± 2.7%, and they exhibited a greater inhibitory activity against human fibroblast-like synoviocytes-osteoarthritis cells and human fibroblast-like synoviocytes-rheumatoid arthritis cells compared with that of the EGCG-GA mixture by 33.5% and 20.8%, respectively. Freeze-dried EGC-NPs stored at 25 °C during 12 months showed high dispersion stability. Moreover, the redispersion of the freeze-dried EGC-NPs produced almost no significant changes in their physicochemical properties and bioactivity. Rat experiments demonstrated that the antiarthritis effect of the EGC-NPs was significantly higher than that of EGCG-GA mixture, as assessed through an analysis of anti-inflammatory efficacy, radiographic images and histopathological assessments of paw joints, and immunohistochemical changes in serum cytokines. The enchanced antiarthritic activity in vivo was consistent with that in vitro. The EGC-NPs demonstrate potential as a food supplement for the treatment of arthritis.
Collapse
Affiliation(s)
- Yafang Zheng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences , Zhejiang A & F University , Linan 311300 , China
| | - Lizheng Xiao
- Key Lab of Education Ministry for Tea Science, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients , Hunan Agricultural University , Changsha 410128 , China
| | - Chenhuan Yu
- Experimental Animal Center of the Zhejiang Academy of Medical Sciences , Hangzhou 310013 , China
| | - Peng Jin
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences , Zhejiang A & F University , Linan 311300 , China
| | - Dingkui Qin
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences , Zhejiang A & F University , Linan 311300 , China
| | - Yongquan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences , Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture , 9 South Meiling Road , Hangzhou 310008 , China
| | - Junfeng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences , Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture , 9 South Meiling Road , Hangzhou 310008 , China
| | - Zhonghua Liu
- Key Lab of Education Ministry for Tea Science, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients , Hunan Agricultural University , Changsha 410128 , China
| | - Qizhen Du
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, The College of Agricultural and Food Sciences , Zhejiang A & F University , Linan 311300 , China
| |
Collapse
|
47
|
Li S, Chen M, Li Y, Tollefsbol TO. Prenatal epigenetics diets play protective roles against environmental pollution. Clin Epigenetics 2019; 11:82. [PMID: 31097039 PMCID: PMC6524340 DOI: 10.1186/s13148-019-0659-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
It is thought that germ cells and preimplantation embryos during development are most susceptible to endogenous and exogenous environmental factors because the epigenome in those cells is undergoing dramatic elimination and reconstruction. Exposure to environmental factors such as nutrition, climate, stress, pathogens, toxins, and even social behavior during gametogenesis and early embryogenesis has been shown to influence disease susceptibility in the offspring. Early-life epigenetic modifications, which determine the expression of genetic information stored in the genome, are viewed as one of the general mechanisms linking prenatal exposure and phenotypic changes later in life. From atmospheric pollution, endocrine-disrupting chemicals to heavy metals, research increasingly suggests that environmental pollutions have already produced significant consequences on human health. Moreover, mounting evidence now links such pollution to relevant modification in the epigenome. The epigenetics diet, referring to a class of bioactive dietary compounds such as isothiocyanates in broccoli, genistein in soybean, resveratrol in grape, epigallocatechin-3-gallate in green tea, and ascorbic acid in fruits, has been shown to modify the epigenome leading to beneficial health outcomes. This review will primarily focus on the causes and consequences of prenatal environment pollution exposure on the epigenome, and the potential protective role of the epigenetics diet, which could play a central role in neutralizing epigenomic aberrations against environmental pollutions.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Chen
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuanyuan Li
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
48
|
Rasheed Z, Rasheed N, Abdulmonem WA, Khan MI. MicroRNA-125b-5p regulates IL-1β induced inflammatory genes via targeting TRAF6-mediated MAPKs and NF-κB signaling in human osteoarthritic chondrocytes. Sci Rep 2019; 9:6882. [PMID: 31053727 PMCID: PMC6499837 DOI: 10.1038/s41598-019-42601-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/04/2019] [Indexed: 12/23/2022] Open
Abstract
Abnormal post-transcriptional modulations in inflammatory genes by microRNAs (miRNAs) play a crucial role in human disorders including arthritis. In this study, we determined the effect of hsa-miR-125b-5p on interleukin (IL)-1β induced inflammatory genes in human osteoarthritic (OA) chondrocytes. Bioinformatics algorithms showed 3′untranslated region (3′UTR) of TRAF6 mRNA (NM_004620.3) has perfectly matched ‘seed-sequence’ for hsa-miR-125b-5p. Treatment of cells with IL-1β up-regulates TRAF6 mRNA and down-regulates hsa-miR-125b-5p expression. This negative correlation between TRAF6 and hsa-miR-125b-5p was verified by transfection with miR-125b mimic (pre-miR-125b). Moreover, transfection with miR-125b mimic caused marked inhibition of IL-1β-induced phosphorylation of p38-MAPK, JNK-MAPKs and ERK-MAPKs and also suppressed the nuclear levels of NF-κBp50, NF-κBp65 and inhibited the activation of IκBα. Furthermore, transfected chondrocytes with miR-125b mimic in the presence of IL-1β also showed marked inhibition in the secretion of several proinflammatory cytokines, chemokines and growth factors including IL-6, IL-8, INF-γ, TGF-β1, IGFBP-1 and PGDF-BB. Importantly, this transfection also significantly inhibited IL-1β- induced MMP-13 expression/production. In short, this study concludes that hsa-miR-125b-5p acts as a negative co-regulator of inflammatory genes including MMP-13 via targeting TRAF6/MAPKs/NF-κB pathway in human OA chondrocytes.
Collapse
Affiliation(s)
- Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Buraidah, Qassim University, Buraidah, Saudi Arabia.
| | - Naila Rasheed
- Department of Medical Biochemistry, College of Medicine, Buraidah, Qassim University, Buraidah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Buraidah, Qassim University, Buraidah, Saudi Arabia
| | - Muhammad Ismail Khan
- Faculty of Medicine, School of Public Health, University of Queensland, Brisbane, Australia
| |
Collapse
|
49
|
Basu A, Kurien BT, Tran H, Byrd B, Maher J, Schell J, Masek E, Barrett JR, Lyons TJ, Betts NM, Hal Scofield R. Strawberries decrease circulating levels of tumor necrosis factor and lipid peroxides in obese adults with knee osteoarthritis. Food Funct 2019; 9:6218-6226. [PMID: 30382270 DOI: 10.1039/c8fo01194j] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Knee osteoarthritis (OA) is increasingly prevalent in obese people, who often have high cardio-metabolic risk factors. Among the few available non-surgical approaches, nutraceuticals have gained popularity, and dietary berries have mitigated arthritis symptoms in observational and animal studies. Clinical studies in OA are sparse, but recently we reported that strawberry supplementation can mitigate pain and reduce inflammatory markers in adults with knee OA. This study extends those observations. METHODS We conducted a randomized cross-over double-blind placebo-controlled trial on the effects of dietary freeze-dried strawberries on obesity-related hormones, biomarkers of inflammation and lipid peroxidation. Seventeen subjects (4 men, 13 women; age 57 ± 3 year) were randomized to strawberry supplements (50 g day-1 for 12 weeks) vs. placebo (50 g day-1, matched for calories and fiber), for two 12-week intervention periods, separated by 2-week washout phase. RESULTS Among 24 biomarkers of inflammation examined (Bioplex-Pro human inflammation panel), 12 were detectable in all samples. Among these, high-sensitivity TNF-α (hs-TNF-α) and the soluble tumor necrosis factor receptor (sTNF-R2) were significantly decreased after strawberry consumption (p < 0.05). There were no changes in other biomarkers of the TNF super family, such as APRIL and BAFF. Among serum biomarkers of oxidative stress, 4-hydroxy-2-nonenal (4-HNE) and conjugated dienes were also reduced (p < 0.05). No changes were observed in body weight, serum obesity-related hormones, or osteocalcin. CONCLUSION Strawberries lowered TNF-α, and lipid peroxidation products in obese adults with knee OA. Since, they also mitigate pain, these findings merit further investigation in larger trials.
Collapse
Affiliation(s)
- Arpita Basu
- Kinesiology and Nutrition Sciences, University of Nevada at Las Vegas, Las Vegas, NV, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li L, Zhang L, Zhang Y. Roles of miR-494 in Intervertebral Disk Degeneration and the Related Mechanism. World Neurosurg 2018; 124:S1878-8750(18)32921-8. [PMID: 30599248 DOI: 10.1016/j.wneu.2018.12.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE In this study, we focused on the regulatory roles of miR-494 in the pathogenesis of intervertebral disk degeneration (IDD) and the related mechanism. METHODS First, rat IDD models were established, and the expression levels of miR-494 in IDDs of the rats were examined. Next, human nucleus pulposus (NP) cells were cultured and transfected with miR-494 mimics and inhibitors, and the roles of miR-494 on the proliferation and apoptosis of cells were determined using MTT cell proliferation assay and flow cytometry methods. Furthermore, the targeting relationship between miR-494 and neuro-oncological ventral antigen 1 (NOVA1) was examined by dual luciferase reporter assay. Finally, the expression of NOVA1, Caspase-3, Bcl-2-associated X protein (BAX), and B-cell lymphoma-2 (BCL-2) was examined using real-time quantitative polymerase chain reaction and western blot methods. RESULTS The results demonstrated that the expression of miR-494 was significantly upregulated in IDD rats. Moreover, transfection of miR-494 inhibitors induced a significant increase in the proliferation and marked decrease in the apoptosis of the degenerated human NP cells. Transfection of miR-494 mimics has shown the opposite effects. Furthermore, NOVA1 has been confirmed as a target of miR-494, and the expressions of NOVA1 were significantly downregulated in IDD rats. In addition, transfection of miR-494 inhibitors significantly decreased the expression of Caspase-3 and BAX and markedly increased the expression of NOVA1 and BCL-2. Transfection of miR-494 mimics has shown the opposite effects. CONCLUSIONS miR-494 was upregulated in IDD, and miR-494 might regulate the proliferation and apoptosis of NP cells through targeting NOVA1.
Collapse
Affiliation(s)
- Li Li
- Nursing Department, Luoyang Central Hospital affiliated to Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Lei Zhang
- Cardial Surgery Department, Luoyang Central Hospital affiliated to Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yan Zhang
- College of Nursing, Zhengzhou University, Zhengzhou, Henan, P.R. China.
| |
Collapse
|