1
|
Peña-Corona SI, Vargas-Estrada D, Chávez-Corona JI, Mendoza-Rodríguez CA, Caballero-Chacón S, Pedraza-Chaverri J, Gracia-Mora MI, Galván-Vela DP, García-Rodríguez H, Sánchez-Bartez F, Vergara-Onofre M, Leyva-Gómez G. Vitamin E (α-Tocopherol) Does Not Ameliorate the Toxic Effect of Bisphenol S on the Metabolic Analytes and Pancreas Histoarchitecture of Diabetic Rats. TOXICS 2023; 11:626. [PMID: 37505591 PMCID: PMC10383361 DOI: 10.3390/toxics11070626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
This study investigated whether the coadministration of vitamin E (VitE) diminishes the harmful effects provoked by plasticizer bisphenol S (BPS) in the serum metabolites related to hepatic and renal metabolism, as well as the endocrine pancreatic function in diabetic male Wistar rats. Rats were divided into five groups (n = 5-6); the first group was healthy rats (Ctrl group). The other four groups were diabetic rats induced with 45 mg/kg bw of streptozotocin: Ctrl-D (diabetic control); VitE-D (100 mg/kg bw/d of VitE); BPS-D (100 mg/kg bw/d of BPS); The animals from the VitE + BPS-D group were administered 100 mg/kg bw/d of VitE + 100 mg/kg bw/d of BPS. All compounds were administered orally for 30 days. Body weight, biochemical assays, urinalysis, glucose tolerance test, pancreas histopathology, proximate chemical analysis in feces, and the activity of antioxidants in rat serum were assessed. The coadministration of VitE + BPS produced weight losses, increases in 14 serum analytes, and degeneration in the pancreas. Therefore, the VitE + BPS coadministration did not have a protective effect versus the harmful impact of BPS or the diabetic metabolic state; on the contrary, it partially aggravated the damage produced by the BPS. VitE is likely to have an additive effect on the toxicity of BPS.
Collapse
Affiliation(s)
- Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Dinorah Vargas-Estrada
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan I Chávez-Corona
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C Adriana Mendoza-Rodríguez
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sara Caballero-Chacón
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - María Isabel Gracia-Mora
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Diana Patricia Galván-Vela
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Helena García-Rodríguez
- Unidad de Investigación Preclínica (UNIPREC), Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Francisco Sánchez-Bartez
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marcela Vergara-Onofre
- Departamento de Producción Agricola y Animal, Universidad Autónoma Metropolitana Unidad Xochimilco, Ciudad de México 04960, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Supruniuk E, Żebrowska E, Maciejczyk M, Zalewska A, Chabowski A. Lipid peroxidation and sphingolipid alterations in the cerebral cortex and hypothalamus of rats fed a high-protein diet. Nutrition 2023; 107:111942. [PMID: 36621260 DOI: 10.1016/j.nut.2022.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES High-protein diets (HPDs) are widely accepted to enhance satiety and energy expenditure and thus have become a popular strategy to lose weight and facilitate muscle protein synthesis. However, long-term high-protein consumption could be linked with metabolic and clinical problems such as renal and liver dysfunctions. This study verified the effects of 8-wk high-protein ingestion on lipid peroxidation and sphingolipid metabolism in the plasma, cerebral cortex, and hypothalamus in rats. METHODS Immunoenzymatic and spectrophotometric methods were applied to assess oxidation-reduction (redox) biomarkers and neutral sphingomyelinase activity, whereas gas-liquid chromatography and high-performance liquid chromatography were used to examine sphingolipid levels. RESULTS The vast majority of HPD-related alterations was restricted to the hypothalamus. Specifically, an increased rate of lipid peroxidation (increased lipid hydroperoxides, 8-isoprostanes, and thiobarbituric acid reactive substances) associated with ceramide accumulation via the activation of de novo synthesis (decreased sphinganine), salvage pathway (decreased sphingosine), and sphingomyelin hydrolysis (decreased sphingomyelin and increased neutral sphingomyelinase activity) was noted. CONCLUSIONS This study showed that HPD substantially affected hypothalamic metabolic pathways, which potentially alter cerebral output signals to the peripheral tissues.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland.
| | - Anna Zalewska
- Department of Restorative Dentistry, Medical University of Bialystok, Bialystok, Poland; Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, Bialystok, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
3
|
Potue P, Chiangsaen P, Maneesai P, Khamseekaew J, Pakdeechote P, Chankitisakul V, Boonkum W, Duanghaklang N, Duangjinda M. Effects of Thai native chicken breast meat consumption on serum uric acid level, biochemical parameters, and antioxidant activities in rats. Sci Rep 2022; 12:14056. [PMID: 35982129 PMCID: PMC9388516 DOI: 10.1038/s41598-022-18484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
This study aimed to evaluate the effect of a high protein diet comprising breast meat from commercial broiler (BR), Thai native (PD), and commercial broiler × Thai native crossbred (KKU-ONE) chicken on serum uric acid, biochemical parameters, and antioxidant activities in rats. Male Sprague–Dawley rats were divided into four groups. The control group received a standard chow diet, and the other three groups were fed a high protein diet (70% standard diet + 30% BR, PD, or KKU-ONE chicken breast) for five weeks. The PD- and KKU-ONE-fed rats had lower plasma total cholesterol and triglyceride levels than the control rats. A decrease in HDL-c was also observed in rats fed a diet containing BR. Liver weight, liver enzyme, plasma ALP, xanthine oxidase activity, serum uric acid, creatinine, superoxide production, and plasma malondialdehyde levels increased in BR-fed rats. The findings of this study might provide evidence to support the use of Thai native and Thai native crossbred chicken breast meat as functional foods.
Collapse
Affiliation(s)
- Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Juthamas Khamseekaew
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Vibuntita Chankitisakul
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.,Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.,Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Natthaya Duanghaklang
- Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Monchai Duangjinda
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Network Center for Animal Breeding and Omics Research, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
Medeiros CS, de Sousa Neto IV, Silva KKS, Cantuária APC, Rezende TMB, Franco OL, de Cassia Marqueti R, Freitas-Lima LC, Araujo RC, Yildirim A, Mackenzie R, Alves Almeida J. The Effects of High-Protein Diet and Resistance Training on Glucose Control and Inflammatory Profile of Visceral Adipose Tissue in Rats. Nutrients 2021; 13:1969. [PMID: 34201185 PMCID: PMC8227719 DOI: 10.3390/nu13061969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
High-protein diets (HPDs) are widely accepted as a way to stimulate muscle protein synthesis when combined with resistance training (RT). However, the effects of HPDs on adipose tissue plasticity and local inflammation are yet to be determined. This study investigated the impact of HPDs on glucose control, adipocyte size, and epididymal adipose inflammatory biomarkers in resistance-trained rats. Eighteen Wistar rats were randomly assigned to four groups: normal-protein (NPD; 17% protein total dietary intake) and HPD (26.1% protein) without RT and NPD and HPD with RT. Trained groups received RT for 12 weeks with weights secured to their tails. Glucose and insulin tolerance tests, adipocyte size, and an array of cytokines were determined. While HPD without RT induced glucose intolerance, enlarged adipocytes, and increased TNF-α, MCP-1, and IL1-β levels in epididymal adipose tissue (p < 0.05), RT diminished these deleterious effects, with the HPD + RT group displaying improved blood glucose control without inflammatory cytokine increases in epididymal adipose tissue (p < 0.05). Furthermore, RT increased glutathione expression independent of diet (p < 0.05). RT may offer protection against adipocyte hypertrophy, pro-inflammatory states, and glucose intolerance during HPDs. The results highlight the potential protective effects of RT to mitigate the maladaptive effects of HPDs.
Collapse
Affiliation(s)
- Claudia Stela Medeiros
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Ivo Vieira de Sousa Neto
- Laboratório de Análises Moleculares, Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Distrito Federal 72220-275, Brazil; (I.V.d.S.N.); (R.d.C.M.)
| | - Keemilyn Karla Santos Silva
- Research in Exercise and Nutrition in Health and Sports Performance—PENSARE, Graduate Program in Movement Sciences, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Ana Paula Castro Cantuária
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Distrito Federal 70790-160, Brazil; (A.P.C.C.); (T.M.B.R.); (O.L.F.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Distrito Federal 70910-900, Brazil
| | - Taia Maria Berto Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Distrito Federal 70790-160, Brazil; (A.P.C.C.); (T.M.B.R.); (O.L.F.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade de Brasília, Distrito Federal 70910-900, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Distrito Federal 70790-160, Brazil; (A.P.C.C.); (T.M.B.R.); (O.L.F.)
- S-Inova Biotech, Porgrama de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, Brazil
| | - Rita de Cassia Marqueti
- Laboratório de Análises Moleculares, Programa de Pós-Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília, Distrito Federal 72220-275, Brazil; (I.V.d.S.N.); (R.d.C.M.)
| | - Leandro Ceotto Freitas-Lima
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (L.C.F.-L.); (R.C.A.)
| | - Ronaldo Carvalho Araujo
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (L.C.F.-L.); (R.C.A.)
| | - Azize Yildirim
- Department of Life Science, Whitelands College, University of Roehampton, London SW15 4DJ, UK; (A.Y.); (R.M.)
| | - Richard Mackenzie
- Department of Life Science, Whitelands College, University of Roehampton, London SW15 4DJ, UK; (A.Y.); (R.M.)
| | - Jeeser Alves Almeida
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- Research in Exercise and Nutrition in Health and Sports Performance—PENSARE, Graduate Program in Movement Sciences, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| |
Collapse
|
5
|
Lin B, Liu Y, Zhang W, Zou W. Role of diet on intestinal metabolites and appetite control factors in SD rats. Exp Ther Med 2020; 20:2665-2674. [PMID: 32765760 PMCID: PMC7401913 DOI: 10.3892/etm.2020.8993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to investigate changes in the levels of metabolites and appetite control factors caused by different dietary interventions in Sprague Dawley (SD) rats. A total of 35 male SD rats were weaned and immediately randomly assigned to five groups. The control group was given ad libitum access to a normal chow diet, and the other groups received a high-fat diet (FAT group), high-sugar diet, high-fibre or high-protein diet (PRO group) for 4 weeks. The high-fat diet contributed to weight gain and adipose tissue formation, and affected lipid indexed. The FAT group had a higher body weight, Lee's index, adipose mass and glucose tolerance than all of the other groups. The opposite effect was observed in the PRO group. High-performance liquid chromatography revealed that short-chain fatty acid and amino acid formation were affected by the various diets. In addition, differences in the mRNA expression levels of leptin, ghrelin and associated receptors were determined in the gastrointestinal, adipose and hypothalamus tissues. The present study provides further evidence of the role of diet in obesity development and prevention. It also highlights the role of intestinal metabolites and appetite control factor expression in the pathogenesis of obesity in SD rats.
Collapse
Affiliation(s)
- Bo Lin
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, P.R. China
| | - Yueming Liu
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, P.R. China
| | - Wei Zhang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, P.R. China
| | - Wenli Zou
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, 310014, P.R. China.,Department of Nephrology, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
6
|
CCAP regulates feeding behavior via the NPF pathway in Drosophila adults. Proc Natl Acad Sci U S A 2020; 117:7401-7408. [PMID: 32179671 DOI: 10.1073/pnas.1914037117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intake of macronutrients is crucial for the fitness of any animal and is mainly regulated by peripheral signals to the brain. How the brain receives and translates these peripheral signals or how these interactions lead to changes in feeding behavior is not well-understood. We discovered that 2 crustacean cardioactive peptide (CCAP)-expressing neurons in Drosophila adults regulate feeding behavior and metabolism. Notably, loss of CCAP, or knocking down the CCAP receptor (CCAP-R) in 2 dorsal median neurons, inhibits the release of neuropeptide F (NPF), which regulates feeding behavior. Furthermore, under starvation conditions, flies normally have an increased sensitivity to sugar; however, loss of CCAP, or CCAP-R in 2 dorsal median NPF neurons, inhibited sugar sensitivity in satiated and starved flies. Separate from its regulation of NPF signaling, the CCAP peptide also regulates triglyceride levels. Additionally, genetic and optogenetic studies demonstrate that CCAP signaling is necessary and sufficient to stimulate a reflexive feeding behavior, the proboscis extension reflex (PER), elicited when external food cues are interpreted as palatable. Dopaminergic signaling was also sufficient to induce a PER. On the other hand, although necessary, NPF neurons were not able to induce a PER. These data illustrate that the CCAP peptide is a central regulator of feeding behavior and metabolism in adult flies, and that NPF neurons have an important regulatory role within this system.
Collapse
|
7
|
Ato S, Maruyama Y, Yoshizato H, Ogasawara R. Habitual high-protein diet does not influence muscle protein synthesis in response to acute resistance exercise in rats. Nutrition 2020; 78:110795. [PMID: 32480256 DOI: 10.1016/j.nut.2020.110795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Resistance training combined with consumption of a high-protein diet (HPD) is typically recommended to increase muscle mass, as both acute resistance exercise (RE) and dietary protein intake stimulate mechanistic target of rapamycin complex 1 (mTORC1) and muscle protein synthesis (MPS). However, the effect of chronic HPD consumption on MPS response to an acute RE remains to be determined. METHODS Male Sprague-Dawley rats aged 10 wk were fed HPD (50 kcal % protein, for 4 wk) or normal protein diet (NPD; 20 kcal % protein). After the 4-wk dietary intervention, the rats were fasted overnight and the right gastrocnemius muscle was subjected to percutaneous electrical stimulation to mimic acute RE, whereas the left gastrocnemius muscle served as control. The rats were sacrificed 6 h after exercise and the tissues were sampled immediately. RESULTS The HPD group showed significantly lower fat mass and higher skeletal muscle mass than the NPD group without affecting body weight. Resting mTORC1 activity did not differ between the groups. Additionally, resting MPS was also unchanged after HPD. Acute RE significantly increased mTORC1 activity and MPS in both groups. However, differences in diet did not influence the response of mTORC1 activation to acute RE. Furthermore, HPD did not affect the response of MPS to acute RE. CONCLUSION The present results suggested that although 4 wk of HPD reduces body fat and increases skeletal muscle mass, it does not affect muscle protein synthesis at basal state, and in response to acute RE.
Collapse
Affiliation(s)
- Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Yuki Maruyama
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Hideo Yoshizato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan.
| |
Collapse
|
8
|
Giuberti G, Morlacchini M, Crippa L, Capraro J, Paganini B, Gallo A, Rossi F. Effect of omnivorous and vegan diets with different protein and carbohydrate content on growth and metabolism of growing rats. Int J Food Sci Nutr 2017; 69:574-583. [PMID: 29105526 DOI: 10.1080/09637486.2017.1394986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The purpose of this study was to observe, in a rat animal model, the short and medium term effects of vegan (VEG) or omnivorous (OMNI) diets with different energy partition between nutrients (zone or classic). Six different diets were administered, for 72 days to 120 growing male Sprague-Dawley rats: (i) VEG zone diet; (ii) VEG classic diet; (iii) OMNI zone diet; (iv) OMNI classic diet; (v) OMNI zone diet with added fibre and (vi) OMNI classic diet with added fibre. Zone diets (high protein and low carbohydrates), resulted in better growth , feed efficiency, lower blood glucose and insulin responses. VEG diets have lowered cholesterol blood level. Histopathological analysis evidenced no damage to liver and kidney tissue by the intake of any of the diet types. Further longer animal and human duration studies should be performed to exclude detrimental effect of higher protein diet.
Collapse
Affiliation(s)
- Gianluca Giuberti
- a Istituto di Scienze degli Alimenti e della Nutrizione, Facoltà di Scienze Agrarie Alimentari e Ambientali, Università Cattolica del Sacro Cuore , Piacenza , Italy
| | - Mauro Morlacchini
- b Centro di Ricerche sulla Zootecnia e l'Ambiente (CERZOO), Loc. Possessione di Fondo , San Bonico , Piacenza , Italy
| | - Luca Crippa
- c ISTOVET di Luca Crippa & C sas , Via W. Tobagi , Besana in Brianza , Monza , Italy
| | - Jessica Capraro
- a Istituto di Scienze degli Alimenti e della Nutrizione, Facoltà di Scienze Agrarie Alimentari e Ambientali, Università Cattolica del Sacro Cuore , Piacenza , Italy
| | - Beatrice Paganini
- a Istituto di Scienze degli Alimenti e della Nutrizione, Facoltà di Scienze Agrarie Alimentari e Ambientali, Università Cattolica del Sacro Cuore , Piacenza , Italy
| | - Antonio Gallo
- a Istituto di Scienze degli Alimenti e della Nutrizione, Facoltà di Scienze Agrarie Alimentari e Ambientali, Università Cattolica del Sacro Cuore , Piacenza , Italy
| | - Filippo Rossi
- a Istituto di Scienze degli Alimenti e della Nutrizione, Facoltà di Scienze Agrarie Alimentari e Ambientali, Università Cattolica del Sacro Cuore , Piacenza , Italy
| |
Collapse
|