1
|
Yuan Y, Zhu Y, Li Y, Li X, Jiao R, Bai W. Cholesterol-Lowering Activity of Vitisin A Is Mediated by Inhibiting Cholesterol Biosynthesis and Enhancing LDL Uptake in HepG2 Cells. Int J Mol Sci 2023; 24:3301. [PMID: 36834719 PMCID: PMC9961218 DOI: 10.3390/ijms24043301] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Pyranoanthocyanins have been reported to possess better chemical stability and bioactivities than monomeric anthocyanins in some aspects. The hypocholesterolemic activity of pyranoanthocyanins is unclear. In view of this, this study was conducted to compare the cholesterol-lowering activities of Vitisin A with the anthocyanin counterpart Cyanidin-3-O-glucoside(C3G) in HepG2 cells and to investigate the interaction of Vitisin A with the expression of genes and proteins associated with cholesterol metabolism. HepG2 cells were incubated with 40 μM cholesterol and 4 μM 25-hydroxycholeterol with various concentrations of Vitisin A or C3G for 24 h. It was found that Vitisin A decreased the cholesterol levels at the concentrations of 100 μM and 200 μM with a dose-response relationship, while C3G exhibited no significant effect on cellular cholesterol. Furthermore, Vitisin A could down-regulate 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) to inhibit cholesterol biosynthesis through a sterol regulatory element-binding protein 2 (SREBP2)-dependent mechanism, and up-regulate low-density lipoprotein receptor (LDLR) and blunt the secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) protein to promote intracellular LDL uptake without LDLR degradation. In conclusion, Vitisin A demonstrated hypocholesterolemic activity, by inhibiting cholesterol biosynthesis and enhancing LDL uptake in HepG2 cells.
Collapse
Affiliation(s)
| | | | | | | | - Rui Jiao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Nikparast A, Sheikhhossein F, Amini MR, Tavakoli S, Hekmatdoost A. The Effects of Blackcurrant and Raspberry Consumption on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin Nutr Res 2023; 12:54-64. [PMID: 36793778 PMCID: PMC9900079 DOI: 10.7762/cnr.2023.12.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
A systematic review and meta-analysis were designed to summarize studies conducted on the effects of raspberry and blackcurrant consumption on blood pressure (BP). Eligible studies were detected by searching numerous five online databases including PubMed, Scopus, Web of Science, Cochrane Library, and Google Scholar, until December 17, 2022. We pooled the mean difference and its 95% confidence interval (CI) by applying a random-effects model. Overall, the impact of raspberry and blackcurrant on BP was reported in ten randomized controlled trials (RCTs) (420 subjects). Pooled analysis of six clinical trials revealed that raspberry consumption has no significant reduction in systolic blood pressure (SBP) (weighted mean differences [WMDs], -1.42; 95% CI, -3.27 to 0.87; p = 0.224) and diastolic blood pressure (DBP) (WMD, -0.53; 95% CI, -1.77 to 0.71; p = 0.401), in comparison with placebo. Moreover, pooled analysis of four clinical trials indicated that blackcurrant consumption did not reduce SBP (WMD, -1.46; 95% CI, -6.62 to 3.7; p = 0.579), and DBP (WMD, -2.09; 95% CI, -4.38 to 0.20; p = 0.07). Raspberry and blackcurrant consumption elicited no significant reductions in BP. More accurate RCTs are required to clarify the impact of raspberry and blackcurrant intake on BP.
Collapse
Affiliation(s)
- Ali Nikparast
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Sogand Tavakoli
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| |
Collapse
|
3
|
Tong J, Zeng Y, Xie J, Xiao K, Li M, Cong L. Association between flavonoid and subclasses intake and metabolic associated fatty liver disease in U.S. adults: Results from National Health and Nutrition Examination Survey 2017-2018. Front Nutr 2022; 9:1074494. [PMID: 36532560 PMCID: PMC9751205 DOI: 10.3389/fnut.2022.1074494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Metabolic associated fatty liver disease (MAFLD) formerly known as non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. Flavonoid is considered a promising candidate for metabolic disease prevention although few studies have explored the relationship between flavonoid intake and MAFLD. PURPOSE To assess the relationship between flavonoid intake and MAFLD prevalence in the U.S. adult population. MATERIALS AND METHODS The data of this cross-sectional study was obtained from National Health and Nutrition Examination Survey (NHANES) and Food and Nutrient Database for Dietary Studies (FNDDS) 2017-2018. Flavonoid and subclasses intake was assessed by two 24h recalls. MAFLD was diagnosed according to the consensus definitions. Multivariate logistic regression model was performed to examine the association between flavonoid intake and MAFLD with adjustments for confounders. RESULTS A total of 4,431 participants were included in this cross-sectional analysis. MAFLD had a weighted prevalence of 41.93% and was not associated with total flavonoid intake. A higher anthocyanin and isoflavone intake, on the other hand, was associated with a lower prevalence of MAFLD. The protective effect of higher anthocyanin intake was significant among male, Non-Hispanic White, and Non-Hispanic Asia participants. Higher isoflavone intake was associated with a lower risk of MAFLD in participants of younger (age < 50), Non-Hispanic Black, Non-Hispanic Asia, and higher HEI-2015 scores compared with the lowest quartile of isoflavone intake. Stratified analysis showed that compared with the lowest quartile of anthocyanin intake, the effect of anthocyanin intake on MAFLD varied by racial groups (P interaction = 0.02). A positive correlation existed between HDL and anthocyanidin intake (P = 0.03), whereas a negative correlation existed between FPG and isoflavone intake (P = 0.02). CONCLUSION MAFLD was adversely linked with flavonoid subclasses, anthocyanin and isoflavone. This modifiable lifestyle provides a potential opportunity to prevent MAFLD. These findings promote future research into the links and mechanisms between anthocyanin and isoflavone intake and MAFLD.
Collapse
Affiliation(s)
- Junlu Tong
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yingjuan Zeng
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jianhui Xie
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Kecen Xiao
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Man Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Li Cong
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
4
|
Wilken MR, Lambert MNT, Christensen CB, Jeppesen PB. Effects of Anthocyanin-rich Berries on the Risk of Metabolic Syndrome: A Systematic Review and Meta-analysis. Rev Diabet Stud 2022; 18:42-57. [PMID: 35300756 PMCID: PMC9382680 DOI: 10.1900/rds.2022.18.42] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE: Metabolic syndrome (MetS) can lead to fatal complications, including cardiovascular disease. Emerging evidence suggests has emerged that increased fruit and vegetable intake and decreased intake of saturated fats, simple sugars, and processed foods can improve cardiovascular
health. Anthocyanins (color pigments) have anti-inflammatory and antioxidant capacities but are of low bioavailability. In this systematic review and metaanalysis, we investigate the possible beneficial effects of the intake of berries high in anthocyanins on MetS risk factors. We also investigate
the influences of high-density lipoprotein (HDL), lowdensity lipoprotein (LDL), triglycerides (TG), and total cholesterol (TC). METHODS: We identified 2,274 articles from PUBMED and EMBASE following a search input designed to include studies of interest of these, 21 met inclusion criteria.
RESULTS: The studies showed an overall reduction in low-density lipoprotein (p=0.04). Increases in HDL were found with cranberry and freeze-dried berry intake during a 4-6-week intervention. No statistically significant findings were detected for fasting glucose, Hb1Ac, insulin levels,
blood pressure, oxidized LDL (OX-LDL), BMI, and overall HDL. CONCLUSIONS: We conclude from this systematic review and meta-analysis that increased berry intake improves MetS key risk factors and reduces the risk of cardiovascular disease. Pronounced effects were apparent for concentrated
berry products, such as freeze-dried strawberries.
Collapse
Affiliation(s)
- Mikkel Roulund Wilken
- Department of Clinical Medicine. Aarhus University Hospital. Aarhus University. Palle Juul-Jensens. Boulevard 165. Aarhus N. Denmark
| | - Max Norman Tandrup Lambert
- Department of Clinical Medicine. Aarhus University Hospital. Aarhus University. Palle Juul-Jensens. Boulevard 165. Aarhus N. Denmark
| | - Christine Bodelund Christensen
- Department of Clinical Medicine. Aarhus University Hospital. Aarhus University. Palle Juul-Jensens. Boulevard 165. Aarhus N. Denmark
| | - Per Bendix Jeppesen
- Department of Clinical Medicine. Aarhus University Hospital. Aarhus University. Palle Juul-Jensens. Boulevard 165. Aarhus N. Denmark
| |
Collapse
|
5
|
The Effects of Anthocyanin-Rich Bilberry Extract on Transintestinal Cholesterol Excretion. Foods 2021; 10:foods10112852. [PMID: 34829135 PMCID: PMC8624570 DOI: 10.3390/foods10112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Hypercholesterolemia is one of the modifiable and primary risk factors for cardiovascular diseases (CVD). Emerging evidence suggests the stimulation of transintestinal cholesterol excretion (TICE), the nonbiliary cholesterol excretion, using natural products can be an effective way to reduce CVD. Bilberry (Vaccinium myrtillus L.) has been reported to have cardioprotective effects by ameliorating oxidative stress, inflammation, and dyslipidemia. However, the role of bilberry in intestinal cholesterol metabolism is not well understood. To examine the effects of bilberry in intestinal cholesterol metabolism, we measured the genes for cholesterol flux and de novo synthesis in anthocyanin-rich bilberry extract (BE)-treated Caco-2 cells. BE significantly decreased the genes for cholesterol absorption, i.e., Niemann-Pick C1 Like 1 and ATP-binding cassette transporter A1 (ABCA1). In contrast, BE significantly upregulated ABCG8, the apical transporter for cholesterol. There was a significant induction of low-density lipoprotein receptors, with a concomitant increase in cellular uptake of cholesterol in BE-treated cells. The expression of genes for lipogenesis and sirtuins was altered by BE treatment. In the present study, BE altered the genes for cholesterol flux from basolateral to the apical membrane of enterocytes, potentially stimulating TICE. These results support the potential of BE in the prevention of hypercholesterolemia.
Collapse
|
6
|
Hypocholesterolemic Effect of Blackcurrant ( Ribes nigrum) Extract in Healthy Female Subjects: A Pilot Study. Molecules 2021; 26:molecules26134085. [PMID: 34279425 PMCID: PMC8272003 DOI: 10.3390/molecules26134085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023] Open
Abstract
Blackcurrant extract (BCE) ameliorates dyslipidemia in menopausal model animals and in elderly women at a risk of dyslipidemia. However, it is unknown whether the daily intake of BCE can prevent lipid abnormalities in healthy individuals. Lipids are essential for the body, but they also cause arteriosclerosis. In this noncomparative pilot study, we examined the effects of BCE administered for 29 days on serum lipids in young healthy women. Blood samples were collected before and on days 4 and 29 after BCE intake, and 20 lipoprotein fractions in the serum were separated using a gel-permeation high-performance liquid chromatography method to measure the triacylglycerol and cholesterol levels in lipoproteins. There were no effects on lipids on day 4 of BCE intake, but the total cholesterol level decreased on day 29. Furthermore, the levels of total very-low-density lipoprotein (VLDL) cholesterol, small VLDL cholesterol, and large low-density lipoprotein cholesterol were significantly decreased. These results suggest that the daily intake of BCE has a hypocholesterolemic effect in healthy women, and that it is effective in preventing atherosclerosis.
Collapse
|
7
|
Polyphenol-Rich Black Elderberry Extract Stimulates Transintestinal Cholesterol Excretion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypercholesterolemia is the primary risk factor for cardiovascular disease (CVD). Recent studies reported that the stimulation of transintestinal cholesterol excretion (TICE), a nonbiliary cholesterol excretion, can be a strategy for preventing CVD. Black elderberry (Sambucus nigra) has been reported to reduce the risk of CVD via its antioxidant, anti-inflammatory, and hypocholesterolemic effects. However, little is known about the role of black elderberry in intestinal cholesterol metabolism despite its well-known effects on cholesterol homeostasis regulation. To investigate the effects of polyphenol-rich black elderberry extract (BEE) on intestinal cholesterol metabolism, we measured the expression of genes involved in cholesterol biosynthesis and flux in Caco-2 cells. BEE significantly decreased the messenger RNA (mRNA) and protein levels of genes for cholesterol absorption, such as Niemann–Pick C1 Like 1 and ATP-binding cassette transporter A1 (ABCA1). In contrast, there was marked induction of low-density lipoprotein receptor, ABCG5/G8, and ABCB1 in BEE-treated Caco-2 cells. Furthermore, BEE decreased the expression of genes for lipogenesis and altered the mRNA levels of sirtuins. All of the genes altered by BEE were in the direction of flux cholesterol from the basolateral to apical side of enterocytes, indicating stimulation of TICE. These results support the hypocholesterolemic effects of BEE for the prevention of CVD.
Collapse
|
8
|
Extraction, Identification, and Health Benefits of Anthocyanins in Blackcurrants (Ribes nigrum L.). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041863] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fruit of the blackcurrant (Ribes nigrum L.) is round-shaped, dark purple, bittersweet, and seed-containing edible berries. The blackcurrant has been used as a traditional medicine in both Asia and European countries. It is known as a rich source of antioxidants, largely due to its high content of phenolic compounds, especially anthocyanins. Studies on anthocyanins from blackcurrants have adopted different extraction methods and a panel of anthocyanins has been identified in them. Research on the health benefits of blackcurrant anthocyanins has also grown. To present a general overview of research in blackcurrant anthocyanins, this review focuses on the extraction methods of anthocyanins from blackcurrants and the molecular mechanisms underlying their health benefits.
Collapse
|
9
|
Mehmood A, Zhao L, Wang Y, Pan F, Hao S, Zhang H, Iftikhar A, Usman M. Dietary anthocyanins as potential natural modulators for the prevention and treatment of non-alcoholic fatty liver disease: A comprehensive review. Food Res Int 2021; 142:110180. [PMID: 33773656 DOI: 10.1016/j.foodres.2021.110180] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to a metabolic syndrome linked with type 2 diabetes mellitus, obesity, and cardiovascular diseases. It is characterized by the accumulation of triglycerides in the hepatocytes in the absence of alcohol consumption. The prevalence of NAFLD has abruptly increased worldwide, with no effective treatment yet available. Anthocyanins (ACNs) belong to the flavonoid subclass of polyphenols, are commonly present in various edible plants, and possess a broad array of health-promoting properties. ACNs have been shown to have strong potential to combat NAFLD. We critically assessed the literature regarding the pharmacological mechanisms and biopharmaceutical features of the action of ACNs on NAFLD in humans and animal models. We found that ACNs ameliorate NAFLD by improving lipid and glucose metabolism, increasing antioxidant and anti-inflammatory activities, and regulating gut microbiota dysbiosis. In conclusion, ACNs have potential to attenuate NAFLD. However, further mechanistic studies are required to confirm these beneficial impacts of ACNs on NAFLD.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Yong Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Fei Pan
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Shuai Hao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Huimin Zhang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
10
|
Cortez RE, Gonzalez de Mejia E. Blackcurrants (Ribes nigrum): A Review on Chemistry, Processing, and Health Benefits. J Food Sci 2019; 84:2387-2401. [PMID: 31454085 DOI: 10.1111/1750-3841.14781] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/21/2019] [Accepted: 07/27/2019] [Indexed: 02/02/2023]
Abstract
Blackcurrants (BC; Ribes nigrum) are relatively new to the U.S. market; however, they are well known and popular in Europe and Asia. The use of BC has been trending worldwide, particularly in the United States. We believe that demand for BC will grow as consumers become aware of the several potential health benefits these berries offer. The objectives of this review were to provide an up-to-date summary of information on BC based on articles published within the last decade; furthermore, to provide the food industry insights into possibilities for the utilization of BC. The chemistry, processing methods, and health benefits have been highlighted in addition to how the environment and variety impact the chemical constituents of BC. A search for journal publications on BC was conducted, which included keywords such as chemical characterization, health benefits, processing, technologies, anthocyanins (ANC), and proanthocyanidins. This review provides up-to-date information available on the subject. In conclusion, BC and their products have industrial uses from which extractions can be made to produce natural pigments to be used as food additives. BC contain flavonoids, specifically ANC, which provide the fruits with their purple color. BC are a rich source of phytochemicals with potent antioxidant, antimicrobial, and anti-inflammatory properties. Also, BC have the potential to improve overall human health particularly with diseases associated with inflammation and regulation of blood glucose.
Collapse
Affiliation(s)
- Regina E Cortez
- Dept. of Food Science and Human Nutrition, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, U.S.A
| | - Elvira Gonzalez de Mejia
- Dept. of Food Science and Human Nutrition, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, U.S.A
| |
Collapse
|
11
|
Hurst RD, Lyall KA, Roberts JM, Perthaner A, Wells RW, Cooney JM, Jensen DJ, Burr NS, Hurst SM. Consumption of an Anthocyanin-Rich Extract Made From New Zealand Blackcurrants Prior to Exercise May Assist Recovery From Oxidative Stress and Maintains Circulating Neutrophil Function: A Pilot Study. Front Nutr 2019; 6:73. [PMID: 31192216 PMCID: PMC6548855 DOI: 10.3389/fnut.2019.00073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/01/2019] [Indexed: 12/21/2022] Open
Abstract
Aim: To evaluate blackcurrant anthocyanin-rich extract (BAE) consumption on time- and dose-dependent plasma anthocyanin bioavailability and conduct a pilot study to explore the potential effect of BAE in promoting recovery from exercise-induced oxidative stress, and maintenance of circulating neutrophil function. Methods: Time- and dose-dependent blackcurrant anthocyanin bioavailability was assessed using LC-MS in 12 participants over 6 h after the ingestion of a placebo or BAE containing 0.8, 1.6, or 3.2 mg/kg total anthocyanins. In a separate pilot intervention exercise trial, 32 participants consumed either a placebo or 0.8, 1.6, or 3.2 mg/kg BAE (8 individuals per group), and then 1 h later performed a 30 min row at 70% VO2max. Blood was collected during the trial for oxidative, antioxidant, inflammatory, and circulating neutrophil status. Results: Consumption of BAE caused a time- and dose-dependent increase in plasma anthocyanins, peaking at 2 h after ingestion of 3.2 mg/kg BAE (217 ± 69 nM). BAE consumed 1 h prior to a 30 min row had no effect on plasma antioxidant status but hastened the recovery from exercise-induced oxidative stress: By 2 h recovery, consumption of 1.6 mg/kg BAE prior to exercise caused a significant (P < 0.05) 34 and 32% decrease in post-exercise plasma oxidative capacity and protein carbonyl levels, respectively, compared to placebo. BAE consumption prior to exercise dose-dependently attenuated a small, yet significant (P < 0.01) transient 13 ± 2% decline in circulating neutrophils observed in the placebo group immediately post-exercise. Furthermore, the timed consumption of either 1.6 or 3.2 mg/kg BAE attenuated a 17 ± 2.4% (P < 0.05) decline in neutrophil phagocytic capability of opsonised FITC-Escherichia coli observed 6 h post-exercise in the placebo group. Similarly, a dose-dependent increase in neutrophil surface expression of complement receptor-3 complex (CR3, critical for effective phagocytosis of opsonised microbes), was observed 6 h post-exercise in both 1.6 and 3.2 mg/kg BAE intervention groups. Conclusions: Consumption of BAE (>1.6 mg/kg) 1 h prior to exercise facilitated recovery from exercise-induced oxidative stress and preserved circulating neutrophil function. This study provides data to underpin a larger study designed to evaluate the efficacy of timed BAE consumption on post-exercise recovery and innate immunity.
Collapse
Affiliation(s)
- Roger D Hurst
- The New Zealand Institute for Plant and Food Research Ltd., Palmerston North, New Zealand
| | - Kirsty A Lyall
- The New Zealand Institute for Plant and Food Research Ltd., Hamilton, New Zealand
| | - Joanna M Roberts
- AgResearch Ltd., The Hopkirk Research Institute, Palmerston North, New Zealand
| | - Anton Perthaner
- AgResearch Ltd., The Hopkirk Research Institute, Palmerston North, New Zealand
| | - Robyn W Wells
- The New Zealand Institute for Plant and Food Research Ltd., Hamilton, New Zealand
| | - Janine M Cooney
- The New Zealand Institute for Plant and Food Research Ltd., Hamilton, New Zealand
| | - Dwayne J Jensen
- The New Zealand Institute for Plant and Food Research Ltd., Hamilton, New Zealand
| | - Natalie S Burr
- The New Zealand Institute for Plant and Food Research Ltd., Palmerston North, New Zealand
| | - Suzanne M Hurst
- The New Zealand Institute for Plant and Food Research Ltd., Palmerston North, New Zealand
| |
Collapse
|
12
|
Jiang X, Li X, Zhu C, Sun J, Tian L, Chen W, Bai W. The target cells of anthocyanins in metabolic syndrome. Crit Rev Food Sci Nutr 2018; 59:921-946. [DOI: 10.1080/10408398.2018.1491022] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinwei Jiang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Cuijuan Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, PR China
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, PR China
| |
Collapse
|
13
|
Ma H, Johnson SL, Liu W, DaSilva NA, Meschwitz S, Dain JA, Seeram NP. Evaluation of Polyphenol Anthocyanin-Enriched Extracts of Blackberry, Black Raspberry, Blueberry, Cranberry, Red Raspberry, and Strawberry for Free Radical Scavenging, Reactive Carbonyl Species Trapping, Anti-Glycation, Anti-β-Amyloid Aggregation, and Microglial Neuroprotective Effects. Int J Mol Sci 2018; 19:ijms19020461. [PMID: 29401686 PMCID: PMC5855683 DOI: 10.3390/ijms19020461] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/08/2018] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Glycation is associated with several neurodegenerative disorders, including Alzheimer’s disease (AD), where it potentiates the aggregation and toxicity of proteins such as β-amyloid (Aβ). Published studies support the anti-glycation and neuroprotective effects of several polyphenol-rich fruits, including berries, which are rich in anthocyanins. Herein, blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts were evaluated for: (1) total phenolic and anthocyanins contents, (2) free radical (DPPH) scavenging and reactive carbonyl species (methylglyoxal; MGO) trapping, (3) anti-glycation (using BSA-fructose and BSA-MGO models), (4) anti-Aβ aggregation (using thermal- and MGO-induced fibrillation models), and, (5) murine microglia (BV-2) neuroprotective properties. Berry crude extracts (CE) were fractionated to yield anthocyanins-free (ACF) and anthocyanins-enriched (ACE) extracts. The berry ACEs (at 100 μg/mL) showed superior free radical scavenging, reactive carbonyl species trapping, and anti-glycation effects compared to their respective ACFs. The berry ACEs (at 100 μg/mL) inhibited both thermal- and MGO-induced Aβ fibrillation. In addition, the berry ACEs (at 20 μg/mL) reduced H2O2-induced reactive oxygen species production, and lipopolysaccharide-induced nitric oxide species in BV-2 microglia as well as decreased H2O2-induced cytotoxicity and caspase-3/7 activity in BV-2 microglia. The free radical scavenging, reactive carbonyl trapping, anti-glycation, anti-Aβ fibrillation, and microglial neuroprotective effects of these berry extracts warrant further in vivo studies to evaluate their potential neuroprotective effects against AD.
Collapse
Affiliation(s)
- Hang Ma
- School of Chemical and Environment Engineering, Wuyi University; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, Guangdong, China.
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA.
| | - Shelby L Johnson
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA.
| | - Weixi Liu
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA.
| | - Nicholas A DaSilva
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA.
| | - Susan Meschwitz
- Department of Chemistry, Salve Regina University, Newport, RI 02840, USA.
| | - Joel A Dain
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA.
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|