1
|
Aladdin N, Ghareib SA. Vitamin D3 Exerts a Neuroprotective Effect in Metabolic Syndrome Rats: Role of BDNF/TRKB/Akt/GS3Kβ Pathway. J Biochem Mol Toxicol 2024; 38:e70082. [PMID: 39651608 DOI: 10.1002/jbt.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024]
Abstract
Metabolic syndrome (MetS) is usually associated with cognitive impairment, neuropathic pain, and reduced brain-derived neurotrophic factor (BDNF) levels. BDNF via tropomyosin receptor kinase B (TrkB) exerts neuroprotection by activating protein kinase B (Akt) to inhibit glycogen synthase kinase-3β (GSK3β). Although Vitamin D3 (VitD3) has demonstrated favorable metabolic and neuronal outcomes in MetS, the precise molecular mechanisms underlying its neuroprotective effects remain poorly elucidated. We aimed to test the hypothesis that VitD3 mitigates MetS-induced cognition deficits and neuropathic pain via modulating the BDNF/TRKB/Akt/GS3Kβ signaling pathway. MetS was induced in male rats by 10% fructose-supplemented water and 3% salt-enriched diet. After 6 weeks, normal and MetS rats received either vehicle or VitD3 (10 µg/kg/day) for an additional 6 weeks. Glycemic status, lipid profile, and behavioral changes were assessed. The advanced glycation end products (AGEs), and markers of inflammation (TNF-α and NF-κB), oxidative stress (malondialdehyde), and apoptosis (caspase3), as well as BDNF, TrkB, PI3K, Akt, GSK3β, phosphorylated tau, and amyloid beta (Aβ) were assessed in the cerebral cortex. MetS rats had deteriorated glycemic and lipid profiles, higher AGEs, reduced levels of BDNF, TrkB, PI3K, and active Akt, along with increased GSK3β levels, inflammation, oxidative stress, and apoptosis. These changes were associated with higher levels of cognitive impairment markers phosphorylated tau and Aβ, as well as behavioral changes indicative of cognitive impairment and neuropathic pain. VitD3 improved the cognitive and behavioral alterations, while mitigating the associated molecular derangements. Our results indicate that VitD3 may exert neuroprotective effects by modulating the BDNF/TrkB/PI3K/Akt/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Noha Aladdin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Shoier NO, Ghareib SA, Kothayer H, Alsemeh AE, El-Sayed SS. Vitamin D3 mitigates myopathy and metabolic dysfunction in rats with metabolic syndrome: the potential role of dipeptidyl peptidase-4. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03439-3. [PMID: 39356321 DOI: 10.1007/s00210-024-03439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024]
Abstract
Metabolic syndrome is associated with vitamin D3 deficiency. This work aims to examine the efficacy of vitamin D3 in inhibiting MetS-induced myopathy and to determine whether the beneficial effects of vitamin D3 are mediated by the inhibition of dipeptidyl peptidase-4 (DPP-4). An in silico study investigated the potential effectiveness of vitamin D3 on the inhibition of the DPP-4 enzyme. An in vitro assay of the DPP-4 inhibitory effect of vitamin D3 was performed. In vivo and over 12 weeks, both diet (with 3% salt) and drinking water (with 10% fructose) were utilized to induce MetS. In the seventh week, rats received either vitamin D3, vildagliptin, a combination of both, or vehicles. Serum lipids, adipokines, glycemic indices, and glucagon-like peptide-1 (GLP-1), muscular glucose transporter type-4 (GLUT-4) content, DPP-4, adenosine monophosphate kinase (AMPK) activities, and Sudan Black B-stained lipids were assessed. Muscular reactive oxygen species (ROS), caspase-3, and desmin immunostaining were used to determine myopathy. MetS-induced metabolic dysfunction was ameliorated by vitamin D3, which also reduced intramuscular glycogen and lipid accumulation. This is demonstrated by the attenuation of MetS-induced myopathy by vitamin D3, decreased oxidative stress, increased desmin immuno-expression, and caspase-3 activity. Our in silico data demonstrated that vitamin D3 is capable of inhibiting DPP-4, which is further supported by biochemical findings. Vitamin D3 increased serum GLP-1, muscular AMPK activity, and GLUT-4 content, whereas the levels of muscular ROS were decreased in MetS. Vildagliptin and its combination with vitamin D3 yielded comparable results. It is suggested that the DPP-4 inhibitory potential of vitamin D3 is responsible for the amelioration of MetS-induced metabolic changes and myopathy.
Collapse
Affiliation(s)
- Nourhan O Shoier
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Salah A Ghareib
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hend Kothayer
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shaimaa S El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
3
|
Mohamed B, Ghareib SA, Alsemeh AE, El-Sayed SS. Telmisartan ameliorates nephropathy and restores the hippo pathway in rats with metabolic syndrome. Eur J Pharmacol 2024; 973:176605. [PMID: 38653362 DOI: 10.1016/j.ejphar.2024.176605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The main objective of this study was to determine if the telmisartan-ameliorative effects of metabolic syndrome (MetS)-evoked nephropathy are attributed to the Hippo pathway. A secondary objective was to investigate the potential of vitamin D3 to enhance telmisartan-favourable effects. A diet composed of 24% fat and 3% salt, along with drinking water containing 10% fructose, was administered for 12 weeks to induce MetS. MetS-rats were given telmisartan (5 mg/kg/day), vitamin D3 (10 μg/kg/day) or both by gavage, starting in the sixth week of experimental diet administration. Assessments performed at closure included renal function, histological examination, catalase, malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), peroxisome proliferator-activated receptor-γ (PPAR-γ), phosphatase and tensin homolog (PTEN), and transforming growth factor-β (TGF-β). Matrix metalloproteinase-9 (MMP-9) immunostaining was conducted. The expression of the Hippo pathway components, as well as that of angiotensin II type 1 and type 2 (AT1 and AT2), receptors was evaluated. Telmisartan attenuated MetS-evoked nephropathy, as demonstrated by improvement of renal function and histological features, enhancement of catalase, reduction of MDA, inflammation (NF-κB, IL-6), and renal fibrosis (increased PPAR-γ and PTEN and reduced MMP-9 and TGF-β). Telmisartan downregulated AT1-receptor, upregulated AT2-receptor and restored the Hippo pathway. Vitamin D3 replicated most of the telmisartan-elicited effects and enhanced the antifibrotic actions of telmisartan. The alleviative effects of telmisartan on MetS-evoked nephropathy may be related to the restoration of the Hippo pathway. The combination of vitamin D3 and telmisartan exerted more favourable effects on metabolic and nephropathic biomarkers compared with either one administered alone.
Collapse
Affiliation(s)
- Badria Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Amira Ebrahim Alsemeh
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Shaimaa S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
4
|
Mohater S, Qahtan S, Alrefaie Z, Alahmadi A. Vitamin D improves hepatic alterations in ACE1 and ACE2 expression in experimentally induced metabolic syndrome. Saudi Pharm J 2023; 31:101709. [PMID: 37559868 PMCID: PMC10407910 DOI: 10.1016/j.jsps.2023.101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
Metabolic Syndrome (MetS) is a term used to describe a cluster of pathophysiological, biochemical, and metabolic criteria; including high Blood Pressure (BP), high cholesterol, dyslipidaemia, central obesity and Insulin Resistance (IR). The Renin Angiotensin System (RAS) has a regulatory function in BP, hydroelectrolyte balance, and cardiovascular function. RAS is composed of angiotensinogen (AGT), (Ang I), (Ang II), (ACE1), (ACE2), (AT1R), (AT2R), and (Ang 1-7). Vitamin D had been proved to act as a protective factor against MetS. Therefore, the study is pursued to explore vitamin D supplementation roles on hepatic RAS in MetS experimental model. At first, 36 males Albino rats were separated into 4 groups and induced to MetS under controlled circumstances for 3 months. Then, data were collected from blood samples, whereas RNA extracted from liver were analyzed using biochemical and statistical analysis tests. As a result, the major finding was proving that vitamin D can balance the expression of ACE1 and ACE2. Also, confirming that it can improve MetS components by elevating HDL and insulin levels while reducing the levels of BP, cholesterol, LDL, TG, GLU, ALT, AST, and IR. These outcomes may give a new insight into the RAS pathways associated with MetS.
Collapse
Affiliation(s)
- Sara Mohater
- Department of Biological Sciences, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samar Qahtan
- Department of Biological Sciences, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zienab Alrefaie
- Medical Physiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Physiology Department, Faculty of Medicine, Cairo University, Egypt
| | - Ahlam Alahmadi
- Department of Biological Sciences, College of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Krisnamurti DGB, Louisa M, Poerwaningsih EH, Tarigan TJE, Soetikno V, Wibowo H, Nugroho CMH. Vitamin D supplementation alleviates insulin resistance in prediabetic rats by modifying IRS-1 and PPARγ/NF-κB expressions. Front Endocrinol (Lausanne) 2023; 14:1089298. [PMID: 37324274 PMCID: PMC10266204 DOI: 10.3389/fendo.2023.1089298] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Background Prediabetes is a condition of intermediate hyperglycemia that may progress to type 2 diabetes. Vitamin D deficiency has been frequently linked to insulin resistance and diabetes. The study aimed to investigate the role of D supplementation and its possible mechanism of action on insulin resistance in prediabetic rats. Method The study was conducted on 24 male Wistar rats that were randomly divided into 6 rats as healthy controls and 18 prediabetic rats. Prediabetic rats were induced with a high-fat and high-glucose diet (HFD-G) combined with a low dose of streptozotocin. Rats with the prediabetic condition were then randomized into three groups of 12-week treatment: one group that received no treatment, one that received vitamin D3 at 100 IU/kg BW, and one group that received vitamin D3 at 1000 IU/kg BW. The high-fat and high-glucose diets were continuously given throughout the twelve weeks of treatment. At the end of the supplementation period, glucose control parameters, inflammatory markers, and the expressions of IRS1, PPARγ, NF-κB, and IRS1 were measured. Results Vitamin D3 dose-dependently improves glucose control parameters, as shown by the reduction of fasting blood glucose (FBG), oral glucose tolerance test (OGTT), glycated albumin, insulin levels, and markers of insulin resistance (HOMA-IR). Upon histological analysis, vitamin D supplementation resulted in a reduction of the islet of Langerhans degeneration. Vitamin D also enhanced the ratio of IL-6/IL-10, reduced IRS1 phosphorylation at Ser307, increased expression of PPAR gamma, and reduced phosphorylation of NF-KB p65 at Ser536. Conclusion Vitamin D supplementation reduces insulin resistance in prediabetic rats. The reduction might be due to the effects of vitamin D on IRS, PPARγ, and NF-κB expression.
Collapse
Affiliation(s)
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Erni H. Poerwaningsih
- Department of Medical Pharmacy, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Tri Juli Edi Tarigan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dr. Cipto Mangunkusumo National Referral Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Vivian Soetikno
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Heri Wibowo
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | |
Collapse
|
6
|
Hu G, Xu L, Ito O. Impacts of High Fructose Diet and Chronic Exercise on Nitric Oxide Synthase and Oxidative Stress in Rat Kidney. Nutrients 2023; 15:nu15102322. [PMID: 37242205 DOI: 10.3390/nu15102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic exercise (Ex) exerts antihypertensive and renoprotective effects in rats fed a high fructose diet (HFr). To elucidate the mechanisms, the impacts of an HFr and Ex on the nitric oxide (NO) system and oxidative stress in the kidney were examined. Rats were fed a control diet or an HFr, and a part of the HFr-fed rats underwent treadmill running for 12 weeks. The HFr did not affect nitrate/nitrite (NOx) levels in plasma and urine, and Ex increased the NOx levels. The HFr increased thiobarbituric acid reactive substance (TBARS) levels in plasma and urine, and Ex decreased the HFr-increased TBARS levels in plasma. The HFr increased the neuronal and endothelial NO synthase (nNOS and eNOS) expressions, and Ex enhanced the HFr-increased eNOS expression. The HFr inhibited the eNOS phosphorylation at serine 1177, and Ex restored the HFr-inhibited eNOS phosphorylation. The HFr increased xanthine oxidase and NADPH oxidase activities, and Ex restored the HFr-increased xanthine oxidase activity but enhanced the HFr-increased NADPH oxidase activity. The HFr increased the nitrotyrosine levels, and Ex attenuated the HFr-increased levels. These results indicate that although Ex enhances the HFr-increased eNOS expression and NADPH oxidase activity, an HFr inhibits renal eNOS phosphorylation and NO bioavailability, whereas Ex ameliorates them.
Collapse
Affiliation(s)
- Gaizun Hu
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai 983-8536, Japan
| | - Lusi Xu
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai 983-8536, Japan
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| | - Osamu Ito
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| |
Collapse
|
7
|
Romaszko J, Dragańska E, Cymes I, Drozdowski M, Gromadziński L, Glińska-Lewczuk K. Are the levels of uric acid associated with biometeorological conditions? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152020. [PMID: 35007576 DOI: 10.1016/j.scitotenv.2021.152020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Hyperuricemia is an independent risk factor for renal and cardiovascular diseases and is closely associated with gout episodes. It is caused, inter alia, by nutritional habits and genetic factors, and also displays seasonal variability conditioned by meteorological factors. The impact of meteorological factors, including both cold and heat stress, on the human physiology is presented based on the Universal Thermal Climate Index (UTCI) - a biometeorological index derived from an analysis of human thermal balance. The aim of our study was to establish whether seasonal variations significantly affect routinely measured urine acid (UA) levels and could eventually support the clinical decision making process, as well as assessing whether UTCI values are correlated with UA levels in blood serum. This work presents a retrospective epidemiological study of data collected in Olsztyn (Poland). Study material comprised 54,536 results of ambulatory tests measuring UA levels, performed during the period 2016-2019. The analysis concerned correlations between UA and the ages of female and male subjects as well as existing biometeorological conditions as represented by UTCI values in an annual cycle. UA levels in females were found to be lower (4.94 ± 1.37 SD) as compared to those of males (6.13 ± 1.43 SD) and demonstrated a strong positive correlation with age. UA values differed significantly (p < 0.05) on days characterized by cold stress and heat stress, for the oldest age group. UA levels were found to differ depending on the season, but these relationships were not statistically significant, except for significantly higher UA levels in females in autumn (p < 0.001). However, there was an evident difference in population UA levels under cold stress conditions (lower) and heat stress conditions (higher) in the elderly. The UTCI is an adequate predictor of population variations in UA levels since it takes into account the variability of local meteorological conditions.
Collapse
Affiliation(s)
- Jerzy Romaszko
- Department of Family Medicine and Infectious Diseases, School of Medicine, University of Warmia and Mazury in Olsztyn, Poland.
| | - Ewa Dragańska
- Department of Water Management and Climatology, University of Warmia and Mazury in Olsztyn, Poland
| | - Iwona Cymes
- Department of Water Management and Climatology, University of Warmia and Mazury in Olsztyn, Poland
| | - Marek Drozdowski
- Department of Psychology and Sociology of Health and Public Health, School of Public Health, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Poland
| | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn
| | | |
Collapse
|
8
|
Wolosowicz M, Prokopiuk S, Kaminski TW. Recent Advances in the Treatment of Insulin Resistance Targeting Molecular and Metabolic Pathways: Fighting a Losing Battle? MEDICINA (KAUNAS, LITHUANIA) 2022; 58:472. [PMID: 35454311 PMCID: PMC9029454 DOI: 10.3390/medicina58040472] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
Abstract
Diabetes Mellitus (DM) is amongst the most notable causes of years of life lost worldwide and its prevalence increases perpetually. The disease is characterized as multisystemic dysfunctions attributed to hyperglycemia resulting directly from insulin resistance (IR), inadequate insulin secretion, or enormous glucagon secretion. Insulin is a highly anabolic peptide hormone that regulates blood glucose levels by hastening cellular glucose uptake as well as controlling carbohydrate, protein, and lipid metabolism. In the course of Type 2 Diabetes Mellitus (T2DM), which accounts for nearly 90% of all cases of diabetes, the insulin response is inadequate, and this condition is defined as Insulin Resistance. IR sequela include, but are not limited to, hyperglycemia, cardiovascular system impairment, chronic inflammation, disbalance in oxidative stress status, and metabolic syndrome occurrence. Despite the substantial progress in understanding the molecular and metabolic pathways accounting for injurious effects of IR towards multiple body organs, IR still is recognized as a ferocious enigma. The number of widely available therapeutic approaches is growing, however, the demand for precise, safe, and effective therapy is also increasing. A literature search was carried out using the MEDLINE/PubMed, Google Scholar, SCOPUS and Clinical Trials Registry databases with a combination of keywords and MeSH terms, and papers published from February 2021 to March 2022 were selected as recently published papers. This review paper aims to provide critical, concise, but comprehensive insights into the advances in the treatment of IR that were achieved in the last months.
Collapse
Affiliation(s)
- Marta Wolosowicz
- Department of Physiology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Slawomir Prokopiuk
- Faculty of Health Sciences, Lomza State University of Applied Sciences, 18-400 Lomza, Poland;
| | - Tomasz W. Kaminski
- Department of Medicine, Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
9
|
Wahba NS, Abdel-Ghany RH, Ghareib SA, Abdel-Aal M, Alsemeh AE, Sabry D. Vitamin D3 potentiates the nephroprotective effects of vildagliptin-metformin combination in a rat model of metabolic syndrome. Fundam Clin Pharmacol 2021; 36:306-323. [PMID: 34453360 DOI: 10.1111/fcp.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022]
Abstract
The current study was conducted to investigate the nephroprotective effects of vildagliptin-metformin combination in an experimental model of fructose/salt-induced metabolic syndrome (MetS). A major aim was to evaluate the potential capacity of vitamin D3 to potentiate the pleiotropic nephroprotective effects of vildagliptin-metformin combination. MetS was induced in adult male Wistar rats by adding fructose (10%) to everyday drinking water and salt (3%) to the diet for 6 weeks. Along with the same concentrations of fructose/salt feeding, MetS rats were then treated orally with either vildagliptin (10 mg/kg/day)-metformin (200 mg/kg/day) combination, vitamin D3 (10 μg/kg/day), or the triple therapy for a further 6 weeks. The incidence of MetS was confirmed 6 weeks after fructose/salt consumption, when the rats exhibited significant weight gain, dyslipidemia, hyperuricemia, insulin resistance, hyperinsulinemia, and impaired glucose tolerance. At the end of the 12-week experimental period, MetS rats displayed significantly deteriorated renal function, enhanced intrarenal oxidative stress and inflammation together with exaggerated renal histopathological damages and interstitial fibrosis. The study has corroborated antioxidant, anti-inflammatory, and antifibrotic effects of vildagliptin-metformin combination, vitamin D3, and the triple collaborative therapy, conferring renoprotection in the setting of MetS. Due attention has been paid to the crucial role of dipeptidyl peptidase-4 inhibition and sirtuin-1/5' adenosine monophosphate-activated protein kinase activation as novel therapeutic targets to optimize renoprotection. The apparent potentiating effect, evoked upon coadministration of vitamin D3 with vildagliptin-metformin combination, may provide a cornerstone for further clinical investigations.
Collapse
Affiliation(s)
- Nehal S Wahba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rasha H Abdel-Ghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed Abdel-Aal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Amira E Alsemeh
- Department of Anatomy and Embryology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt
| |
Collapse
|