1
|
Nikparast A, Razavi M, Sohouli MH, Hekmatdoost A, Dehghan P, Tohidi M, Rouhani P, Asghari G. The association between dietary intake of branched-chain amino acids and the odds of nonalcoholic fatty liver disease among overweight and obese children and adolescents. J Diabetes Metab Disord 2025; 24:19. [PMID: 39712343 PMCID: PMC11659539 DOI: 10.1007/s40200-024-01516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 12/24/2024]
Abstract
Objectives Dietary supplementation with branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, has shown potential benefits for the metabolic profile. However, emerging population-based studies suggest that BCAAs may mediate pathways related to cardiometabolic risk factors, possibly due to their involvement in the dysregulation of insulin metabolic pathways. This study aimed to investigate the association between BCAAs intake and the odds of nonalcoholic fatty liver disease (NAFLD) in children and adolescents with overweight and obesity. Methods This cross-sectional study encompassed individuals aged 6 to 18 years with WHO body mass index (BMI)-for-age z-score ≥ 1. NAFLD diagnosis was done using an ultrasonography scan of the liver and gastroenterologist confirmation. Dietary BCAAs intake was assessed using a validated 147-item food frequency questionnaire. Logistic regression models, adjusted for potential confounders, were used to estimate the odds ratios (OR) and 95% confidence interval (CI) of NAFLD across quartiles of BCAAs intake. Results A total of 505 (52.9% boys) with mean ± SD age and BMI-for-age-Z-score of 10.0 ± 2.3 and 2.70 ± 1.01, respectively, were enrolled. After adjusting for potential confounders, participants in the highest quartile of total dietary BCAAs (OR: 1.87;95%CI:1.06-3.28) and leucine (OR: 1.84;95%CI:1.03-3.29) intake had greater odds of developing NAFLD compared with those in the lowest quartile. There was no significant association between dietary valine and isoleucine intake and the odds of NAFLD. Conclusions The study findings suggest that increased dietary intake of BCAAs, particularly leucine, may have detrimental effects on the development of NAFLD.
Collapse
Affiliation(s)
- Ali Nikparast
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pediatric Gastroenterology and Hepatology Research Center Pediatrics Centre of Excellence Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Razavi
- Growth and development research center, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Pediatric Gastroenterology and Hepatology Research Center Pediatrics Centre of Excellence Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooneh Dehghan
- Department of Imaging, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tohidi
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pejman Rouhani
- Pediatric Gastroenterology and Hepatology Research Center Pediatrics Centre of Excellence Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golaleh Asghari
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Mogna-Peláez P, Romo-Hualde A, Riezu-Boj JI, Milagro FI, Muñoz-Prieto D, Herrero JI, Elorz M, Benito-Boillos A, Monreal JI, Tur JA, Martínez A, Abete I, Zulet MA. Isoliquiritigenin in combination with visceral adipose tissue and related markers as a predictive tool for nonalcoholic fatty liver disease. J Physiol Biochem 2024; 80:639-653. [PMID: 37996653 PMCID: PMC11502611 DOI: 10.1007/s13105-023-00998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease in the world. New non-invasive diagnostic tools are needed to promptly treat this disease and avoid its complications. This study aimed to find key metabolites and related variables that could be used to predict and diagnose NAFLD. Ninety-eight subjects with NAFLD and 45 controls from the Fatty Liver in Obesity (FLiO) Study (NCT03183193) were analyzed. NAFLD was diagnosed and graded by ultrasound and classified into two groups: 0 (controls) and ≥ 1 (NAFLD). Hepatic status was additionally assessed through magnetic resonance imaging (MRI), elastography, and determination of transaminases. Anthropometry, body composition (DXA), biochemical parameters, and lifestyle factors were evaluated as well. Non-targeted metabolomics of serum was performed with high-performance liquid chromatography coupled to time-of-flight mass spectrometry (HPLC-TOF-MS). Isoliquiritigenin (ISO) had the strongest association with NAFLD out of the determinant metabolites. Individuals with higher concentrations of ISO had healthier metabolic and hepatic status and were less likely to have NAFLD (OR 0.13). Receiver operating characteristic (ROC) curves demonstrated the predictive power of ISO in panel combination with other NAFLD and IR-related variables, such as visceral adipose tissue (VAT) (AUROC 0.972), adiponectin (AUROC 0.917), plasmatic glucose (AUROC 0.817), and CK18-M30 (AUROC 0.810). Individuals with lower levels of ISO have from 71 to 82% more risk of presenting NAFLD compared to individuals with higher levels. Metabolites such as ISO, in combination with visceral adipose tissue, IR, and related markers, constitute a potential non-invasive tool to predict and diagnose NAFLD.
Collapse
Affiliation(s)
- Paola Mogna-Peláez
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
| | - Ana Romo-Hualde
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
| | - José I Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - David Muñoz-Prieto
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
| | - José I Herrero
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Liver Unit, Clínica Universidad de Navarra, 31008, Pamplona, Spain
- Biomedical Research Centre Network in Hepatic and Digestive Diseases (CIBERehd), 28029, Madrid, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - J Ignacio Monreal
- Clinical Chemistry Department, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Josep A Tur
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122, Palma, Spain
| | - Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - M Angeles Zulet
- Department of Nutrition, Food Sciences and Physiology and Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Fu Y, Wang Z, Qin H. Examining the Pathogenesis of MAFLD and the Medicinal Properties of Natural Products from a Metabolic Perspective. Metabolites 2024; 14:218. [PMID: 38668346 PMCID: PMC11052500 DOI: 10.3390/metabo14040218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), characterized primarily by hepatic steatosis, has become the most prevalent liver disease worldwide, affecting approximately two-fifths of the global population. The pathogenesis of MAFLD is extremely complex, and to date, there are no approved therapeutic drugs for clinical use. Considerable evidence indicates that various metabolic disorders play a pivotal role in the progression of MAFLD, including lipids, carbohydrates, amino acids, and micronutrients. In recent years, the medicinal properties of natural products have attracted widespread attention, and numerous studies have reported their efficacy in ameliorating metabolic disorders and subsequently alleviating MAFLD. This review aims to summarize the metabolic-associated pathological mechanisms of MAFLD, as well as the natural products that regulate metabolic pathways to alleviate MAFLD.
Collapse
Affiliation(s)
| | | | - Hong Qin
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha 410006, China; (Y.F.); (Z.W.)
| |
Collapse
|
4
|
Yuan Z, Qiao H, Wang Z, Wang H, Han M, Zhang W, Zhou Y, Hassan HM, Zhao W, Qin T. Taohe Chengqi decoction alleviated metabolic-associated fatty liver disease by boosting branched chain amino acids catabolism in the skeletal muscles of type 2 diabetes mellitus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155315. [PMID: 38387274 DOI: 10.1016/j.phymed.2023.155315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/03/2023] [Accepted: 12/25/2023] [Indexed: 02/24/2024]
Abstract
OBJECTIVE Metabolic-associated fatty liver disease (MAFLD) is the most prevalent liver disease, whereas type 2 diabetes mellitus (T2DM) is considered an independent risk factor for MAFLD incidence. Taohe Chengqi decoction (THCQ) is clinically prescribed for T2DM treatment; however, the hepatoprotective effect of THCQ against MAFLD is still unknown. This study intended to elucidate the therapeutic effect of THCQ on T2DM-associated MAFLD and to investigate the underlying mechanisms. METHODS THCQ lyophilized powder was prepared and analyzed by UHPLC-MS/MS. A stable T2DM mouse model was established by high-fat diet (HFD) feeding combined with streptozotocin (STZ) injection. The T2DM mice were administered THCQ (2.5 g/kg or 5 g/kg) to explore the pharmacological effects of THCQ on T2DM-associated MAFLD. Liver tissue transcriptome was analyzed and the participatory roles of PPARα/γ pathways were verified both in vivo and in vitro. Serum metabolome analysis was used to explore the metabolome changes and skeletal muscle branched chain amino acid (BCAA) catabolic enzymes were further detected. Moreover, an AAV carrying BCKDHA shRNA was intramuscularly injected to verify the impact of THCQ on skeletal muscle BCAA catabolism and the potential therapeutic outcome on hepatic steatosis. RESULTS THCQ improved hepatic steatosis in MAFLD. RNA-sequencing analysis showed dysregulation in the hepatic PPARγ-related fatty acid synthesis, while PPARα-dependent fatty acid oxidation was elevated following THCQ treatment. Interestingly, in vitro analyses of these findings showed that THCQ had minor effects on fatty acid oxidation and/or synthesis. The metabolomic study revealed that THCQ accelerated BCAA catabolism in the skeletal muscles, in which knockdown of the BCAA catabolic enzyme BCKDHA diminished the THCQ therapeutic effect on hepatic steatosis. CONCLUSION This study highlighted the potential therapeutic effect of THCQ on hepatic steatosis in MALFD. THCQ upregulated fatty acid oxidation and reduced its synthesis via restoration of PPARα/γ pathways in HFD/STZ-induced T2DM mice, which is mediated through augmenting BCKDH activity and accelerating BCAA catabolism in the skeletal muscles. Overall, this study provided in-depth clues for "skeletal muscles-liver communication" in the therapeutic effect of THCQ against hepatic steatosis. These findings suggested THCQ might be a potential candidate against T2DM-associated MAFLD.
Collapse
Affiliation(s)
- Ziqiao Yuan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention and Treatment; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Hui Qiao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention and Treatment; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ziwei Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention and Treatment; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haoran Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention and Treatment; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingru Han
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention and Treatment; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Yang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Hozeifa Mohamed Hassan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| | - Wen Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; State Key Laboratory of Esophageal Cancer Prevention and Treatment; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
5
|
Deng Y, Hu M, Huang S, Fu N. Molecular mechanism and therapeutic significance of essential amino acids in metabolically associated fatty liver disease. J Nutr Biochem 2024; 126:109581. [PMID: 38219809 DOI: 10.1016/j.jnutbio.2024.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), also known as metabolically associated fatty liver disease (MAFLD), is a systemic metabolic disease characterized by lipid accumulation in the liver, lipid toxicity, insulin resistance, intestinal dysbiosis, and inflammation that can progress from simple steatosis to nonalcoholic steatohepatitis (NASH) and even cirrhosis or cancer. It is the most prevalent illness threatening world health. Currently, there are almost no approved drug interventions for MAFLD, mainly dietary changes and exercise to control weight and regulate metabolic disorders. Meanwhile, the metabolic pathway involved in amino acid metabolism also influences the onset and development of MAFLD in the body, and most amino acid metabolism takes place in the liver. Essential amino acids are those amino acids that must be supplemented from outside the diet and that cannot be synthesized in the body or cannot be synthesized at a rate sufficient to meet the body's needs, including leucine, isoleucine, valine (collectively known as branched-chain amino acids), tryptophan, phenylalanine (which are aromatic amino acids), histidine, methionine, threonine and lysine. The metabolic balance of the body is closely linked to these essential amino acids, and essential amino acids are closely linked to the pathophysiological process of MAFLD. In this paper, we will focus on the metabolism of essential amino acids in the body and further explore the therapeutic strategies for MAFLD based on the studies conducted in recent years.
Collapse
Affiliation(s)
- Yuting Deng
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Mengsi Hu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Shufang Huang
- The Affiliated Nanhua Hospital, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| | - Nian Fu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China; The Affiliated Nanhua Hospital, Institute of Clinical Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| |
Collapse
|
6
|
Lu X, Yang R, Chen Y, Chen D. NAD metabolic therapy in metabolic dysfunction-associated steatotic liver disease: Possible roles of gut microbiota. iScience 2024; 27:109174. [PMID: 38405608 PMCID: PMC10884928 DOI: 10.1016/j.isci.2024.109174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly named non-alcoholic fatty liver disease (NAFLD), is induced by alterations of hepatic metabolism. As a critical metabolites function regulator, nicotinamide adenine dinucleotide (NAD) nowadays has been validated to be effective in the treatment of diet-induced murine model of MASLD. Additionally, gut microbiota has been reported to have the potential to prevent MASLD by dietary NAD precursors metabolizing together with mammals. However, the underlying mechanism remains unclear. In this review, we hypothesized that NAD enhancing mitochondrial activity might reshape a specific microbiota signature, and improve MASLD progression demonstrated by fecal microbiota transplantation. Here, this review especially focused on the mechanism of Microbiota-Gut-Liver Axis together with NAD metabolism for the MASLD progress. Notably, we found significant changes in Prevotella associated with NAD in a gut microbiome signature of certain MASLD patients. With the recent researches, we also inferred that Prevotella can not only regulate the level of NAD pool by boosting the carbon metabolism, but also play a vital part in regulating the branched-chain amino acid (BCAA)-related fatty acid metabolism pathway. Altogether, our results support the notion that the gut microbiota contribute to the dietary NAD precursors metabolism in MASLD development and the dietary NAD precursors together with certain gut microbiota may be a preventive or therapeutic strategy in MASLD management.
Collapse
Affiliation(s)
- Xinyi Lu
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Rui Yang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Yu Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Daozhen Chen
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
- Department of Laboratory, Haidong Second People’s Hospital, Haidong 810699, China
| |
Collapse
|
7
|
Li X, Ma W, Yang T, Wang C, Zhang W, Li H, Zhao T, Guo X. Higher intakes of lysine, threonine and valine are inversely associated with non-alcoholic fatty liver disease risk: a community-based case-control study in the Chinese elderly. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:191-197. [DOI: 10.26599/fshw.2022.9250016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Sideris GA, Tsaramanidis S, Vyllioti AT, Njuguna N. The Role of Branched-Chain Amino Acid Supplementation in Combination with Locoregional Treatments for Hepatocellular Carcinoma: Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:926. [PMID: 36765884 PMCID: PMC9913329 DOI: 10.3390/cancers15030926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Branched-chain amino acid (BCAA) supplementation has been linked with favorable outcomes in patients undergoing surgical or palliative treatments for hepatocellular carcinoma (HCC). To date, there has been no systematic review investigating the value of BCAA supplementation in HCC patients undergoing locoregional therapies. MATERIALS AND METHODS A systematic search of the literature was performed across five databases/registries using a detailed search algorithm according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. The search was conducted on March 23, 2022. RESULTS Sixteen studies with a total of 1594 patients were analyzed. Most patients were male (64.6%) with a mean age of 68.2 ± 4.1 years, Child-Pugh score A (67.9%) and stage II disease (40.0%). Locoregional therapy consisted of radiofrequency ablation, transarterial chemoembolization or hepatic artery infusion chemotherapy. BCAA supplementation was in the form of BCAA granules or BCAA-enriched nutrient. Most studies reported improved albumin levels, non-protein respiratory quotient and quality of life in the BCAA group. Results pertaining to other outcomes including overall survival, recurrence rate, and Child-Pugh score were variable. Meta-analysis showed significantly higher levels of post-treatment serum albumin in the BCAA group (SMD = 0.54, 95% CI 0.20-0.87) but no significant differences in mortality rate (RR = 0.81, 95% CI: 0.65-1.02) and AST (SMD = -0.13, 95% CI: -0.43-0.18). CONCLUSION BCAA supplementation is associated with higher post-treatment albumin levels. There are currently not sufficient data to support additional benefits. Further studies are needed to elucidate their value.
Collapse
Affiliation(s)
- Georgios A. Sideris
- Baystate Medical Center, Department of Radiology, University of Massachusetts Medical School, Springfield, MA 01199, USA
- Radiology Working Group, Society of Junior Doctors, 11527 Athens, Greece
| | - Savvas Tsaramanidis
- Radiology Working Group, Society of Junior Doctors, 11527 Athens, Greece
- Department of Surgery, Ippokrateio General Hospital of Thessaloniki, Aristotle University of Thessaloniki School of Medicine, 54642 Thessaloniki, Greece
| | | | - Njogu Njuguna
- Baystate Medical Center, Department of Radiology, University of Massachusetts Medical School, Springfield, MA 01199, USA
| |
Collapse
|
9
|
Khazaei Y, Dehghanseresht N, Ebrahimi Mousavi S, Nazari M, Salamat S, Asbaghi O, Mansoori A. Association Between Protein Intake From Different Animal and Plant Origins and the Risk of Non-Alcoholic Fatty Liver Disease: A Case-Control Study. Clin Nutr Res 2023; 12:29-39. [PMID: 36793780 PMCID: PMC9900076 DOI: 10.7762/cnr.2023.12.1.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Previous studies have frequently reviewed how different macronutrients affect liver health. Still, no study centered around protein intake and the non-alcoholic fatty liver disease (NAFLD) risk relationship. This study aimed to examine the association between the consumption of total and different sources of protein and NAFLD risk. We allocated 243 eligible subjects to the case and control groups, including 121 incidence cases of NAFLD, and 122 healthy controls. Two groups were matched in age, body mass index, and sex. We evaluated the usual food intake of participants using FFQ. Binary logistic regression was conducted to estimate the risk of NAFLD in relation to different sources of protein intake. The age of participants was 42.7 years on average, and 53.1% were male. We found Higher intake of protein in total (odds ratio [OR], 0.24; 95% confidence interval [CI], 0.11-0.52) was significantly associated with a lower risk of NAFLD, despite adjusting for multiple confounders. in detail, higher tendency to the vegetables (OR, 0.28; 95% CI, 0.13-0.59), grains (OR, 0.24; 95% CI, 0.11-0.52), and nuts (OR, 0.25; 95% CI, 0.12-0.52) as the main sources of protein, were remarkably correlated with lower NAFLD risk. In contrary, increased intake of meat protein (OR, 3.15; 95% CI, 1.46-6.81) was positively associated with a higher risk. Totally, more calorie intake from proteins was inversely associated with lower NAFLD risk. This was more likely when the protein sources were selected less from meats and more from plants. Accordingly, increasing the consumption of proteins, particularly from plants, may be a good recommendation to manage and prevent NAFLD.
Collapse
Affiliation(s)
- Yasaman Khazaei
- Department of Nutrition, School of Public Health, Iran University of Medical Science, Tehran 1134845764, Iran
| | - Narges Dehghanseresht
- Department of Nutrition, Faculty of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 1579461357, Iran
| | - Sara Ebrahimi Mousavi
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran 1416643931, Iran.,Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 1416643931, Iran
| | - Matin Nazari
- Department of Medical Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shekoufeh Salamat
- Department of Nutrition, Faculty of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 1579461357, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Anahita Mansoori
- Department of Nutrition, Faculty of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 1579461357, Iran
| |
Collapse
|
10
|
Mokhtari E, Ahmadirad H, Teymoori F, Mohammadebrahim A, Bahrololomi SS, Mirmiran P. The association between dietary amino acids and the risk of nonalcoholic fatty liver disease among Tehranian adults: a case-control study. BMC Nutr 2022; 8:155. [PMID: 36575550 PMCID: PMC9793580 DOI: 10.1186/s40795-022-00656-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Amino acids (AAs) are important bioactive components in the diet that can be involved in various underlying biological processes that contribute to the development of nonalcoholic fatty liver disease (NAFLD). The present study investigates the association between dietary intake of amino acids and NAFLD in Iranian adults. METHODS This study was conducted among 225 newly diagnosed cases of NAFLD and 450 controls. A valid and reliable 168-item semiquantitative food frequency questionnaire (FFQ) was used to collect participants' dietary intakes. Multivariable logistic regression models were used to assess the association between tertiles of branched-chain amino acids (BCAAs), aromatic amino acids (AAAs), and sulfuric amino acids (SAAs) intake with the odds of NAFLD among the study participants. RESULTS The mean ± standard deviation of age and BMI of participants (53% male) were 38.1 ± 8.8 years and 26.8 ± 4.3 kg/m2, respectively. In the final models, the OR and 95% CI of NAFLD among participants in the highest tertiles of BCAAs, AAAs, and SAAs intake compared with those in the lowest tertiles were (OR = 2.82; 95% CI: 1.50-5.30), (OR = 2.82; 95% CI: 1.50-5.30), (OR = 2.86; 95% CI: 1.49-5.48), respectively. CONCLUSION Our study indicated a direct association between the intake of AAs groups, including BCAAs, AAAs, SAAs, and the odds of NAFLD. We suggest that other researchers examine the association between AAs groups and NAFLD in large cohort studies.
Collapse
Affiliation(s)
- Ebrahim Mokhtari
- grid.411600.2Student Research Committee, Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran
| | - Hamid Ahmadirad
- grid.411600.2Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran
| | - Farshad Teymoori
- grid.411600.2Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran ,grid.411746.10000 0004 4911 7066Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Mohammadebrahim
- grid.411746.10000 0004 4911 7066Department of Nutrition, health and treatment center of shahriyar, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Sadat Bahrololomi
- grid.411746.10000 0004 4911 7066Department of Nutrition, health and treatment center of shahriyar, Iran University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- grid.411600.2Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box: 1985717413, Tehran, Iran
| |
Collapse
|
11
|
The Emerging Role of Branched-Chain Amino Acids in Liver Diseases. Biomedicines 2022; 10:biomedicines10061444. [PMID: 35740464 PMCID: PMC9220261 DOI: 10.3390/biomedicines10061444] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic liver diseases pose a substantial health burden worldwide, with approximately two million deaths each year. Branched-chain amino acids (BCAAs)-valine, leucine, and isoleucine-are a group of essential amino acids that are essential for human health. Despite the necessity of a dietary intake of BCAA, emerging data indicate the undeniable correlation between elevated circulating BCAA levels and chronic liver diseases, including non-alcoholic fatty liver diseases (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC). Moreover, circulatory BCAAs were positively associated with a higher cholesterol level, liver fat content, and insulin resistance (IR). However, BCAA supplementation was found to provide positive outcomes in cirrhosis and HCC patients. This review will attempt to address the contradictory claims found in the literature, with a special focus on BCAAs' distribution, key signaling pathways, and the modulation of gut microbiota. This should provide a better understanding of BCAAs' possible contribution to liver health.
Collapse
|
12
|
The association of serum sulfur amino acids and related metabolites with incident diabetes: a prospective cohort study. Eur J Nutr 2022; 61:3161-3173. [PMID: 35415822 DOI: 10.1007/s00394-022-02872-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
AIM Plasma total cysteine (tCys) is associated with fat mass and insulin resistance, whereas taurine is inversely related to diabetes risk. We investigated the association of serum sulfur amino acids (SAAs) and related amino acids (AAs) with incident diabetes. METHODS Serum AAs were measured at baseline in 2997 subjects aged ≥ 65 years. Diabetes was recorded at baseline and after 4 years. Logistic regression evaluated the association of SAAs [methionine, total homocysteine (tHcy), cystathionine, tCys, and taurine] and related metabolites [serine, total glutathione (tGSH), glutamine, and glutamic acid] with diabetes risk. RESULTS Among 2564 subjects without diabetes at baseline, 4.6% developed diabetes. Each SD increment in serum tCys was associated with a 68% higher risk (95% CI 1.27, 2.23) of diabetes [OR for upper vs. lower quartile 2.87 (1.39, 5.91)], after full adjustments (age, sex, other AAs, adiposity, eGFR, physical activity, blood pressure, diet and medication); equivalent ORs for cystathionine were 1.33 (1.08, 1.64) and 1.68 (0.85, 3.29). Subjects who were simultaneously in the upper tertiles of both cystathionine and tCys had a fivefold risk [OR = 5.04 (1.55, 16.32)] of diabetes compared with those in the lowest tertiles. Higher serine was independently associated with a lower risk of developing diabetes [fully adjusted OR per SD = 0.68 (0.54, 0.86)]. Glutamic acid and glutamine showed positive and negative associations, respectively, with incident diabetes in age- and sex-adjusted analysis, but only the glutamic acid association was independent of other confounders [fully adjusted OR per SD = 1.95 (1.19, 3.21); for upper quartile = 7.94 (3.04, 20.75)]. tGSH was inversely related to diabetes after adjusting for age and sex, but not other confounders. No consistent associations were observed for methionine, tHcy or taurine. CONCLUSION Specific SAAs and related metabolites show strong and independent associations with incident diabetes. This suggests that perturbations in the SAA metabolic pathway may be an early marker for diabetes risk.
Collapse
|
13
|
Perez-Diaz-del-Campo N, Riezu-Boj JI, Marin-Alejandre BA, Monreal JI, Elorz M, Herrero JI, Benito-Boillos A, Milagro FI, Tur JA, Abete I, Zulet MA, Martinez JA. Three Different Genetic Risk Scores Based on Fatty Liver Index, Magnetic Resonance Imaging and Lipidomic for a Nutrigenetic Personalized Management of NAFLD: The Fatty Liver in Obesity Study. Diagnostics (Basel) 2021; 11:1083. [PMID: 34199237 PMCID: PMC8231822 DOI: 10.3390/diagnostics11061083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) affects 25% of the global population. The pathogenesis of NAFLD is complex; available data reveal that genetics and ascribed interactions with environmental factors may play an important role in the development of this morbid condition. The purpose of this investigation was to assess genetic and non-genetic determinants putatively involved in the onset and progression of NAFLD after a 6-month weight loss nutritional treatment. A group of 86 overweight/obese subjects with NAFLD from the Fatty Liver in Obesity (FLiO) study were enrolled and metabolically evaluated at baseline and after 6 months. A pre-designed panel of 95 genetic variants related to obesity and weight loss was applied and analyzed. Three genetic risk scores (GRS) concerning the improvement on hepatic health evaluated by minimally invasive methods such as the fatty liver index (FLI) (GRSFLI), lipidomic-OWLiver®-test (GRSOWL) and magnetic resonance imaging (MRI) (GRSMRI), were derived by adding the risk alleles genotypes. Body composition, liver injury-related markers and dietary intake were also monitored. Overall, 23 SNPs were independently associated with the change in FLI, 16 SNPs with OWLiver®-test and 8 SNPs with MRI, which were specific for every diagnosis tool. After adjusting for gender, age and other related predictors (insulin resistance, inflammatory biomarkers and dietary intake at baseline) the calculated GRSFLI, GRSOWL and GRSMRI were major contributors of the improvement in hepatic status. Thus, fitted linear regression models showed a variance of 53% (adj. R2 = 0.53) in hepatic functionality (FLI), 16% (adj. R2 = 0.16) in lipidomic metabolism (OWLiver®-test) and 34% (adj. R2 = 0.34) in liver fat content (MRI). These results demonstrate that three different genetic scores can be useful for the personalized management of NAFLD, whose treatment must rely on specific dietary recommendations guided by the measurement of specific genetic biomarkers.
Collapse
Affiliation(s)
- Nuria Perez-Diaz-del-Campo
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
| | - Jose I. Riezu-Boj
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
| | - Bertha Araceli Marin-Alejandre
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
| | - J. Ignacio Monreal
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Clinical Chemistry Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - José Ignacio Herrero
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Liver Unit, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Department of Radiology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Fermín I. Milagro
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Josep A. Tur
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Research Group on Community Nutrition and Oxidative Stress, Balearic Islands Institute for Health Research (IDISBA), University of Balearic Islands-IUNICS, 07122 Palma, Spain
| | - Itziar Abete
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - M. Angeles Zulet
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - J. Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.P.-D.-d.-C.); (B.A.M.-A.); (F.I.M.); (M.A.Z.); (J.A.M.)
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain;
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain; (J.I.M.); (M.E.); (J.I.H.); (A.B.-B.)
- Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| |
Collapse
|
14
|
Yu L, Li Y, Zhang Q, Zhu L, Ding N, Zhang B, Zhang J, Liu W, Li S, Zhang J. Association between dietary essential amino acids intake and metabolic biomarkers: influence of obesity among Chinese children and adolescents. Amino Acids 2021; 53:635-644. [PMID: 33948732 DOI: 10.1007/s00726-021-02970-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/20/2021] [Indexed: 01/27/2023]
Abstract
Essential amino acids (EAAs) are involved in growth and development in children and adolescents. This study was aimed at exploring the relationship between dietary EAA intakes and metabolic biomarker, and the influence of obesity in children and adolescents. A total of 3566 subjects were analysed. Participators were classified according to weight status. Metabolic biomarkers were determined using standardized methods and conditions. Normal, overweight, and obesity statuses were defined according to the Working Group on Obesity in China (WGOC) BMI cutoff points based on age- and sex-specific screening criteria. In normal-weight group, blood uric acid was negatively correlated with dietary Ile, Leu, Lys, Phe, Thr, Val, and His, and zinc was negatively correlated with Ile, Leu, Lys, Phe, Thr, Val, His, Met, and Trp. In overweight group, TC was negatively correlated with Ile, Leu, Phe, Val, and His, and LDL-C was negatively correlated with Ile, Leu, Lys, Phe, Thr, Val, His, and Met, while TG was positively correlated with Leu, Lys, Phe, Thr, Val, and Met. In obesity group, hemoglobin was positively related to Ile, Leu, Lys, Phe, Thr, Val, His, and Trp, while vitamin D was positively correlated with His and Trp. The serum creatinine was negatively correlated with Ile, Leu, Phe, Val, His, and Met in normal-weight group, and positively correlated with Ile, Leu, Lys, Phe, Thr, Val, His, Met, Trp, His, and Trp in obesity group. Dietary amino acid score (AAS) and Leu intake were protective factors for obesity. The association between fasting blood glucose and EAAs intake was weak and labile. Metabolic biomarkers and EAA intakes were only related under certain weight status. The dietary AAS is positively correlated with HDL-C, LDL-C, serum creatinine, albumin, serum vitamin D, and zinc. The subtle relationship of EAAs and kidney function should be explored further. There is a complex relationship between EAAs and metabolic biomarkers, and overweight and obesity have a certain influence on this relationship.
Collapse
Affiliation(s)
- Lianlong Yu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China.,Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yanmo Li
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Qian Zhang
- Law Enforcement and Supervision Bureau of Shandong Provincial Health Commission, Jinan, Shandong, China
| | - Lichao Zhu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ning Ding
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bingyin Zhang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Junli Zhang
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Wenjie Liu
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Suyun Li
- Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Jian Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
15
|
Duan W, Zi T, Zhao Y, Shan R, Wu H, Sun H, Tian Z, Wang J, Liu L, Zhang Y, Li Y, Sun C. Extent reflecting overall dietary amino acids composition adherence to the human requirement amino acids pattern is associated with the development of type 2 diabetes. Aging (Albany NY) 2021; 13:10141-10157. [PMID: 33819181 PMCID: PMC8064212 DOI: 10.18632/aging.202777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
This study aimed to elucidate whether dietary amino acids (AAs) composition is associated with type 2 diabetes mellitus (T2DM) and to investigate how serum AAs profiles mediated this association. Two prospective cohorts of 1750 and 4024 adults were enrolled. Dietary AAs compositions index (AACI) was developed to reflect the overall quality of dietary AAs composition. Multivariate linear regression and logistic regression models were used to examine associations of AACI and T2DM. The AACI was associated with the incidence of T2DM with the relative risk and 95%CI from the bottom to the top tertiles being 1.00, 1.49 (0.88-2.51) and 2.27 (1.20-4.28), and 1.00, 1.58 (1.13-2.19) and 2.33 (1.56-3.47) in the two cohorts, respectively. The AACI was positively associated with serum valine, isoleucine, glutamic acid and phenylalanine, and it was negatively associated with serum glycine and histidine in both cohorts (P<0.01). Valine, glutamic acid and histidine consistently and partially mediated the association between the AACI and T2DM in the two cohorts, with total mediation effects of 33.4% and 54.6%, respectively. Dietary AAs composition was associated with the incidence of T2DM, meanwhile, the relationship was mediated by some degree of serum AAs. Future dietary strategies should focus on the improvement of the overall quality of dietary AAs compositions.
Collapse
Affiliation(s)
- Wei Duan
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Tianqi Zi
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yanhe Zhao
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Ruiqi Shan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Huanyu Wu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Hu Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhen Tian
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Jiemei Wang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Liyan Liu
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yuntao Zhang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Ying Li
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Martinez-Urbistondo D, Suarez del Villar R, Argemí J, Daimiel L, Ramos-López O, San-Cristobal R, Villares P, Martinez JA. Antioxidant Lifestyle, Co-Morbidities and Quality of Life Empowerment Concerning Liver Fibrosis. Antioxidants (Basel) 2020; 9:antiox9111125. [PMID: 33202851 PMCID: PMC7696605 DOI: 10.3390/antiox9111125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
The assessment of liver fibrosis has gained importance since the progression of non-alcoholic fatty liver disease (NAFLD). Indeed, the description of the association between undetected liver fibrosis and lifestyle in terms of antioxidant habits, comorbidity and quality of life (QoL) domains may help in the characterization of subjects with NAFLD. A cross-sectional evaluation of (n = 116) consecutive patients from an Internal Medicine ambulatory evaluation was performed. Demographic data, lifestyle, co-morbidity, QoL (according to the SF-36 index) and analytical values to calculate the oxidative related Fibrosis-4 (FIB-4) index were recorded. The association between FIB-4 and co-morbidity, antioxidant habits in QoL was assessed in univariate analysis (p < 0.05) and confirmed in multivariable analysis for 4 of the 8 SF-36 categories: Physical QoL, Physical role, Social QoL and General QoL, as well as in the Physical summary of SF-36 (p < 0.05). Finally, interactions were assessed between co-morbidity, FIB-4 and antioxidant habits showed in the prediction of mean SF-36 (p < 0.01). Liver fibrosis assessed by the oxidative surrogate index FIB-4 is associated with the interaction between antioxidant lifestyle, co-morbidity and physical, social and general aspects of QoL in apparent liver disease-free individuals, generating a proof of concept for health empowerment and personalized medicine.
Collapse
Affiliation(s)
- Diego Martinez-Urbistondo
- Internal Medicine Department, Hospital HM Sanchinarro, HM Hospitales, 28050 Madrid, Spain; (R.S.d.V.); (P.V.)
- Correspondence:
| | - Rafael Suarez del Villar
- Internal Medicine Department, Hospital HM Sanchinarro, HM Hospitales, 28050 Madrid, Spain; (R.S.d.V.); (P.V.)
| | - Josepmaria Argemí
- Liver Unit, Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada, 31008 Pamplona, Spain;
| | - Lidia Daimiel
- Precision Nutrition Program, Instituto Madrileño de Estudios Avanzados, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (L.D.); (R.S.-C.); (J.A.M.)
| | - Omar Ramos-López
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico;
| | - Rodrigo San-Cristobal
- Precision Nutrition Program, Instituto Madrileño de Estudios Avanzados, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (L.D.); (R.S.-C.); (J.A.M.)
| | - Paula Villares
- Internal Medicine Department, Hospital HM Sanchinarro, HM Hospitales, 28050 Madrid, Spain; (R.S.d.V.); (P.V.)
| | - Jose Alfredo Martinez
- Precision Nutrition Program, Instituto Madrileño de Estudios Avanzados, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (L.D.); (R.S.-C.); (J.A.M.)
- CIBERobn: Fisiopatología de la Obesidad y Nutrición, Instituto Carlos III, 28029 Madrid, Spain
| |
Collapse
|