1
|
Tang XL, Wysoczynski M, Gumpert AM, Solanki M, Li Y, Wu WJ, Zheng S, Ruble H, Li H, Stowers H, Zheng S, Ou Q, Tanveer N, Slezak J, Kalra DK, Bolli R. Intravenous infusions of mesenchymal stromal cells have cumulative beneficial effects in a porcine model of chronic ischaemic cardiomyopathy. Cardiovasc Res 2024; 120:1939-1952. [PMID: 39163570 PMCID: PMC11630033 DOI: 10.1093/cvr/cvae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
AIMS The development of cell therapy as a widely available clinical option for ischaemic cardiomyopathy is hindered by the invasive nature of current cell delivery methods. Furthermore, the rapid disappearance of cells after transplantation provides a cogent rationale for using repeated cell doses, which, however, has not been done thus far in clinical trials because it is not feasible with invasive approaches. The goal of this translational study was to test the therapeutic utility of the intravenous route for cell delivery. METHODS AND RESULTS Pigs with chronic ischaemic cardiomyopathy induced by myocardial infarction received one or three intravenous doses of allogeneic bone marrow mesenchymal stromal cells (MSCs) or placebo 35 days apart. Rigour guidelines, including blinding and randomization, were strictly followed. A comprehensive assessment of left ventricular (LV) function was conducted with three independent methods (echocardiography, magnetic resonance imaging, and haemodynamic studies). The results demonstrate that three doses of MSCs improved both load-dependent and independent indices of LV function and reduced myocardial hypertrophy and fibrosis; in contrast, one dose failed to produce most of these benefits. CONCLUSIONS To our knowledge, this is the first study to show that intravenous infusion of a cell product improves LV function and structure in a large animal model of chronic ischaemic cardiomyopathy and that repeated infusions are necessary to produce robust effects. This study, conducted in a clinically relevant model, supports a new therapeutic strategy based on repeated intravenous infusions of allogeneic MSCs and provides a foundation for a first-in-human trial testing this strategy in patients with chronic ischaemic cardiomyopathy.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Anna M Gumpert
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Mitesh Solanki
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Yan Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Wen-Jian Wu
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Shirong Zheng
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Halina Ruble
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Hong Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Heather Stowers
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Shengnan Zheng
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Qinghui Ou
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Nida Tanveer
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Jan Slezak
- Centre of Experimental Medicine, Institute for Heart Research, Bratislava, Slovakia
| | - Dinesh K Kalra
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY 40202
| |
Collapse
|
2
|
Meng D, Li Y, Chen Z, Guo J, Yang M, Peng Y. Exosomes Derived from Antler Mesenchymal Stem Cells Promote Wound Healing by miR-21-5p/STAT3 Axis. Int J Nanomedicine 2024; 19:11257-11273. [PMID: 39524924 PMCID: PMC11546281 DOI: 10.2147/ijn.s481044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Background Deer antlers, unique among mammalian organs for their ability to regenerate annually without scar formation, provide an innovative model for regenerative medicine. This study explored the potential of exosomes derived from antler mesenchymal stem cells (AMSC-Exo) to enhance skin wound healing. Methods We explored the proliferation, migration and angiogenesis effects of AMSC-Exo on HaCaT cells and HUVEC cells. To investigate the skin repairing effect of AMSC-Exo, we established a full-thickness skin injury mouse model. Then the skin thickness, the epidermis, collagen fibers, CD31 and collagen expressions were tested by H&E staining, Masson's trichrome staining and immunofluorescence experiments. MiRNA omics analysis was conducted to explore the mechanism of AMSC-Exo in skin repairing. Results AMSC-Exo stimulated the proliferation and migration of HaCaT cells, accelerated the migration and angiogenesis of HUVEC cells. In the mouse skin injury model, AMSC-Exo stimulated angiogenesis and regulated the extracellular matrix by facilitating the conversion of collagen type III to collagen type I, restoring epidermal thickness to normal state without aberrant hyperplasia. Notably, AMSC-Exo enhanced the quality of wound healing with increased vascularization and reduced scar formation. MiRNAs in AMSC-Exo, especially through the miR-21-5p/STAT3 signaling pathway, played a crucial role in these processes. Conclusion This study underscores the efficacy of AMSC-Exo in treating skin wounds, suggesting a new approach for enhancing skin repair and regeneration.
Collapse
Affiliation(s)
- Deshuang Meng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, People’s Republic of China
| | - Yingrui Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, People’s Republic of China
| | - Ze Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, People’s Republic of China
| | - Jia Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, People’s Republic of China
| | - Min Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, People’s Republic of China
| | - Yinghua Peng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, People’s Republic of China
| |
Collapse
|
3
|
Jiang X, Lian X, Wei K, Zhang J, Yu K, Li H, Ma H, Cai Y, Pang L. Maturation of pluripotent stem cell-derived cardiomyocytes: limitations and challenges from metabolic aspects. Stem Cell Res Ther 2024; 15:354. [PMID: 39380099 PMCID: PMC11462682 DOI: 10.1186/s13287-024-03961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Acute coronary syndromes, such as myocardial infarction (MI), lack effective therapies beyond heart transplantation, which is often hindered by donor scarcity and postoperative complications. Human induced pluripotent stem cells (hiPSCs) offer the possibility of myocardial regeneration by differentiating into cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-cardiomyocytes) exhibit fetal-like calcium flux and energy metabolism, which inhibits their engraftment. Several strategies have been explored to improve the therapeutic efficacy of hiPSC-cardiomyocytes, such as selectively enhancing energy substrate utilization and improving the transplantation environment. In this review, we have discussed the impact of altered mitochondrial biogenesis and metabolic switching on the maturation of hiPSC-cardiomyocytes. Additionally, we have discussed the limitations inherent in current methodologies for assessing metabolism in hiPSC-cardiomyocytes, and the challenges in achieving sufficient metabolic flexibility akin to that in the healthy adult heart.
Collapse
Affiliation(s)
- Xi Jiang
- Health management center, the First Hospital of Jilin University, Changchun, China
| | - Xin Lian
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Kun Wei
- Department of Rehabilitation, The Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jie Zhang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Kaihua Yu
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haoming Li
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haichun Ma
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yin Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Pang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
4
|
Watanabe T, Hatayama N, Guo M, Yuhara S, Shinoka T. Bridging the Gap: Advances and Challenges in Heart Regeneration from In Vitro to In Vivo Applications. Bioengineering (Basel) 2024; 11:954. [PMID: 39451329 PMCID: PMC11505552 DOI: 10.3390/bioengineering11100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiovascular diseases, particularly ischemic heart disease, area leading cause of morbidity and mortality worldwide. Myocardial infarction (MI) results in extensive cardiomyocyte loss, inflammation, extracellular matrix (ECM) degradation, fibrosis, and ultimately, adverse ventricular remodeling associated with impaired heart function. While heart transplantation is the only definitive treatment for end-stage heart failure, donor organ scarcity necessitates the development of alternative therapies. In such cases, methods to promote endogenous tissue regeneration by stimulating growth factor secretion and vascular formation alone are insufficient. Techniques for the creation and transplantation of viable tissues are therefore highly sought after. Approaches to cardiac regeneration range from stem cell injections to epicardial patches and interposition grafts. While numerous preclinical trials have demonstrated the positive effects of tissue transplantation on vasculogenesis and functional recovery, long-term graft survival in large animal models is rare. Adequate vascularization is essential for the survival of transplanted tissues, yet pre-formed microvasculature often fails to achieve sufficient engraftment. Recent studies report success in enhancing cell survival rates in vitro via tissue perfusion. However, the transition of these techniques to in vivo models remains challenging, especially in large animals. This review aims to highlight the evolution of cardiac patch and stem cell therapies for the treatment of cardiovascular disease, identify discrepancies between in vitro and in vivo studies, and discuss critical factors for establishing effective myocardial tissue regeneration in vivo.
Collapse
Affiliation(s)
- Tatsuya Watanabe
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Naoyuki Hatayama
- Department of Anatomy, Aichi Medical University, Nagakute 480-1195, Japan;
| | - Marissa Guo
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Satoshi Yuhara
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Toshiharu Shinoka
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
5
|
Abouzid MR, Umer AM, Jha SK, Akbar UA, Khraisat O, Saleh A, Mohamed K, Esteghamati S, Kamel I. Stem Cell Therapy for Myocardial Infarction and Heart Failure: A Comprehensive Systematic Review and Critical Analysis. Cureus 2024; 16:e59474. [PMID: 38832190 PMCID: PMC11145929 DOI: 10.7759/cureus.59474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 06/05/2024] Open
Abstract
In exploring therapeutic options for ischemic heart disease (IHD) and heart failure, cell-based cardiac repair has gained prominence. This systematic review delves into the current state of knowledge surrounding cell-based therapies for cardiac repair. Employing a comprehensive search across relevant databases, the study identifies 35 included studies with diverse cell types and methodologies. Encouragingly, these findings reveal the promise of cell-based therapies in cardiac repair, demonstrating significant enhancements in left ventricular ejection fraction (LVEF) across the studies. Mechanisms of action involve growth factors that stimulate angiogenesis, differentiation, and the survival of transplanted cells. Despite these positive outcomes, challenges persist, including low engraftment rates, limitations in cell differentiation, and variations in clinical reproducibility. The optimal dosage and frequency of cell administration remain subjects of debate, with potential benefits from repeated dosing. Additionally, the choice between autologous and allogeneic stem cell transplantation poses a critical decision. This systematic review underscores the potential of cell-based therapies for cardiac repair, bearing implications for innovative treatments in heart diseases. However, further research is imperative to optimize cell type selection, delivery techniques, and long-term efficacy, fostering a more comprehensive understanding of cell-based cardiac repair.
Collapse
Affiliation(s)
- Mohamed R Abouzid
- Internal Medicine, Baptist Hospitals of Southeast Texas, Beaumont, USA
| | - Ahmed Muaaz Umer
- Internal Medicine Residency, Camden Clark Medical Center, Parkersburg, USA
| | - Suman Kumar Jha
- Internal Medicine, Sheer Memorial Adventist Hospital, Banepa, NPL
| | - Usman A Akbar
- Internal Medicine, Camden Clark Medical Center, Parkersburg, USA
| | - Own Khraisat
- Internal Medicine, King Hussein Medical City, Amman, JOR
| | - Amr Saleh
- Cardiovascular Medicine, Yale School of Medicine, New Haven, USA
| | - Kareem Mohamed
- Internal Medicine, University of Missouri Kansas City, Kansas City, USA
| | | | - Ibrahim Kamel
- Internal Medicine, Steward Carney Hospital, Boston, USA
| |
Collapse
|
6
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
7
|
Yang GD, Ma DS, Ma CY, Bai Y. Research Progress on Cardiac Tissue Construction of Mesenchymal Stem Cells for Myocardial Infarction. Curr Stem Cell Res Ther 2024; 19:942-958. [PMID: 37612870 DOI: 10.2174/1574888x18666230823091017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Heart failure is still the main complication affecting the prognosis of acute myocardial infarction (AMI), and mesenchymal stem cells (MSCs) are an effective treatment to replace necrotic myocardium and improve cardiac functioning. However, the transplant survival rate of MSCs still presents challenges. In this review, the biological characteristics of MSCs, the progress of mechanism research in the treatment of myocardial infarction, and the advances in improving the transplant survival rate of MSCs in the replacement of necrotic myocardial infarction are systematically described. From a basic to advanced clinical research, MSC transplants have evolved from a pure injection, an exosome injection, the genetic modification of MSCs prior to injection to the cardiac tissue engineering of MSC patch grafting. This study shows that MSCs have wide clinical applications in the treatment of AMI, suggesting improved myocardial tissue creation. A broader clinical application prospect will be explored and developed to improve the survival rate of MSC transplants and myocardial vascularization.
Collapse
Affiliation(s)
- Guo-Dong Yang
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Da-Shi Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Ye Ma
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yang Bai
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
8
|
Chepeleva EV. Cell Therapy in the Treatment of Coronary Heart Disease. Int J Mol Sci 2023; 24:16844. [PMID: 38069167 PMCID: PMC10706847 DOI: 10.3390/ijms242316844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Heart failure is a leading cause of death in patients who have suffered a myocardial infarction. Despite the timely use of modern reperfusion therapies such as thrombolysis, surgical revascularization and balloon angioplasty, they are sometimes unable to prevent the development of significant areas of myocardial damage and subsequent heart failure. Research efforts have focused on developing strategies to improve the functional status of myocardial injury areas. Consequently, the restoration of cardiac function using cell therapy is an exciting prospect. This review describes the characteristics of various cell types relevant to cellular cardiomyoplasty and presents findings from experimental and clinical studies investigating cell therapy for coronary heart disease. Cell delivery methods, optimal dosage and potential treatment mechanisms are discussed.
Collapse
Affiliation(s)
- Elena V. Chepeleva
- Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia;
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, 2, Timakova Str., 630060 Novosibirsk, Russia
| |
Collapse
|
9
|
Bernardini C, Mantia DL, Salaroli R, Ventrella D, Elmi A, Zannoni A, Forni M. Isolation of Vascular Wall Mesenchymal Stem Cells from the Thoracic Aorta of Adult Göttingen Minipigs: A New Protocol for the Simultaneous Endothelial Cell Collection. Animals (Basel) 2023; 13:2601. [PMID: 37627392 PMCID: PMC10451532 DOI: 10.3390/ani13162601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Two main classes of perivascular multipotent populations have been described: the microvascular pericytes and the vascular wall mesenchymal stem cells (VW-MSCs). VW-MSCs are isolated from large vessels in many species and they participate in vascular remodeling together with other cellular components such as endothelial cells. Considering that the Göttingen Minipigs are widely used in Europe as a translational model in the field of cardiovascular diseases, the aim of the present research was to isolate VW-MSCs from the adult aorta of Göttingen Minipigs while preserving and also collecting endothelial cells. The results obtained in the present research demonstrated that this new protocol allows us to obtain a pure population of VW-MSCs and endothelial cells. VW-MSCs from Göttingen Minipigs responded fully to the MSC minima international criteria, being positive to CD105, CD90, and CD44 and negative to CD45 and CD34. Moreover, VW-MSCs presented a differentiative potential towards osteogenic, chondrogenic, and adipogenic lineages. Overall, the present protocol, preserving the viability and phenotypic features of the two isolated populations, opens future possibilities of using minipig VW-MSCs and endothelial cells in in vitro vascular remodeling studies.
Collapse
Affiliation(s)
- Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
| | - Debora La Mantia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Roberta Salaroli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Alberto Elmi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy; (C.B.); (R.S.); (D.V.); (A.E.); (A.Z.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
| | - Monica Forni
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (CIRI-SDV), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy;
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
10
|
Oh GC, Choi YJ, Park BW, Ban K, Park HJ. Are There Hopeful Therapeutic Strategies to Regenerate the Infarcted Hearts? Korean Circ J 2023; 53:367-386. [PMID: 37271744 DOI: 10.4070/kcj.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/26/2023] [Indexed: 06/06/2023] Open
Abstract
Ischemic heart disease remains the primary cause of morbidity and mortality worldwide. Despite significant advancements in pharmacological and revascularization techniques in the late 20th century, heart failure prevalence after myocardial infarction has gradually increased over the last 2 decades. After ischemic injury, pathological remodeling results in cardiomyocytes (CMs) loss and fibrosis, which leads to impaired heart function. Unfortunately, there are no clinical therapies to regenerate CMs to date, and the adult heart's limited turnover rate of CMs hinders its ability to self-regenerate. In this review, we present novel therapeutic strategies to regenerate injured myocardium, including (1) reconstruction of cardiac niche microenvironment, (2) recruitment of functional CMs by promoting their proliferation or differentiation, and (3) organizing 3-dimensional tissue construct beyond the CMs. Additionally, we highlight recent mechanistic insights that govern these strategies and identify current challenges in translating these approaches to human patients.
Collapse
Affiliation(s)
- Gyu-Chul Oh
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bong-Woo Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| | - Hun-Jun Park
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
11
|
Bonner BP, Yurista SR, Coll‐Font J, Chen S, Eder RA, Foster AN, Nguyen KD, Caravan P, Gale EM, Nguyen C. Contrast-Enhanced Cardiac Magnetic Resonance Imaging With a Manganese-Based Alternative to Gadolinium for Tissue Characterization of Acute Myocardial Infarction. J Am Heart Assoc 2023; 12:e026923. [PMID: 37042259 PMCID: PMC10227253 DOI: 10.1161/jaha.122.026923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/05/2023] [Indexed: 04/13/2023]
Abstract
Background Late gadolinium enhancement cardiac magnetic resonance imaging is an effective and reproducible method for characterizing myocardial infarction. However, gadolinium-based contrast agents are contraindicated in patients with acute and chronic renal insufficiency. In addition, several recent studies have noted tissue deposition of free gadolinium in patients who have undergone serial contrast-enhanced magnetic resonance imaging. There is a clinical need for alternative forms of magnetic resonance imaging contrast agents that are acceptable in the setting of renal insufficiency. Methods and Results Three days after 80 minutes of ischemia/reperfusion of the left anterior descending coronary artery, cardiac magnetic resonance imaging was performed to assess myocardial lesion burden using both contrast agents. Late gadolinium enhancement cardiac magnetic resonance imaging was examined 10 and 15 minutes after contrast injection. Contrast agents were administered in alternating manner with a 2- to 3-hour washout period between contrast agent injections. Lesion evaluation and image processing were performed using Segment Medviso software. Mean infarct size and transmurality, measured using RVP-001, were not different compared with those measured using late gadolinium enhancement images. Bland-Altman analysis demonstrated a nominal bias of 0.13 mL (<1% of average total lesion volume) for RVP-001 in terms of gross infarct size measurement. Conclusions The experimental manganese-based contrast agent RVP-001 appears to be an effective agent for assessment of myocardial infarction location, size, and transmurality, and it may be useful as an alternative to gadolinium-based agents.
Collapse
Affiliation(s)
- Benjamin P. Bonner
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
- Louisiana State University Health Sciences CenterNew OrleansLA
| | - Salva R. Yurista
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
- Harvard Medical SchoolBostonMA
| | - Jaume Coll‐Font
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
- Harvard Medical SchoolBostonMA
| | - Shi Chen
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
| | - Robert A. Eder
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
| | - Anna N. Foster
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
| | - Khoi D. Nguyen
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
- Harvard Medical SchoolBostonMA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
- Harvard Medical SchoolBostonMA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
- Harvard Medical SchoolBostonMA
| | - Christopher Nguyen
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
- Harvard Medical SchoolBostonMA
- Division of Health Science TechnologyHarvard–Massachusetts Institute of TechnologyCambridgeMA
- Cardiovascular Innovation Research CenterHeart, Vascular, and Thoracic Institute, Cleveland ClinicClevelandOH
| |
Collapse
|
12
|
Yu Y, Tham SK, Roslan FF, Shaharuddin B, Yong YK, Guo Z, Tan JJ. Large animal models for cardiac remuscularization studies: A methodological review. Front Cardiovasc Med 2023; 10:1011880. [PMID: 37008331 PMCID: PMC10050756 DOI: 10.3389/fcvm.2023.1011880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
Myocardial infarction is the most common cause of heart failure, one of the most fatal non-communicable diseases worldwide. The disease could potentially be treated if the dead, ischemic heart tissues are regenerated and replaced with viable and functional cardiomyocytes. Pluripotent stem cells have proven the ability to derive specific and functional cardiomyocytes in large quantities for therapy. To test the remuscularization hypothesis, the strategy to model the disease in animals must resemble the pathophysiological conditions of myocardial infarction as in humans, to enable thorough testing of the safety and efficacy of the cardiomyocyte therapy before embarking on human trials. Rigorous experiments and in vivo findings using large mammals are increasingly important to simulate clinical reality and increase translatability into clinical practice. Hence, this review focus on large animal models which have been used in cardiac remuscularization studies using cardiomyocytes derived from human pluripotent stem cells. The commonly used methodologies in developing the myocardial infarction model, the choice of animal species, the pre-operative antiarrhythmics prophylaxis, the choice of perioperative sedative, anaesthesia and analgesia, the immunosuppressive strategies in allowing xenotransplantation, the source of cells, number and delivery method are discussed.
Collapse
Affiliation(s)
- Yuexin Yu
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, China
| | | | - Fatin Fazrina Roslan
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Bakiah Shaharuddin
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, China
- Correspondence: Jun Jie Tan Zhikun Guo
| | - Jun Jie Tan
- USM-ALPS Cardiac Research Laboratory, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- Correspondence: Jun Jie Tan Zhikun Guo
| |
Collapse
|
13
|
Endothelial Progenitor Cell Therapy for Fracture Healing: A Dose-Response Study in a Rat Femoral Defect Model. J Tissue Eng Regen Med 2023. [DOI: 10.1155/2023/8105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Endothelial progenitor cell (EPC) therapy has been successfully used in orthopaedic preclinical models to heal bone defects. However, no previous studies have investigated the dose-response relationship between EPC therapy and bone healing. This study aimed to assess the effect of different EPC doses on bone healing in a rat model to define an optimal dose. Five-millimeter segmental defects were created in the right femora of Fischer 344 rats, followed by stabilization with a miniplate and screws. Rats were assigned to one of six groups (control, 0.1 M, 0.5 M, 1.0 M, 2.0 M, and 4.0 M; n = 6), receiving 0, 1 × 105, 5 × 105, 1 × 106, 2 × 106, and 4 × 106 EPCs, respectively, delivered into the defect on a gelatin scaffold. Radiographs were taken every two weeks until the animals were euthanized 10 weeks after surgery. The operated femora were then evaluated using micro-computed tomography and biomechanical testing. Overall, the groups that received higher doses of EPCs (0.5 M, 1.0 M, 2.0 M, and 4.0 M) reached better outcomes. At 10 weeks, full radiographic union was observed in 67% of animals in the 0.5 M group, 83% of animals in the 1.0 M group, and 100% of the animals in the 2.0 M and 4.0 M groups, but none in the control and 0.1 M groups. The 2.0 M group also displayed the strongest biomechanical properties, which significantly improved relative to the control and 0.1 M groups. In summary, this study defined a dose-response relationship between EPC therapy and bone healing, with 2 × 106 EPCs being the optimal dose in this model. Our findings emphasize the importance of dosing considerations in the application of cell therapies aimed at tissue regeneration and will help guide future investigations and clinical translation of EPC therapy.
Collapse
|
14
|
Healing the Broken Hearts: A Glimpse on Next Generation Therapeutics. HEARTS 2022. [DOI: 10.3390/hearts3040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, accounting for 32% of deaths globally and thus representing almost 18 million people according to WHO. Myocardial infarction, the most prevalent adult cardiovascular pathology, affects over half a million people in the USA according to the last records of the AHA. However, not only adult cardiovascular diseases are the most frequent diseases in adulthood, but congenital heart diseases also affect 0.8–1.2% of all births, accounting for mild developmental defects such as atrial septal defects to life-threatening pathologies such as tetralogy of Fallot or permanent common trunk that, if not surgically corrected in early postnatal days, they are incompatible with life. Therefore, both congenital and adult cardiovascular diseases represent an enormous social and economic burden that invariably demands continuous efforts to understand the causes of such cardiovascular defects and develop innovative strategies to correct and/or palliate them. In the next paragraphs, we aim to briefly account for our current understanding of the cellular bases of both congenital and adult cardiovascular diseases, providing a perspective of the plausible lines of action that might eventually result in increasing our understanding of cardiovascular diseases. This analysis will come out with the building blocks for designing novel and innovative therapeutic approaches to healing the broken hearts.
Collapse
|
15
|
Liao R, Li Z, Wang Q, Lin H, Sun H. Revascularization of chronic total occlusion coronary artery and cardiac regeneration. Front Cardiovasc Med 2022; 9:940808. [PMID: 36093131 PMCID: PMC9455703 DOI: 10.3389/fcvm.2022.940808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Coronary chronic total occlusion (CTO) contributes to the progression of heart failure in patients with ischemic cardiomyopathy. Randomized controlled trials demonstrated that percutaneous coronary intervention (PCI) for CTO significantly improves angina symptoms and quality of life but fails to reduce clinical events compared with optimal medical therapy. Even so, intervening physicians strongly support CTO-PCI. Cardiac regeneration therapy after CTO-PCI should be a promising approach to improving the prognosis of ischemic cardiomyopathy. However, the relationship between CTO revascularization and cardiac regeneration has rarely been studied, and experimental studies on cardiac regeneration usually employ rodent models with permanent ligation of the coronary artery rather than reopening of the occlusive artery. Limited early-stage clinical trials demonstrated that cell therapy for cardiac regeneration in ischemic cardiomyopathy reduces scar size, reverses cardiac remodeling, and promotes angiogenesis. This review focuses on the status quo of CTO-PCI in ischemic cardiomyopathy and the clinical prospect of cardiac regeneration in this setting.
Collapse
Affiliation(s)
- Ruoxi Liao
- Department of Clinical Medicine, Dalian Medical University, Dalian, China
| | - Zhihong Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiancheng Wang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hairuo Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Hairuo Lin, ,
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
- Huijun Sun,
| |
Collapse
|
16
|
Xiong Y, Tang R, Xu J, Jiang W, Gong Z, Zhang L, Ning Y, Huang P, Xu J, Chen G, Li X, Hu M, Xu J, Wu C, Jin C, Li X, Qian H, Yang Y. Tongxinluo-pretreated mesenchymal stem cells facilitate cardiac repair via exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway. Stem Cell Res Ther 2022; 13:289. [PMID: 35799283 PMCID: PMC9264662 DOI: 10.1186/s13287-022-02969-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Background Bone marrow cells (BMCs), especially mesenchymal stem cells (MSCs), have shown attractive application prospects in acute myocardial infarction (AMI). However, the weak efficacy becomes their main limitation in clinical translation. Based on the anti-inflammation and anti-apoptosis effects of a Chinese medicine-Tongxinluo (TXL), we aimed to explore the effects of TXL-pretreated MSCs (MSCsTXL) in enhancing cardiac repair and further investigated the underlying mechanism. Methods MSCsTXL or MSCs and the derived exosomes (MSCsTXL-exo or MSCs-exo) were collected and injected into the infarct zone of rat hearts. In vivo, the anti-apoptotic and anti-inflammation effects, and cardiac functional and histological recovery were evaluated. In vitro, the apoptosis was evaluated by western blotting and flow cytometry. miRNA sequencing was utilized to identify the significant differentially expressed miRNAs between MSCsTXL-exo and MSCs-exo, and the miRNA mimics and inhibitors were applied to explore the specific mechanism. Results Compared to MSCs, MSCsTXL enhanced cardiac repair with reduced cardiomyocytes apoptosis and inflammation at the early stage of AMI and significantly improved left ventricular ejection fraction (LVEF) with reduced infarct size in an exosome-dependent way. Similarly, MSCsTXL-exo exerted superior therapeutic effects in anti-apoptosis and anti-inflammation, as well as improving LVEF and reducing infarct size compared to MSCs-exo. Further exosomal miRNA analysis demonstrated that miR-146a-5p was the candidate effector of the superior effects of MSCsTXL-exo. Besides, miR-146a-5p targeted and decreased IRAK1, which inhibited the nuclear translocation of NF-κB p65 thus protecting H9C2 cells from hypoxia injury. Conclusions This study suggested that MSCsTXL markedly facilitated cardiac repair via a new mechanism of the exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway, which has great potential for clinical translation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02969-y.
Collapse
Affiliation(s)
- Yuyan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Ruijie Tang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Junyan Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Wenyang Jiang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Zhaoting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Lili Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Yu Ning
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Peisen Huang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Jun Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Guihao Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Xiaosong Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Mengjin Hu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Chunxiao Wu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Chen Jin
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Xiangdong Li
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Haiyan Qian
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 10037, China.
| |
Collapse
|
17
|
Tracy EP, Stielberg V, Rowe G, Benson D, Nunes SS, Hoying JB, Murfee WL, LeBlanc AJ. State of the field: cellular and exosomal therapeutic approaches in vascular regeneration. Am J Physiol Heart Circ Physiol 2022; 322:H647-H680. [PMID: 35179976 PMCID: PMC8957327 DOI: 10.1152/ajpheart.00674.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/19/2023]
Abstract
Pathologies of the vasculature including the microvasculature are often complex in nature, leading to loss of physiological homeostatic regulation of patency and adequate perfusion to match tissue metabolic demands. Microvascular dysfunction is a key underlying element in the majority of pathologies of failing organs and tissues. Contributing pathological factors to this dysfunction include oxidative stress, mitochondrial dysfunction, endoplasmic reticular (ER) stress, endothelial dysfunction, loss of angiogenic potential and vascular density, and greater senescence and apoptosis. In many clinical settings, current pharmacologic strategies use a single or narrow targeted approach to address symptoms of pathology rather than a comprehensive and multifaceted approach to address their root cause. To address this, efforts have been heavily focused on cellular therapies and cell-free therapies (e.g., exosomes) that can tackle the multifaceted etiology of vascular and microvascular dysfunction. In this review, we discuss 1) the state of the field in terms of common therapeutic cell population isolation techniques, their unique characteristics, and their advantages and disadvantages, 2) common molecular mechanisms of cell therapies to restore vascularization and/or vascular function, 3) arguments for and against allogeneic versus autologous applications of cell therapies, 4) emerging strategies to optimize and enhance cell therapies through priming and preconditioning, and, finally, 5) emerging strategies to bolster therapeutic effect. Relevant and recent clinical and animal studies using cellular therapies to restore vascular function or pathologic tissue health by way of improved vascularization are highlighted throughout these sections.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Virginia Stielberg
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Daniel Benson
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
| | - James B Hoying
- Advanced Solutions Life Sciences, Manchester, New Hampshire
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Amanda Jo LeBlanc
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
18
|
Tang XL, Wysoczynski M, Gumpert AM, Li Y, Wu WJ, Li H, Stowers H, Bolli R. Effect of intravenous cell therapy in rats with old myocardial infarction. Mol Cell Biochem 2022; 477:431-444. [PMID: 34783963 PMCID: PMC8896398 DOI: 10.1007/s11010-021-04283-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Mounting evidence shows that cell therapy provides therapeutic benefits in experimental and clinical settings of chronic heart failure. However, direct cardiac delivery of cells via transendocardial injection is logistically complex, expensive, entails risks, and is not amenable to multiple dosing. Intravenous administration would be a more convenient and clinically applicable route for cell therapy. Thus, we determined whether intravenous infusion of three widely used cell types improves left ventricular (LV) function and structure and compared their efficacy. Rats with a 30-day-old myocardial infarction (MI) received intravenous infusion of vehicle (PBS) or 1 of 3 types of cells: bone marrow mesenchymal stromal cells (MSCs), cardiac mesenchymal cells (CMCs), and c-kit-positive cardiac cells (CPCs), at a dose of 12 × 106 cells. Rats were followed for 35 days after treatment to determine LV functional status by serial echocardiography and hemodynamic studies. Blood samples were collected for Hemavet analysis to determine inflammatory cell profile. LV ejection fraction (EF) dropped ≥ 20 points in all hearts at 30 days after MI and deteriorated further at 35-day follow-up in the vehicle-treated group. In contrast, deterioration of EF was halted in rats that received MSCs and attenuated in those that received CMCs or CPCs. None of the 3 types of cells significantly altered scar size, myocardial content of collagen or CD45-positive cells, or Hemavet profile. This study demonstrates that a single intravenous administration of 3 types of cells in rats with chronic ischemic cardiomyopathy is effective in attenuating the progressive deterioration in LV function. The extent of LV functional improvement was greatest with CPCs, intermediate with CMCs, and least with MSCs.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Anna M Gumpert
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Yan Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Wen-Jian Wu
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Hong Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Heather Stowers
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA.
| |
Collapse
|
19
|
Shin HS, Shin HH, Shudo Y. Current Status and Limitations of Myocardial Infarction Large Animal Models in Cardiovascular Translational Research. Front Bioeng Biotechnol 2021; 9:673683. [PMID: 33996785 PMCID: PMC8116580 DOI: 10.3389/fbioe.2021.673683] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Establishing an appropriate disease model that mimics the complexities of human cardiovascular disease is critical for evaluating the clinical efficacy and translation success. The multifaceted and complex nature of human ischemic heart disease is difficult to recapitulate in animal models. This difficulty is often compounded by the methodological biases introduced in animal studies. Considerable variations across animal species, modifications made in surgical procedures, and inadequate randomization, sample size calculation, blinding, and heterogeneity of animal models used often produce preclinical cardiovascular research that looks promising but is irreproducible and not translatable. Moreover, many published papers are not transparent enough for other investigators to verify the feasibility of the studies and the therapeutics' efficacy. Unfortunately, successful translation of these innovative therapies in such a closed and biased research is difficult. This review discusses some challenges in current preclinical myocardial infarction research, focusing on the following three major inhibitors for its successful translation: Inappropriate disease model, frequent modifications to surgical procedures, and insufficient reporting transparency.
Collapse
Affiliation(s)
- Hye Sook Shin
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Heather Hyeyoon Shin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
20
|
Singh P, O'Toole TE, Conklin DJ, Hill BG, Haberzettl P. Endothelial progenitor cells as critical mediators of environmental air pollution-induced cardiovascular toxicity. Am J Physiol Heart Circ Physiol 2021; 320:H1440-H1455. [PMID: 33606580 PMCID: PMC8260385 DOI: 10.1152/ajpheart.00804.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/26/2021] [Accepted: 02/14/2021] [Indexed: 01/15/2023]
Abstract
Environmental air pollution exposure is a leading cause of death worldwide, and with increasing industrialization and urbanization, its disease burden is expected to rise even further. The majority of air pollution exposure-associated deaths are linked to cardiovascular disease (CVD). Although ample research demonstrates a strong correlation between air pollution exposure and CVD risk, the mechanisms by which inhalation of polluted air affects cardiovascular health are not completely understood. Inhalation of environmental air pollution has been associated with endothelial dysfunction, which suggests that air pollution exposure impacts CVD health by inducing endothelial injury. Interestingly, recent studies demonstrate that air pollution exposure affects the number and function of endothelial progenitor cells (EPCs), subpopulations of bone marrow-derived proangiogenic cells that have been shown to play an essential role in maintaining cardiovascular health. In line with their beneficial function, chronically low levels of circulating EPCs and EPC dysfunction (e.g., in diabetic patients) have been associated with vascular dysfunction, poor cardiovascular health, and increases in the severity of cardiovascular outcomes. In contrast, treatments that improve EPC number and function (e.g., exercise) have been found to attenuate cardiovascular dysfunction. Considering the critical, nonredundant role of EPCs in maintaining vascular health, air pollution exposure-induced impairments in EPC number and function could lead to endothelial dysfunction, consequently increasing the risk for CVD. This review article covers novel aspects and new mechanistic insights of the adverse effects of air pollution exposure on cardiovascular health associated with changes in EPC number and function.
Collapse
Affiliation(s)
- Parul Singh
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Timothy E O'Toole
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Daniel J Conklin
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Bradford G Hill
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Petra Haberzettl
- Division of Environmental Medicine, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
21
|
Wang J, Chen Z, Dai Q, Zhao J, Wei Z, Hu J, Sun X, Xie J, Xu B. Intravenously delivered mesenchymal stem cells prevent microvascular obstruction formation after myocardial ischemia/reperfusion injury. Basic Res Cardiol 2020; 115:40. [PMID: 32451935 DOI: 10.1007/s00395-020-0800-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022]
Abstract
Microvascular obstruction (MVO) after primary percutaneous coronary intervention (pPCI) is identified as an independent risk factor for poor prognosis in patients with acute myocardial infarction (AMI). The inflammatory response induced by ischemia and reperfusion (I/R) injury is considered one of the main mechanisms of MVO. Mesenchymal stem cells (MSCs) are a unique stromal cell type that confers an immunomodulatory effect in cardiac disease. The present study aimed to investigate whether immediate intravenous delivery of MSCs could be used as a potential therapeutic method to attenuate MVO formation. A cardiac catheterization-induced porcine model of myocardial I/R injury was established, and allograft MSCs were immediately delivered intravenously. Cardiac magnetic resonance (CMR) imaging was performed on days 2 and 7 after the operation to determine the infarct area, MVO, and cardiac function. The pigs with allograft MSCs showed decreased MVO and infarct size, as well as an improved left ventricular ejection fraction (LVEF). Histological analysis revealed decreased myocyte area, fibrosis, and inflammatory cell infiltration in the peri-infarct zone of pigs with allograft MSCs. Moreover, the concentrations of interleukin-1β (IL-1β), interleukin-6 (IL-6) and C-reactive protein (CRP) in the serum were reduced in the allograft MSC group compared to the control group. Flow cytometry indicated decreased natural killer (NK) cells in the peripheral blood and ischemic heart tissue in the pigs with allograft MSCs. In summary, allograft MSCs delivered intravenously and immediately after myocardial I/R injury can attenuate MVO formation in a porcine model through a decline in the number of NK cells in the myocardium.
Collapse
Affiliation(s)
- Junzhuo Wang
- Department of Cardiology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Ziwei Chen
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Qing Dai
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jinxuan Zhao
- Department of Cardiology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Zilun Wei
- Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jiaxin Hu
- Department of Cardiology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Xuan Sun
- Department of Cardiology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Jun Xie
- Department of Cardiology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China.
| | - Biao Xu
- Department of Cardiology, Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, China. .,Department of Cardiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
22
|
Nasseri Maleki S, Aboutaleb N, Nazarinia D, Allahverdi Beik S, Qolamian A, Nobakht M. Conditioned medium obtained from human amniotic membrane-derived mesenchymal stem cell attenuates heart failure injury in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1253-1258. [PMID: 32128088 PMCID: PMC7038431 DOI: 10.22038/ijbms.2019.36617.8722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/05/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Heart failure (HF) is one of the leading causes of death worldwide. Due to beneficial effects of stem cells, paracrine secretion of them has recently been used by researchers. The purpose of this study was to investigate the effects of intravenous injection (IV) of conditioned medium (CM) of human amniotic membrane-derived mesenchymal stem cell (MSC-CM) on HF. MATERIALS AND METHODS Male Wistar rats (n=35, 180 g) were randomly divided into five groups: sham, HF, HF+MSC-CM, HF+culture medium and HF+phosphate-buffered saline (PBS). To induce HF, isoproterenol (170 mg/kg/d) was injected subcutaneously for 4 consecutive days. After 28 days, induction of HF was evaluated by echocardiography. A day after echocardiography, 50 μg culture medium/5 ml PBS in HF+culture medium group, 50 μg MSC-CM/5 ml PBS in HF+MSC-CM group and 5 ml PBS in HF+PBS group were injected two times for 4 successive days. The echocardiography was performed 4 weeks after the last injection of isoproterenol. To evaluate the fibrosis, morphology, and cardiac function, Trichrome Masson's staining, Hematoxylin and Eosin staining and echocardiography were performed, respectively. RESULTS CM significantly increased fractional shortening and ejection fraction, and also significantly decreased apoptotic nuclear condensation. Moreover, significant decreased level of fibrosis and increased level of angiogenesis was observed in the treatment group (P<0.05). CONCLUSION Our results indicated that IV injection of CM has therapeutic effects on HF by reducing fibrosis and preventing the progression of failure due to its paracrine effects.
Collapse
Affiliation(s)
- Solmaz Nasseri Maleki
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Donya Nazarinia
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Allahverdi Beik
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Asadollah Qolamian
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maliheh Nobakht
- Department of Histology and Neuroscience, Anti-microbial Resistance Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Tompkins BA, Balkan W, Winkler J, Gyöngyösi M, Goliasch G, Fernández-Avilés F, Hare JM. Preclinical Studies of Stem Cell Therapy for Heart Disease. Circ Res 2019; 122:1006-1020. [PMID: 29599277 DOI: 10.1161/circresaha.117.312486] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As part of the TACTICS (Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes) series to enhance regenerative medicine, here, we discuss the role of preclinical studies designed to advance stem cell therapies for cardiovascular disease. The quality of this research has improved over the past 10 to 15 years and overall indicates that cell therapy promotes cardiac repair. However, many issues remain, including inability to provide complete cardiac recovery. Recent studies question the need for intact cells suggesting that harnessing what the cells release is the solution. Our contribution describes important breakthroughs and current directions in a cell-based approach to alleviating cardiovascular disease.
Collapse
Affiliation(s)
- Bryon A Tompkins
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Wayne Balkan
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Johannes Winkler
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Mariann Gyöngyösi
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Georg Goliasch
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Francisco Fernández-Avilés
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.)
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (B.A.T., W.B., J.M.H.), Department of Surgery (B.A.T.), and Department of Medicine (W.B., J.M.H.), University of Miami Miller School of Medicine, FL; Department of Cardiology, Medical University of Vienna, Austria (J.W., M.G., G.G.); Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain (F.F.-A.); and CIBERCV, ISCIII, Madrid, Spain (F.F.-A.).
| |
Collapse
|
24
|
Wysoczynski M, Khan A, Bolli R. New Paradigms in Cell Therapy: Repeated Dosing, Intravenous Delivery, Immunomodulatory Actions, and New Cell Types. Circ Res 2018; 123:138-158. [PMID: 29976684 PMCID: PMC6050028 DOI: 10.1161/circresaha.118.313251] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Perhaps the most important advance in the field of cell therapy for heart disease has been the recognition that all stem/progenitor cells (both adult and embryonic) fail to engraft in the heart to a significant extent and thus work via paracrine mechanisms. This fundamental advance has led to 4 new paradigms that are discussed in this review and that may importantly shape, or even revolutionize, the future of the field: (1) repeated cell therapy, (2) intravenous cell therapy, (3) immunomodulatory actions of cell therapy, and (4) new cell types. Because virtually all of our current knowledge of cell therapy is predicated on the effects of a single cell dose, the idea that the full therapeutic effects of a cell product require repeated doses is disruptive and has far-reaching implications. For example, inadequate dosing (single-dose protocols) may be responsible, at least in part, for the borderline or disappointing results obtained to date in clinical trials; furthermore, future studies (both preclinical and clinical) may need to incorporate repeated cell administrations. Another disruptive idea, supported by emerging preclinical and clinical evidence, is that intravenously injected cells can produce beneficial effects on the heart, presumably via release of paracrine factors in extracardiac organs or endocrine factors into the systemic circulation. Intravenous administration would obviate the need for direct delivery of cells to the heart, making cell therapy simpler, cheaper, safer, more scalable, and more broadly available, even on an outpatient basis. Although the mechanism of action of cell therapy remains elusive, there is compelling in vitro evidence that transplanted cells modulate the function of various immune cell types via release of paracrine factors, such as extracellular vesicles, although in vivo evidence is still limited. Investigation of the new paradigms reviewed herein should be a top priority because it may profoundly transform cell therapy and finally make it a reality.
Collapse
Affiliation(s)
- Marcin Wysoczynski
- From the Institute of Molecular Cardiology, University of Louisville, KY
| | - Abdur Khan
- From the Institute of Molecular Cardiology, University of Louisville, KY
| | - Roberto Bolli
- From the Institute of Molecular Cardiology, University of Louisville, KY.
| |
Collapse
|
25
|
Nooshabadi VT, Mardpour S, Yousefi-Ahmadipour A, Allahverdi A, Izadpanah M, Daneshimehr F, Ai J, Banafshe HR, Ebrahimi-Barough S. The extracellular vesicles-derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine. J Cell Biochem 2018; 119:8048-8073. [PMID: 29377241 DOI: 10.1002/jcb.26726] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult multipotent cells that due to their ability to homing to damaged tissues and differentiate into specialized cells, are remarkable cells in the field of regenerative medicine. It's suggested that the predominant mechanism of MSCs in tissue repair might be related to their paracrine activity. The utilization of MSCs for tissue repair is initially based on the differentiation ability of these cells; however now it has been revealed that only a small fraction of the transplanted MSCs actually fuse and survive in host tissues. Indeed, MSCs supply the microenvironment with the secretion of soluble trophic factors, survival signals and the release of extracellular vesicles (EVs) such as exosome. Also, the paracrine activity of EVs could mediate the cellular communication to induce cell-differentiation/self-renewal. Recent findings suggest that EVs released by MSCs may also be critical in the physiological function of these cells. This review provides an overview of MSC-derived extracellular vesicles as a hopeful opportunity to advance novel cell-free therapy strategies that might prevail over the obstacles and risks associated with the use of native or engineered stem cells. EVs are very stable; they can pass the biological barriers without rejection and can shuttle bioactive molecules from one cell to another, causing the exchange of genetic information and reprogramming of the recipient cells. Moreover, extracellular vesicles may provide therapeutic cargo for a wide range of diseases and cancer therapy.
Collapse
Affiliation(s)
| | - Soura Mardpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Allahverdi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Izadpanah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Daneshimehr
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid R Banafshe
- Department of Applied Cell Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Affiliation(s)
- Ephraim Bernhard Winzer
- Department of Internal Medicine/Cardiology, Helios Stiftungsprofessur, Heart Center Leipzig-University Hospital, Leipzig, Germany
| | - Felix Woitek
- Department of Internal Medicine/Cardiology, Helios Stiftungsprofessur, Heart Center Leipzig-University Hospital, Leipzig, Germany
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Technische Universität Dresden Heart Center Dresden-University Hospital, Dresden, Germany
| |
Collapse
|
27
|
OCT4 expression mediates partial cardiomyocyte reprogramming of mesenchymal stromal cells. PLoS One 2017; 12:e0189131. [PMID: 29216265 PMCID: PMC5720736 DOI: 10.1371/journal.pone.0189131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/04/2017] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are in numerous cell therapy clinical trials, including for injured myocardium. Acquisition of cardiomyocyte characteristics by MSCs may improve cardiac regeneration but the mechanisms regulating this process are unclear. Here, we investigated whether the pluripotency transcription factor OCT4 is involved in the activation of cardiac lineage genetic programs in MSCs. We employed our established co-culture model of MSCs with rat embryonic cardiomyocytes showing co-expression of cardiac markers on MSCs independent of cell fusion. Bone marrow-derived MSCs were isolated from transgenic mice expressing GFP under the control of the cardiac-specific α-myosin heavy chain promoter. After 5 days of co-culture, MSCs expressed cardiac specific genes, including Nkx2.5, atrial natriuretic factor and α-cardiac actin. The frequency of GFP+ cells was 7.6±1.9%, however, these cells retained the stromal cell phenotype, indicating, as expected, only partial differentiation. Global OCT4 expression increased 2.6±0.7-fold in co-cultured MSCs and of interest, 87±5% vs 79±4% of MSCs expressed OCT4 by flow cytometry in controls and after co-culture, respectively. Consistent with the latter observation, the GFP+ cells did not express nuclear OCT4 and showed a significant increase in OCT4 promoter methylation compared with undifferentiated MSCs (92% vs 45%), inferring that OCT4 is regulated by an epigenetic mechanism. We further showed that siRNA silencing of OCT4 in MSCs resulted in a reduced frequency of GFP+ cells in co-culture to less than 1%. Our data infer that OCT4 expression may have a direct effect on partial cardiomyocyte reprogramming of MSCs and suggest a new mechanism(s) associated with MSC multipotency and a requirement for crosstalk with the cardiac microenvironment.
Collapse
|
28
|
Steinhoff G, Nesteruk J, Wolfien M, Große J, Ruch U, Vasudevan P, Müller P. Stem cells and heart disease - Brake or accelerator? Adv Drug Deliv Rev 2017; 120:2-24. [PMID: 29054357 DOI: 10.1016/j.addr.2017.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
After two decades of intensive research and attempts of clinical translation, stem cell based therapies for cardiac diseases are not getting closer to clinical success. This review tries to unravel the obstacles and focuses on underlying mechanisms as the target for regenerative therapies. At present, the principal outcome in clinical therapy does not reflect experimental evidence. It seems that the scientific obstacle is a lack of integration of knowledge from tissue repair and disease mechanisms. Recent insights from clinical trials delineate mechanisms of stem cell dysfunction and gene defects in repair mechanisms as cause of atherosclerosis and heart disease. These findings require a redirection of current practice of stem cell therapy and a reset using more detailed analysis of stem cell function interfering with disease mechanisms. To accelerate scientific development the authors suggest intensifying unified computational data analysis and shared data knowledge by using open-access data platforms.
Collapse
Affiliation(s)
- Gustav Steinhoff
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Julia Nesteruk
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Markus Wolfien
- University Rostock, Institute of Computer Science, Department of Systems Biology and Bioinformatics, Ulmenstraße 69, 18057 Rostock, Germany.
| | - Jana Große
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Ulrike Ruch
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Praveen Vasudevan
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| | - Paula Müller
- University Medicine Rostock, Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, University Medical Center Rostock, Schillingallee 35, 18055 Rostock, Germany.
| |
Collapse
|
29
|
Florea V, Rieger AC, DiFede DL, El-Khorazaty J, Natsumeda M, Banerjee MN, Tompkins BA, Khan A, Schulman IH, Landin AM, Mushtaq M, Golpanian S, Lowery MH, Byrnes JJ, Hendel RC, Cohen MG, Valasaki K, Pujol MV, Ghersin E, Miki R, Delgado C, Abuzeid F, Vidro-Casiano M, Saltzman RG, DaFonseca D, Caceres LV, Ramdas KN, Mendizabal A, Heldman AW, Mitrani RD, Hare JM. Dose Comparison Study of Allogeneic Mesenchymal Stem Cells in Patients With Ischemic Cardiomyopathy (The TRIDENT Study). Circ Res 2017; 121:1279-1290. [PMID: 28923793 DOI: 10.1161/circresaha.117.311827] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Abstract
RATIONALE Cell dose and concentration play crucial roles in phenotypic responses to cell-based therapy for heart failure. OBJECTIVE To compare the safety and efficacy of 2 doses of allogeneic bone marrow-derived human mesenchymal stem cells identically delivered in patients with ischemic cardiomyopathy. METHODS AND RESULTS Thirty patients with ischemic cardiomyopathy received in a blinded manner either 20 million (n=15) or 100 million (n=15) allogeneic human mesenchymal stem cells via transendocardial injection (0.5 cc per injection × 10 injections per patient). Patients were followed for 12 months for safety and efficacy end points. There were no treatment-emergent serious adverse events at 30 days or treatment-related serious adverse events at 12 months. The Major Adverse Cardiac Event rate was 20.0% (95% confidence interval [CI], 6.9% to 50.0%) in 20 million and 13.3% (95% CI, 3.5% to 43.6%) in 100 million (P=0.58). Worsening heart failure rehospitalization was 20.0% (95% CI, 6.9% to 50.0%) in 20 million and 7.1% (95% CI, 1.0% to 40.9%) in 100 million (P=0.27). Whereas scar size reduced to a similar degree in both groups: 20 million by -6.4 g (interquartile range, -13.5 to -3.4 g; P=0.001) and 100 million by -6.1 g (interquartile range, -8.1 to -4.6 g; P=0.0002), the ejection fraction improved only with 100 million by 3.7 U (interquartile range, 1.1 to 6.1; P=0.04). New York Heart Association class improved at 12 months in 35.7% (95% CI, 12.7% to 64.9%) in 20 million and 42.9% (95% CI, 17.7% to 71.1%) in 100 million. Importantly, proBNP (pro-brain natriuretic peptide) increased at 12 months in 20 million by 0.32 log pg/mL (95% CI, 0.02 to 0.62; P=0.039), but not in 100 million (-0.07 log pg/mL; 95% CI, -0.36 to 0.23; P=0.65; between group P=0.07). CONCLUSIONS Although both cell doses reduced scar size, only the 100 million dose increased ejection fraction. This study highlights the crucial role of cell dose in the responses to cell therapy. Determining optimal dose and delivery is essential to advance the field, decipher mechanism(s) of action and enhance planning of pivotal Phase III trials. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT02013674.
Collapse
Affiliation(s)
- Victoria Florea
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Angela C Rieger
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Darcy L DiFede
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Jill El-Khorazaty
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Makoto Natsumeda
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Monisha N Banerjee
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Bryon A Tompkins
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Aisha Khan
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Ivonne H Schulman
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Ana Marie Landin
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Muzammil Mushtaq
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Samuel Golpanian
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Maureen H Lowery
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - John J Byrnes
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Robert C Hendel
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Mauricio G Cohen
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Krystalenia Valasaki
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Marietsy V Pujol
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Eduard Ghersin
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Roberto Miki
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Cindy Delgado
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Fouad Abuzeid
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Mayra Vidro-Casiano
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Russell G Saltzman
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Daniel DaFonseca
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Lina V Caceres
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Kevin N Ramdas
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Adam Mendizabal
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Alan W Heldman
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Raul D Mitrani
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.)
| | - Joshua M Hare
- From the Interdisciplinary Stem Cell Institute (V.F., A.C.R., M.N., M.N.B., B.A.T., A.K., I.H.S., A.M.L., S.G., K.V., M.V.P., C.D., F.A., M.V.-C., R.G.S., D.D., L.V.C., K.N.R., A.W.H., R.D.M., J.M.H.), Department of Surgery (M.N.B., B.A.T., S.G.), Katz Family Division of Nephrology and Hypertension (I.H.S.), Department of Medicine (M.M., M.H.L., J.J.B., R.C.H., M.G.C., R.M., R.D.M., J.M.H.), and Department of Radiology (E.G.), University of Miami Miller School of Medicine, FL; The Emmes Corporation, Rockville, MD (J.E.-K., A.M.); and Longeveron LLC, Miami, FL (D.L.D.).
| |
Collapse
|
30
|
Zhang S, Li X, Jourd'heuil FL, Qu S, Devejian N, Bennett E, Jourd'heuil D, Cai C. Cytoglobin Promotes Cardiac Progenitor Cell Survival against Oxidative Stress via the Upregulation of the NFκB/iNOS Signal Pathway and Nitric Oxide Production. Sci Rep 2017; 7:10754. [PMID: 28883470 PMCID: PMC5589853 DOI: 10.1038/s41598-017-11342-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/23/2017] [Indexed: 01/14/2023] Open
Abstract
Human cardiac stem/progenitor cells (hCPCs) may serve in regenerative medicine to repair the infarcted heart. However, this approach is severely limited by the poor survival of donor cells. Recent studies suggest that the mammalian globin cytoglobin (CYGB) regulates nitric oxide (NO) metabolism and cell death. In the present study, we found that CYGB is expressed in hCPCs. Through molecular approaches aimed at increasing or decreasing CYGB expression in hCPCs, we found that CYGB functions as a pro-survival factor in response to oxidative stress. This was associated with the upregulation of primary antioxidant systems such as peroxiredoxins-1, heme oxygenase-1, and anti-apoptotic factors, including BCL2, BCL-XL, and MCL1. Most significantly, we established that CYGB increased the expression of NFкB-dependent genes including iNOS, and that iNOS-dependent NO production was required for a feedforward loop that maintains CYGB expression. Our study delineates for the first time a role for a globin in regulating hCPC survival and establishes mechanistic insights in the function of CYGB. It provides a rationale for the exploration of the CYGB pathway as a molecular target that can be used to enhance the effectiveness of cardiac stem/progenitor cell therapy for ischemic heart disease.
Collapse
Affiliation(s)
- Shuning Zhang
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY, 12208, USA
| | - Xiuchun Li
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY, 12208, USA
| | - Frances L Jourd'heuil
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY, 12208, USA
| | - Shunlin Qu
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY, 12208, USA
| | - Neil Devejian
- Division of Pediatric Cardiothoracic Surgery, Albany Medical Center, Albany, NY, 12208, USA
| | - Edward Bennett
- Division of Cardiothoracic Surgery, Albany Medical Center, Albany, NY, 12208, USA
| | - David Jourd'heuil
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY, 12208, USA.
| | - Chuanxi Cai
- Center for Cardiovascular Sciences, Department of Molecular and Cellular Physiology, & Department of Medicine, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
31
|
Chen S, Sun R, Li X, Liu M, Zeng Y, Zhang P. Recent perspectives of stem cell use in cardiac disorders. Hellenic J Cardiol 2017; 58:105-109. [DOI: 10.1016/j.hjc.2016.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 11/30/2022] Open
|
32
|
Abstract
OPINION STATEMENT Despite significant advances in the treatment of ischemic heart disease (IHD), it remains the leading cause of mortality worldwide. Undoubtedly, methods for regenerating the injured human heart are urgently needed, and whilst exciting progress has been made from utilizing stem cell therapy for cardiac regeneration, several major challenges still remain. In particular, one major safety issue is the occurrence of potentially life-threatening ventricular arrhythmias after cell therapy. Several drivers may be responsible for this, ranging from the potential inherent arrhythmogenicity of delivered stem cells to that of the underlying IHD. Therefore, it is imperative to thoroughly assess the risk-to-benefit ratio of such treatments prior to the clinical application. As such, despite the considerable progress made in stem cell therapy over the past decades, many obstacles still lie ahead.
Collapse
|
33
|
Dayan V, Sotelo V, Delfina V, Delgado N, Rodriguez C, Suanes C, Langhain M, Ferrando R, Keating A, Benech A, Touriño C. Human Mesenchymal Stromal Cells Improve Cardiac Perfusion in an Ovine Immunocompetent Animal Model. J INVEST SURG 2016; 29:218-25. [PMID: 26891475 DOI: 10.3109/08941939.2015.1128997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) hold considerable promise in the treatment of ischemic heart disease. Most preclinical studies of MSCs for acute myocardial infarction (AMI) have been performed either in syngeneic animal models or with human cells in xenogeneic immunodeficient animals. A preferable pre-clinical model, however, would involve human MSCs in an immunocompetent animal. METHODS AMI was generated in adult sheep by inducing ischemia reperfusion of the second diagonal branch. Sheep (n = 10) were randomized to receive an intravenous injection of human MSCs (1 × 10(6) cells/kg) or phosphate buffered saline. Cardiac function and remodeling were evaluated with echocardiography. Perfusion scintigraphy was used to identify sustained myocardial ischemia. Interaction between human MSCs and ovine lymphocytes was assessed by a mixed lymphocyte response (MLR). RESULTS Sheep receiving human MSCs showed significant improvement in myocardial perfusion at 1 month compared with baseline measurements. There was no change in ventricular dimensions in either group after 1 month of AMI. No adverse events or symptoms were observed in the sheep receiving human MSCs. The MLR was negative. CONCLUSION The immunocompetent ovine AMI model demonstrates the clinical safety and efficacy of human MSCs. The human cells do not appear to be immunogenic, further suggesting that immunocompetent sheep may serve as a suitable pre-clinical large animal model for testing human MSCs.
Collapse
Affiliation(s)
- Victor Dayan
- a Faculty of Medicine, Department of Medical Pathology , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Veronica Sotelo
- b Faculty of Veterinary , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Valentina Delfina
- b Faculty of Veterinary , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Natalia Delgado
- b Faculty of Veterinary , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Carlos Rodriguez
- b Faculty of Veterinary , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Carol Suanes
- c Faculty of Medicine, Department of Nuclear Medicine , University of the Republic of Uruguay, Montevideo , Uruguay
| | - María Langhain
- c Faculty of Medicine, Department of Nuclear Medicine , University of the Republic of Uruguay, Montevideo , Uruguay
| | - Rodolfo Ferrando
- c Faculty of Medicine, Department of Nuclear Medicine , University of the Republic of Uruguay, Montevideo , Uruguay
| | - Armand Keating
- d Cell Therapy Program, Princess Margaret Hospital , University Health Network, University of Toronto , Toronto , Canada
| | - Alejandro Benech
- b Faculty of Veterinary , University of the Republic of Uruguay , Montevideo , Uruguay
| | - Cristina Touriño
- a Faculty of Medicine, Department of Medical Pathology , University of the Republic of Uruguay , Montevideo , Uruguay
| |
Collapse
|
34
|
Hasan A, Waters R, Roula B, Dana R, Yara S, Alexandre T, Paul A. Engineered Biomaterials to Enhance Stem Cell-Based Cardiac Tissue Engineering and Therapy. Macromol Biosci 2016; 16:958-77. [PMID: 26953627 PMCID: PMC4931991 DOI: 10.1002/mabi.201500396] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/18/2016] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide. Since adult cardiac cells are limited in their proliferation, cardiac tissue with dead or damaged cardiac cells downstream of the occluded vessel does not regenerate after myocardial infarction. The cardiac tissue is then replaced with nonfunctional fibrotic scar tissue rather than new cardiac cells, which leaves the heart weak. The limited proliferation ability of host cardiac cells has motivated investigators to research the potential cardiac regenerative ability of stem cells. Considerable progress has been made in this endeavor. However, the optimum type of stem cells along with the most suitable matrix-material and cellular microenvironmental cues are yet to be identified or agreed upon. This review presents an overview of various types of biofunctional materials and biomaterial matrices, which in combination with stem cells, have shown promises for cardiac tissue replacement and reinforcement. Engineered biomaterials also have applications in cardiac tissue engineering, in which tissue constructs are developed in vitro by combining stem cells and biomaterial scaffolds for drug screening or eventual implantation. This review highlights the benefits of using biomaterials in conjunction with stem cells to repair damaged myocardium and give a brief description of the properties of these biomaterials that make them such valuable tools to the field.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Renae Waters
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Boustany Roula
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rahbani Dana
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Seif Yara
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Toubia Alexandre
- Biomedical Engineering and Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Arghya Paul
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
35
|
Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol Rev 2016; 96:1127-68. [PMID: 27335447 PMCID: PMC6345247 DOI: 10.1152/physrev.00019.2015] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are broadly distributed cells that retain postnatal capacity for self-renewal and multilineage differentiation. MSCs evade immune detection, secrete an array of anti-inflammatory and anti-fibrotic mediators, and very importantly activate resident precursors. These properties form the basis for the strategy of clinical application of cell-based therapeutics for inflammatory and fibrotic conditions. In cardiovascular medicine, administration of autologous or allogeneic MSCs in patients with ischemic and nonischemic cardiomyopathy holds significant promise. Numerous preclinical studies of ischemic and nonischemic cardiomyopathy employing MSC-based therapy have demonstrated that the properties of reducing fibrosis, stimulating angiogenesis, and cardiomyogenesis have led to improvements in the structure and function of remodeled ventricles. Further attempts have been made to augment MSCs' effects through genetic modification and cell preconditioning. Progression of MSC therapy to early clinical trials has supported their role in improving cardiac structure and function, functional capacity, and patient quality of life. Emerging data have supported larger clinical trials that have been either completed or are currently underway. Mechanistically, MSC therapy is thought to benefit the heart by stimulating innate anti-fibrotic and regenerative responses. The mechanisms of action involve paracrine signaling, cell-cell interactions, and fusion with resident cells. Trans-differentiation of MSCs to bona fide cardiomyocytes and coronary vessels is also thought to occur, although at a nonphysiological level. Recently, MSC-based tissue engineering for cardiovascular disease has been examined with quite encouraging results. This review discusses MSCs from their basic biological characteristics to their role as a promising therapeutic strategy for clinical cardiovascular disease.
Collapse
Affiliation(s)
- Samuel Golpanian
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Ariel Wolf
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Department of Medicine, and Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
36
|
Golpanian S, Schulman IH, Ebert RF, Heldman AW, DiFede DL, Yang PC, Wu JC, Bolli R, Perin EC, Moyé L, Simari RD, Wolf A, Hare JM. Concise Review: Review and Perspective of Cell Dosage and Routes of Administration From Preclinical and Clinical Studies of Stem Cell Therapy for Heart Disease. Stem Cells Transl Med 2015; 5:186-91. [PMID: 26683870 PMCID: PMC4729551 DOI: 10.5966/sctm.2015-0101] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
An important stage in the development of any new therapeutic agent is establishment of the optimal dosage and route of administration. Inconsistent findings have been reported regarding the relationship between the cell dose and clinical benefit. The present study summarizes the data regarding the optimal cell dosage and route of administration from studies of stem cell therapy for heart disease and offers a perspective on future directions. An important stage in the development of any new therapeutic agent is establishment of the optimal dosage and route of administration. This can be particularly challenging when the treatment is a biologic agent that might exert its therapeutic effects via complex or poorly understood mechanisms. Multiple preclinical and clinical studies have shown paradoxical results, with inconsistent findings regarding the relationship between the cell dose and clinical benefit. Such phenomena can, at least in part, be attributed to variations in cell dosing or concentration and the route of administration (ROA). Although clinical trials of cell-based therapy for cardiovascular disease began more than a decade ago, specification of the optimal dosage and ROA has not been established. The present review summarizes what has been learned regarding the optimal cell dosage and ROA from preclinical and clinical studies of stem cell therapy for heart disease and offers a perspective on future directions. Significance Preclinical and clinical studies on cell-based therapy for cardiovascular disease have shown inconsistent results, in part because of variations in study-specific dosages and/or routes of administration (ROA). Future preclinical studies and smaller clinical trials implementing cell-dose and ROA comparisons are warranted before proceeding to pivotal trials.
Collapse
Affiliation(s)
- Samuel Golpanian
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ivonne H Schulman
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ray F Ebert
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan W Heldman
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Darcy L DiFede
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Phillip C Yang
- School of Medicine, Stanford University, Stanford, California, USA
| | - Joseph C Wu
- School of Medicine, Stanford University, Stanford, California, USA
| | - Roberto Bolli
- School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Emerson C Perin
- Texas Heart Institute, CHI St. Luke's Health, Baylor College of Medicine Medical Center, Houston, Texas, USA
| | - Lem Moyé
- School of Public Health, University of Texas Health Science Center, Houston, Texas, USA
| | - Robert D Simari
- School of Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Ariel Wolf
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida, USA Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
37
|
PET monitoring angiogenesis of infarcted myocardium after treatment with vascular endothelial growth factor and bone marrow mesenchymal stem cells. Amino Acids 2015; 48:811-820. [DOI: 10.1007/s00726-015-2129-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/04/2015] [Indexed: 01/10/2023]
|
38
|
Abstract
Heart failure remains a major cause of death and disability, requiring rapid development of new therapies. Bone marrow-derived mesenchymal stem cell (MSC)-based therapy is an emerging approach for the treatment of both acute and chronic heart failure. Following successful experimental studies in a range of models, more than 40 clinical trials of MSC-based therapy for heart failure have now been registered, and the results of completed clinical trials so far have shown feasibility and safety of this approach with therapeutic potential suggested (though preliminarily). However, there appear to be several critical issues to be solved before this treatment could become a widespread standard therapy for heart failure. In this review, we comprehensively and systemically summarize a total of 73 preclinical studies and 11 clinical trial reports published to date. By analyzing the data in these reports, (1) improvement in the cell delivery method to the heart in order to enhance donor cell engraftment, (2) elucidation of mechanisms underpinning the therapeutic effects of the treatment differentiation and/or treatment secretion, and (3) validation of the utility of allogeneic MSCs which could enhance the efficacy and expand the application/indication of this therapeutic approach are highlighted as future perspectives. These important respects are further discussed in this review article with referencing latest scientific and clinical information.
Collapse
Affiliation(s)
- Takuya Narita
- Cardiothoracic Surgery, National Heart Centre, Singapore, Singapore
| | | |
Collapse
|
39
|
Mesenchymal Stem Cells for Cardiac Regenerative Therapy: Optimization of Cell Differentiation Strategy. Stem Cells Int 2015; 2015:524756. [PMID: 26339251 PMCID: PMC4539177 DOI: 10.1155/2015/524756] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/28/2015] [Accepted: 03/11/2015] [Indexed: 01/25/2023] Open
Abstract
With the high mortality rate, coronary heart disease (CHD) has currently become a major life-threatening disease. The main pathological change of myocardial infarction (MI) is the induction of myocardial necrosis in infarction area which finally causes heart failure. Conventional treatments cannot regenerate the functional cell efficiently. Recent researches suggest that mesenchymal stem cells (MSCs) are able to differentiate into multiple lineages, including cardiomyocyte-like cells in vitro and in vivo, and they have been used for the treatment of MI to repair the injured myocardium and improve cardiac function. In this review, we will focus on the recent progress on MSCs derived cardiomyocytes for cardiac regeneration after MI.
Collapse
|
40
|
Safety and Efficacy Endpoints for Mesenchymal Stromal Cell Therapy in Renal Transplant Recipients. J Immunol Res 2015; 2015:391797. [PMID: 26258149 PMCID: PMC4518147 DOI: 10.1155/2015/391797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
Despite excellent short-term graft survival after renal transplantation, the long-term graft outcome remains compromised. It has become evident that a combination of sustained alloreactivity and calcineurin-inhibitor- (CNI-) related nephrotoxicity results in fibrosis and consequently dysfunction of the graft. New immunosuppressive regimens that can minimize or eliminate side effects, while maintaining efficacy, are required to improve long-term graft survival. In this perspective mesenchymal stromal cells (MSCs) are an interesting candidate, since MSCs have immunosuppressive and regenerative properties. The first clinical trials with MSCs in renal transplantation showed safety and feasibility and displayed promising results. Recently, the first phase II studies have been started. One of the most difficult and challenging aspects in those early phase trials is to define accurate endpoints that can measure safety and efficacy of MSC treatment. Since both graft losses and acute rejection rates declined, alternative surrogate markers such as renal function, histological findings, and immunological markers are used to measure efficacy and to provide mechanistic insight. In this review, we will discuss the current status of MSCs in renal transplantation with a focus on the endpoints used in the different experimental and clinical studies.
Collapse
|
41
|
Luu NT, McGettrick HM, Buckley CD, Newsome PN, Rainger GE, Frampton J, Nash GB. Crosstalk between mesenchymal stem cells and endothelial cells leads to downregulation of cytokine-induced leukocyte recruitment. Stem Cells 2015; 31:2690-702. [PMID: 23939932 DOI: 10.1002/stem.1511] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSC) have immunomodulatory properties, but their effects on endothelial cells (EC) and recruitment of leukocytes are unknown. We cocultured human bone marrow-derived MSC with EC and found that MSC could downregulate adhesion of flowing neutrophils or lymphocytes and their subsequent transendothelial migration. This applied for EC treated with tumor necrosis factor-α (TNF), interleukin-1β (IL-1), or TNF and interferon-γ combined. Supernatant from cocultures also inhibited endothelial responses. This supernatant had much higher levels of IL-6 than supernatant from cultures of the individual cells, which also lacked inhibitory functions. Addition of neutralizing antibody against IL-6 removed the bioactivity of the supernatant and also the immunomodulatory effects of coculture. Studies using siRNA showed that IL-6 came mainly from the MSC in coculture, and reduction in production in MSC alone was sufficient to impair the protective effects of coculture. Interestingly, siRNA knockdown of IL-6-receptor expression in MSC as well as EC inhibited anti-inflammatory effects. This was explained when we detected soluble IL-6R receptor in supernatants and showed that receptor removal reduced the potency of supernatant. Neutralization of transforming growth factor-β indicated that activation of this factor in coculture contributed to IL-6 production. Thus, crosstalk between MSC and EC caused upregulation of production of IL-6 by MSC which in turn downregulated the response of EC to inflammatory cytokines, an effect potentiated by MSC release of soluble IL-6R. These studies establish a novel mechanism by which MSC might have protective effects against inflammatory pathology and cardiovascular disease.
Collapse
Affiliation(s)
- N Thin Luu
- Centre for Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
42
|
Tao B, Cui M, Wang C, Ma S, Wu F, Yi F, Qin X, Liu J, Wang H, Wang Z, Ma X, Tian J, Chen Y, Wang J, Cao F. Percutaneous intramyocardial delivery of mesenchymal stem cells induces superior improvement in regional left ventricular function compared with bone marrow mononuclear cells in porcine myocardial infarcted heart. Am J Cancer Res 2015; 5:196-205. [PMID: 25553108 PMCID: PMC4279004 DOI: 10.7150/thno.7976] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 10/02/2014] [Indexed: 12/25/2022] Open
Abstract
Aim: To investigate the efficacy and feasibility of percutaneous intramyocardial injection of bone marrow mesenchymal stem cells (MSC) and autologous bone marrow-derived mononuclear cells (BMMNC) on cardiac functional improvement in porcine myocardial infarcted hearts. Methods and Results: Acute myocardial infarction (AMI) was induced in 22 minipigs by temporary balloon occlusion of the left anterior descending coronary artery for 60min.Two weeks post AMI, BMMNC (n = 7, 245 ± 98×106), MSC (n = 8, 56 ± 17×106), or phosphate buffered saline (PBS; n = 7) were injected intramyocardially. Cardiac function and myocardial perfusion were analyzed by echocardiography and gated single-photon emission computed tomography/computed tomography (SPECT/CT) at 1 week before AMI and 2 and 10 weeks after AMI. Cell engraftment, proliferation, vascular density, and cardiac fibrosis were evaluated by histology analysis. In all groups, the echocardiography revealed no significant change in the left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), or left ventricular end-diastolic volume (LVEDV) at 10 weeks after AMI compared with those at 2 weeks after AMI. However, the wall motion score index (WMSI) and left ventricular systolic wall thickening (WT%) were significantly improved at 10 weeks compared with those at 2 weeks after AMI in the MSC group (WMSI 1.55 ± 0.06 vs. 1.87 ± 0.10, WT 33.4 ± 2.3% vs.24.8 ± 2.7%,p < 0.05) but not in the BMMNC group. In addition, myocardial perfusion quantified by SPECT/CT was improved in both the MSC and BMMNC groups, whereas the MSC group showed a superior improvement in vascular density and collagen volume fraction (p < 0.05). Conclusion: This preclinically relevant study suggests that when delivered by percutaneous (transcatheter) intramyocardial injection, MSC might be more effective than BMMNC to improve ischemia and reperfusion after AMI.
Collapse
|
43
|
Decuzzi P. Patient-specific computational modeling and magnetic nanoconstructs: tools for maximizing the efficacy of stem cell-based therapies. Methodist Debakey Cardiovasc J 2014; 9:223-8. [PMID: 24298315 DOI: 10.14797/mdcj-9-4-223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stem cell transplantation has the potential to restore heart function following myocardial infarction. However, the success of any stem cell-based therapy is critically linked to the effective homing and early engraftment of the injected cells at the infarcted site. Here, a hierarchical multiscale computational model is proposed for predicting the patient-specific vascular transport and intratissue homing and migration of stem cells injected either systemically or locally. Starting with patient-specific data, such as the vascular geometry, blood flow, and location of the infarcted area, the computational model can be used to perform parametric analysis to identify optimal injection conditions in terms of administration route, injection site, catheter type, and infusion velocity. In addition to this, a new generation of magnetic nanoconstructs is introduced for labeling stem cells and monitoring their behavior in vivo via magnetic resonance imaging. These nanoconstructs also can be used for multimodal imaging, merging MRI and nuclear imaging, and the intracellular delivery of active agents to support stem cell differentiation. The convergence of computational modeling and novel nanoconstructs for stem cell labeling could improve our understanding in cell homing and early engraftment at the infarcted site and thus pave the way to more effective stem cell-based therapies.
Collapse
Affiliation(s)
- Paolo Decuzzi
- Houston Methodist Hospital Research Institute, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
44
|
Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med 2014; 12:260. [PMID: 25304688 PMCID: PMC4197270 DOI: 10.1186/s12967-014-0260-8] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
The mesenchymal stem cell (MSC) is being broadly studied in clinical trials. Contrary to the early paradigm of cell replacement and differentiation as a therapeutic mechanism of action, evidence is mounting that the secretions of the cells are responsible for their therapeutic effects. These secretions include molecules and extracellular vesicles that have both local and distant effects. This review summarizes the up- and down-regulation of MSC anti-inflammatory, immune modulating, anti-tumor, and regenerative secretions resulting from different stimuli including: a) hypoxia, which increases the production of growth factors and anti-inflammatory molecules; b) pro-inflammatory stimuli that induce the secretion of immune modulating and anti-inflammatory factors; and c) 3 dimensional growth which up regulates the production of anti-cancer factors and anti-inflammatory molecules compared to monolayer culture. Finally we review in detail the most important factors present in conditioned medium of MSC that can be considered protagonists of MSC physiological effects including HGF, TGF-b, VEGF, TSG-6, PGE2 and galectins 1, and 9. We conclude that there is potential for the development of acellular therapeutic interventions for autoimmune, inflammatory, and malignant diseases and tissue regeneration from cellular secretions derived from MSCs cultured under the appropriate conditions.
Collapse
Affiliation(s)
- Marialaura Madrigal
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India. .,INDICASAT-AIP, City of Knowledge, Republic of Panama. .,MediStem Panama Inc., City of Knowledge, Republic of Panama.
| | | | - Neil H Riordan
- MediStem Panama Inc., City of Knowledge, Republic of Panama.
| |
Collapse
|
45
|
Mesenchymal stem cells from fetal heart attenuate myocardial injury after infarction: an in vivo serial pinhole gated SPECT-CT study in rats. PLoS One 2014; 9:e100982. [PMID: 24971627 PMCID: PMC4074116 DOI: 10.1371/journal.pone.0100982] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/02/2014] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSC) have emerged as a potential stem cell type for cardiac regeneration after myocardial infarction (MI). Recently, we isolated and characterized mesenchymal stem cells derived from rat fetal heart (fC-MSC), which exhibited potential to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells invitro. In the present study, we investigated the therapeutic efficacy of intravenously injected fC-MSC in a rat model of MI using multi-pinhole gated SPECT-CT system. fC-MSC were isolated from the hearts of Sprague Dawley (SD) rat fetuses at gestation day 16 and expanded exvivo. One week after induction of MI, 2×106 fC-MSC labeled with PKH26 dye (n = 6) or saline alone (n = 6) were injected through the tail vein of the rats. Initial invivo tracking of 99mTc-labeled fC-MSC revealed a focal uptake of cells in the anterior mid-ventricular region of the heart. At 4 weeks of fC-MSC administration, the cells labeled with PKH26 were located in abundance in infarct/peri-infarct region and the fC-MSC treated hearts showed a significant increase in left ventricular ejection fraction and a significant decrease in the end diastolic volume, end systolic volume and left ventricular myo-mass in comparison to the saline treated group. In addition, fC-MSC treated hearts had a significantly better myocardial perfusion and attenuation in the infarct size, in comparison to the saline treated hearts. The engrafted PKH26-fC-MSC expressed cardiac troponin T, endothelial CD31 and smooth muscle sm-MHC, suggesting their differentiation into all major cells of cardiovascular lineage. The fC-MSC treated hearts demonstrated an up-regulation of cardio-protective growth factors, anti-fibrotic and anti-apoptotic molecules, highlighting that the observed left ventricular functional recovery may be due to secretion of paracrine factors by fC-MSC. Taken together, our results suggest that fC-MSC therapy may be a new therapeutic strategy for MI and multi-pinhole gated SPECT-CT system may be a useful tool to evaluate cardiac perfusion, function and cell tracking after stem cell therapy in acute myocardial injury setting.
Collapse
|
46
|
Cyclosporin in cell therapy for cardiac regeneration. J Cardiovasc Transl Res 2014; 7:475-82. [PMID: 24831573 DOI: 10.1007/s12265-014-9570-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/21/2014] [Indexed: 12/19/2022]
Abstract
Stem cell therapy is a promising strategy in promoting cardiac repair in the setting of ischemic heart disease. Clinical and preclinical studies have shown that cell therapy improves cardiac function. Whether autologous or allogeneic cells should be used, and the need for immunosuppression in non-autologous settings, is a matter of debate. Cyclosporin A (CsA) is frequently used in preclinical trials to reduce cell rejection after non-autologous cell therapy. The direct effect of CsA on the function and survival of stem cells is unclear. Furthermore, the appropriate daily dosage of CsA in animal models has not been established. In this review, we discuss the pros and cons of the use of CsA on an array of stem cells both in vitro and in vivo. Furthermore, we present a small collection of data put forth by our group supporting the efficacy and safety of a specific daily CsA dosage in a pig model.
Collapse
|
47
|
Pfister O, Della Verde G, Liao R, Kuster GM. Regenerative therapy for cardiovascular disease. Transl Res 2014; 163:307-20. [PMID: 24378637 DOI: 10.1016/j.trsl.2013.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/04/2013] [Accepted: 12/05/2013] [Indexed: 11/25/2022]
Abstract
Recent insights into myocardial biology uncovered a hereto unknown regenerative capacity of the adult heart. The discovery of dividing cardiomyocytes and the identification and characterization of cardiac stem and progenitor cells with myogenic and angiogenic potential have generated new hopes that cardiac regeneration and repair might become a therapeutic option. During the past decade, multiple candidate cells have been proposed for cardiac regeneration, and their mechanisms of action in the myocardium have been explored. Initial clinical trials have focused on the use of bone marrow-derived cells to promote myocardial regeneration in ischemic heart disease and have yielded very mixed results, with no clear signs of clinically meaningful functional improvement. Although the efficiency of bona fide cardiomyocyte generation is generally low, stem cells delivered into the myocardium act mainly via paracrine mechanisms. More recent studies taking advantage of cardiac committed cells (eg, resident cardiac progenitor cells or primed cardiogenic mesenchymal stem cells) showed promising results in first clinical pilot trials. Also, transplantation of cardiomyogenic cells generated by induced pluripotent stem cells and genetic reprogramming of dividing nonmyocytes into cardiomyocytes may constitute attractive new regenerative approaches in cardiovascular medicine in the future. We discuss advantages and limitations of specific cell types proposed for cell-based therapy in cardiology and give an overview of the first clinical trials using this novel therapeutic approach in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Otmar Pfister
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland; Division of Cardiology, University Hospital Basel, Basel, Switzerland.
| | - Giacomo Della Verde
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ronglih Liao
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Gabriela M Kuster
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland; Division of Cardiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
48
|
Lian Z, Yin X, Li H, Jia L, He X, Yan Y, Liu N, Wan K, Li X, Lin S. Synergistic effect of bone marrow-derived mesenchymal stem cells and platelet-rich plasma in streptozotocin-induced diabetic rats. Ann Dermatol 2014; 26:1-10. [PMID: 24648680 PMCID: PMC3956772 DOI: 10.5021/ad.2014.26.1.1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/23/2012] [Accepted: 12/15/2013] [Indexed: 11/26/2022] Open
Abstract
Background Diabetic wounds are a major clinical challenge, because minor skin wounds can lead to chronic, unhealed ulcers and ultimately result in infection, gangrene, or even amputation. Studies on bone marrow derived mesenchymal stem cells (BMSCs) and a series of growth factors have revealed their many benefits for wound healing and regeneration. Platelet-rich plasma (PRP) may improve the environment for BMSC development and differentiation. However, whether combined use of BMSCs and PRP may be more effective for accelerating diabetic ulcer healing remains unclear. Objective We investigated the efficacy of BMSCs and PRP for the repair of refractory wound healing in a diabetic rat model. Methods Forty-eight rats with diabetes mellitus induced by streptozotocin were divided into four groups: treatment with BMSCs plus PRP, BMSCs alone, PRP alone, phosphate buffered saline. The rate of wound closure was quantified. A histopathological study was conducted regarding wound depth and the skin edge at 7, 14, and 28 days after surgery. Results Wound healing rates were significantly higher in the BMSC plus PRP group than in the other groups. The immunohistochemistry results showed that the expression of platelet/endothelial cell adhesion molecule 1, proliferating cell nuclear antigen, and transforming growth factor-β1 increased significantly in the BMSC plus PRP group compared to the other treatment groups. On day 7, CD68 expression increased significantly in the wounds of the BMSC plus PRP group, but decreased markedly at day 14 compared to the controls. Conclusion The combination of BMSCs and PRP aids diabetic wound repair and regeneration.
Collapse
Affiliation(s)
- Zhenzhen Lian
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Xiaojing Yin
- Department of Endocrinology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hua Li
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Lili Jia
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Xiuzhen He
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Yongbo Yan
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Naihua Liu
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Kayiu Wan
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| | - Shaoqiang Lin
- School of Pharmacy, Wenzhou Medical College, Campus of Chashan High Education, Wenzhou, China
| |
Collapse
|
49
|
Piccinelli M, Faber TL, Arepalli CD, Appia V, Vinten-Johansen J, Schmarkey SL, Folks RD, Garcia EV, Yezzi A. Automatic detection of left and right ventricles from CTA enables efficient alignment of anatomy with myocardial perfusion data. J Nucl Cardiol 2014; 21:96-108. [PMID: 24185581 PMCID: PMC5207024 DOI: 10.1007/s12350-013-9812-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 10/15/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Accurate alignment between cardiac CT angiographic studies (CTA) and nuclear perfusion images is crucial for improved diagnosis of coronary artery disease. This study evaluated in an animal model the accuracy of a CTA fully automated biventricular segmentation algorithm, a necessary step for automatic and thus efficient PET/CT alignment. METHODS AND RESULTS Twelve pigs with acute infarcts were imaged using Rb-82 PET and 64-slice CTA. Post-mortem myocardium mass measurements were obtained. Endocardial and epicardial myocardial boundaries were manually and automatically detected on the CTA and both segmentations used to perform PET/CT alignment. To assess the segmentation performance, image-based myocardial masses were compared to experimental data; the hand-traced profiles were used as a reference standard to assess the global and slice-by-slice robustness of the automated algorithm in extracting myocardium, LV, and RV. Mean distances between the automated and the manual 3D segmented surfaces were computed. Finally, differences in rotations and translations between the manual and automatic surfaces were estimated post-PET/CT alignment. The largest, smallest, and median distances between interactive and automatic surfaces averaged 1.2 ± 2.1, 0.2 ± 1.6, and 0.7 ± 1.9 mm. The average angular and translational differences in CT/PET alignments were 0.4°, -0.6°, and -2.3° about x, y, and z axes, and 1.8, -2.1, and 2.0 mm in x, y, and z directions. CONCLUSIONS Our automatic myocardial boundary detection algorithm creates surfaces from CTA that are similar in accuracy and provide similar alignments with PET as those obtained from interactive tracing. Specific difficulties in a reliable segmentation of the apex and base regions will require further improvements in the automated technique.
Collapse
Affiliation(s)
- Marina Piccinelli
- Department of Radiology and Imaging Sciences, Emory University, 101 Woodruff Circle, Room 1203C, Atlanta, GA, 30322, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zaniboni A, Bernardini C, Alessandri M, Mangano C, Zannoni A, Bianchi F, Sarli G, Calzà L, Bacci ML, Forni M. Cells derived from porcine aorta tunica media show mesenchymal stromal-like cell properties in in vitro culture. Am J Physiol Cell Physiol 2013; 306:C322-33. [PMID: 24304832 DOI: 10.1152/ajpcell.00112.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Several studies have already described the presence of specialized niches of precursor cells in vasculature wall, and it has been shown that these populations share several features with mesenchymal stromal cells (MSCs). Considering the relevance of MSCs in the cardiovascular physiopathology and regenerative medicine, and the usefulness of the pig animal model in this field, we reported a new method for MSC-like cell isolation from pig aorta. Filling the vessel with a collagenase solution for 40 min, all endothelial cells were detached and discarded and then collagenase treatment was repeated for 4 h to digest approximately one-third of the tunica media. The ability of our method to select a population of MSC-like cells from tunica media could be ascribed in part to the elimination of contaminant cells from the intimal layer and in part to the overnight culture in the high antibiotic/antimycotic condition and to the starvation step. Aortic-derived cells show an elongated, spindle shape, fibroblast-like morphology, as reported for MSCs, stain positively for CD44, CD56, CD90, and CD105; stain negatively for CD34 and CD45; and express CD73 mRNA. Moreover, these cells show the classical mesenchymal trilineage differentiation potential. Under our in vitro culture conditions, aortic-derived cells share some phenotypical features with pericytes and are able to take part in the formation of network-like structures if cocultured with human umbilical vein endothelial cells. In conclusion, our work reports a simple and highly suitable method for obtaining large numbers of precursor MSC-like cells derived from the porcine aortic wall.
Collapse
Affiliation(s)
- Andrea Zaniboni
- Department of Veterinary Medical Sciences-DIMEVET, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|