1
|
Zhao Y, Xiang C, Roy BC, Bruce HL, Blecker C, Zhang Y, Liu C, Zhang D, Chen L, Huang C. Apoptosis and its role in postmortem meat tenderness: A comprehensive review. Meat Sci 2025; 219:109652. [PMID: 39265386 DOI: 10.1016/j.meatsci.2024.109652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Tenderness is considered a crucial attribute of postmortem meat quality, directly influencing consumers' preferences and industrial economic benefits. The degradation of myofibrillar proteins by endogenous enzymes within muscle fibers is believed to be the most effective pathway for meat tenderization. After animals are slaughtered and exsanguinated, there is a significant accumulation of reactive oxygen species (ROS), and a dramatic depletion of adenosine triphosphate (ATP) in muscle, leading to inevitable cell death. Caspases are activated in postmortem muscle cells, which disrupt the cell structure and improve meat tenderness through protein hydrolysis. In this review, we systematically summarized the three primary types of cell death studied in postmortem muscle: apoptosis, autophagy and necrosis. Furthermore, we emphasized the molecular mechanisms of apoptosis and its corresponding apoptotic pathways (mitochondrial apoptosis, death receptors, and endoplasmic reticulum stress) that affect meat tenderness during muscle conversion to meat. Additionally, factors affecting apoptosis were comprehensively discussed, such as ROS, heat shock proteins, calcium (Ca2+)/calpains, and Bcl-2 family proteins. Finally, this comprehensive review of existing research reveals that apoptosis is mainly mediated by the mitochondrial pathway. This ultimately leads to myofibrillar proteins degradation through caspase activation, improving meat tenderness. This review summarizes the research progress on postmortem muscle apoptosis and its molecular mechanisms in meat tenderization. We hope this will enhance understanding of postmortem meat tenderness and provide a theoretical basis for meat tenderization techniques development in the future.
Collapse
Affiliation(s)
- Yingxin Zhao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Can Xiang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d'Agronomie 2, Gembloux B-5030, Belgium
| | - Yanyan Zhang
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Chongxin Liu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Caiyan Huang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Key Laboratory of Agro-Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193, China; Gembloux Agro-Bio Tech, Unit of Food Science and Formulation, University of Liège, Avenue de la Faculté d'Agronomie 2, Gembloux B-5030, Belgium.
| |
Collapse
|
2
|
Sklifasovskaya AP, Blagonravov M, Ryabinina A, Goryachev V, Syatkin S, Chibisov S, Akhmetova K, Prokofiev D, Agostinelli E. The role of heat shock proteins in the pathogenesis of heart failure (Review). Int J Mol Med 2023; 52:106. [PMID: 37772383 PMCID: PMC10558216 DOI: 10.3892/ijmm.2023.5309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
The influence of heat shock proteins (HSPs) on protein quality control systems in cardiomyocytes is currently under investigation. The effect of HSPs on the regulated cell death of cardiomyocytes (CMCs) is of great importance, since they play a major role in the implementation of compensatory and adaptive mechanisms in the event of cardiac damage. HSPs mediate a number of mechanisms that activate the apoptotic cascade, playing both pro‑ and anti‑apoptotic roles depending on their location in the cell. Another type of cell death, autophagy, can in some cases lead to cell death, while in other situations it acts as a cell survival mechanism. The present review considered the characteristics of the expression of HSPs of different molecular weights in CMCs in myocardial damage caused by heart failure, as well as their role in the realization of certain types of regulated cell death.
Collapse
Affiliation(s)
| | | | - Anna Ryabinina
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | | | - Sergey Syatkin
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Sergey Chibisov
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Karina Akhmetova
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Daniil Prokofiev
- Institute of Medicine, RUDN University, 117198 Moscow, Russia, Italy
| | - Enzo Agostinelli
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, University Hospital Policlinico Umberto I, I-00161 Rome, Italy
- International Polyamines Foundation, ETS-ONLUS, I-00159 Rome, Italy
| |
Collapse
|
3
|
Liu D, Han X, Zhang Z, Tse G, Shao Q, Liu T. Role of Heat Shock Proteins in Atrial Fibrillation: From Molecular Mechanisms to Diagnostic and Therapeutic Opportunities. Cells 2022; 12:cells12010151. [PMID: 36611952 PMCID: PMC9818491 DOI: 10.3390/cells12010151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Heat shock proteins (HSPs) are endogenous protective proteins and biomarkers of cell stress response, of which examples are HSP70, HSP60, HSP90, and small HSPs (HSPB). HSPs protect cells and organs, especially the cardiovascular system, against harmful and cytotoxic conditions. More recent attention has focused on the roles of HSPs in the irreversible remodeling of atrial fibrillation (AF), which is the most common arrhythmia in clinical practice and a significant contributor to mortality. In this review, we investigated the relationship between HSPs and atrial remodeling mechanisms in AF. PubMed was searched for studies using the terms "Heat Shock Proteins" and "Atrial Fibrillation" and their relevant abbreviations up to 10 July 2022. The results showed that HSPs have cytoprotective roles in atrial cardiomyocytes during AF by promoting reverse electrical and structural remodeling. Heat shock response (HSR) exhaustion, followed by low levels of HSPs, causes proteostasis derailment in cardiomyocytes, which is the basis of AF. Furthermore, potential implications of HSPs in the management of AF are discussed in detail. HSPs represent reliable biomarkers for predicting and staging AF. HSP inducers may serve as novel therapeutic modalities in postoperative AF. HSP induction, either by geranylgeranylacetone (GGA) or by other compounds presently in development, may therefore be an interesting new approach for upstream therapy for AF, a strategy that aims to prevent AF whilst minimizing the ventricular proarrhythmic risks of traditional anti-arrhythmic agents.
Collapse
Affiliation(s)
- Daiqi Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xuyao Han
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, Hong Kong, China
- Kent and Medway Medical School, Canterbury CT2 7NZ, UK
| | - Qingmiao Shao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Correspondence: (Q.S.); or (T.L.)
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Correspondence: (Q.S.); or (T.L.)
| |
Collapse
|
4
|
Pedriali G, Ramaccini D, Bouhamida E, Wieckowski MR, Giorgi C, Tremoli E, Pinton P. Perspectives on mitochondrial relevance in cardiac ischemia/reperfusion injury. Front Cell Dev Biol 2022; 10:1082095. [PMID: 36561366 PMCID: PMC9763599 DOI: 10.3389/fcell.2022.1082095] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is the most common cause of death worldwide and in particular, ischemic heart disease holds the most considerable position. Even if it has been deeply studied, myocardial ischemia-reperfusion injury (IRI) is still a side-effect of the clinical treatment for several heart diseases: ischemia process itself leads to temporary damage to heart tissue and obviously the recovery of blood flow is promptly required even if it worsens the ischemic injury. There is no doubt that mitochondria play a key role in pathogenesis of IRI: dysfunctions of these important organelles alter cell homeostasis and survival. It has been demonstrated that during IRI the system of mitochondrial quality control undergoes alterations with the disruption of the complex balance between the processes of mitochondrial fusion, fission, biogenesis and mitophagy. The fundamental role of mitochondria is carried out thanks to the finely regulated connection to other organelles such as plasma membrane, endoplasmic reticulum and nucleus, therefore impairments of these inter-organelle communications exacerbate IRI. This review pointed to enhance the importance of the mitochondrial network in the pathogenesis of IRI with the aim to focus on potential mitochondria-targeting therapies as new approach to control heart tissue damage after ischemia and reperfusion process.
Collapse
Affiliation(s)
- Gaia Pedriali
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | | | - Esmaa Bouhamida
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy,*Correspondence: Paolo Pinton, ; Elena Tremoli,
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy,Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy,*Correspondence: Paolo Pinton, ; Elena Tremoli,
| |
Collapse
|
5
|
Pei Q, Ni W, Yuan Y, Yuan J, Zhang X, Yao M. HSP70 Ameliorates Septic Lung Injury via Inhibition of Apoptosis by Interacting with KANK2. Biomolecules 2022; 12:410. [PMID: 35327602 PMCID: PMC8946178 DOI: 10.3390/biom12030410] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Acute lung injury is the most common type of organ damage with high incidence and mortality in sepsis, which is a poorly understood syndrome of disordered inflammation. The aims of this study are to explore whether heat shock protein 70 (HSP70), as a molecular chaperone, attenuates the septic lung injury, and to understand the underlying mechanisms. In our study, treatment with HSP70 ameliorated the survival rate, dysfunction of lung, inflammation, and apoptosis in cecal ligation and puncture (CLP)-treated mice as well as in LPS-treated human alveolar epithelial cells. Furthermore, HSP70 interacted with KANK2, leading to reversed cell viability and reduced apoptosis-inducing factor (AIF) and apoptosis. Additionally, knockdown of KANK2 in epithelial cells and deletion of hsp70.1 gene in CLP mice aggravated apoptosis and tissue damage, suggesting that interaction of KANK2 and HSP70 is critical for protecting lung injury induced by sepsis. HSP70 plays an important role in protection of acute lung injury caused by sepsis through interaction with KANK2 to reduce AIF release and apoptotic cell. HSP70 is a novel potential therapeutic approach for attenuation of septic lung injury.
Collapse
Affiliation(s)
- Qing Pei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
| | - Wei Ni
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430000, China; (W.N.); (J.Y.)
| | - Yihang Yuan
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Jing Yuan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430000, China; (W.N.); (J.Y.)
| | - Xiong Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| |
Collapse
|
6
|
Ai W, Bae S, Ke Q, Su S, Li R, Chen Y, Yoo D, Lee E, Jon S, Kang PM. Bilirubin Nanoparticles Protect Against Cardiac Ischemia/Reperfusion Injury in Mice. J Am Heart Assoc 2021; 10:e021212. [PMID: 34622671 PMCID: PMC8751875 DOI: 10.1161/jaha.121.021212] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Ischemia/reperfusion (I/R) injury causes overproduction of reactive oxygen species, which are the major culprits of oxidative stress that leads to inflammation, apoptosis, myocardial damage, and dysfunction. Bilirubin acts as a potent endogenous antioxidant that is capable of scavenging various reactive oxygen species. We have previously generated bilirubin nanoparticles (BRNPs) consisting of polyethylene glycol–conjugated bilirubin. In this study, we examined the therapeutic effects of BRNPs on myocardial I/R injury in mice. Methods and Results In vivo imaging using fluorophore encapsulated BRNPs showed BRNPs preferentially targeted to the site of I/R injury in the heart. Cardiac I/R surgery was performed by first ligating the left anterior descending coronary artery. After 45 minutes, reperfusion was achieved by releasing the ligation. BRNPs were administered intraperitoneally at 5 minutes before and 24 hours after reperfusion. Mice that received BRNPs showed significant improvements in their cardiac output, assessed by echocardiogram and pressure volume loop measurements, compared with the ones that received vehicle treatment. BRNPs treatment also significantly reduced the myocardial infarct size in mice that underwent cardiac I/R, compared with the vehicle‐treatment group. In addition, BRNPs effectively suppressed reactive oxygen species and proinflammatory factor levels, as well as the amount of cardiac apoptosis. Conclusions Taken together, BRNPs could exert their therapeutic effects on cardiac I/R injury through attenuation of oxidative stress, apoptosis, and inflammation, providing a novel therapeutic modality for myocardial I/R injury.
Collapse
Affiliation(s)
- Wen Ai
- Cardiovascular InstituteBeth Israel Deaconess Medical Center and Harvard Medical School Boston MA.,Department of Cardiology Huazhong University of Science and Technology Union Shenzhen Hospital Shenzhen China
| | - Soochan Bae
- Cardiovascular InstituteBeth Israel Deaconess Medical Center and Harvard Medical School Boston MA
| | - Qingen Ke
- Cardiovascular InstituteBeth Israel Deaconess Medical Center and Harvard Medical School Boston MA
| | - Shi Su
- Cardiovascular InstituteBeth Israel Deaconess Medical Center and Harvard Medical School Boston MA
| | - Ruijian Li
- Cardiovascular InstituteBeth Israel Deaconess Medical Center and Harvard Medical School Boston MA
| | - Yanwei Chen
- Cardiovascular InstituteBeth Israel Deaconess Medical Center and Harvard Medical School Boston MA.,Department of Cardiology Huazhong University of Science and Technology Union Shenzhen Hospital Shenzhen China
| | - Dohyun Yoo
- Department of Biological Sciences Korea Advanced Institute of Science and Technology (KAIST) Daejeon South Korea
| | - Eesac Lee
- Cardiovascular InstituteBeth Israel Deaconess Medical Center and Harvard Medical School Boston MA
| | - Sangyong Jon
- Department of Biological Sciences Korea Advanced Institute of Science and Technology (KAIST) Daejeon South Korea
| | - Peter M Kang
- Cardiovascular InstituteBeth Israel Deaconess Medical Center and Harvard Medical School Boston MA
| |
Collapse
|
7
|
Zhang J, Wang H, Sun X. Sevoflurane Postconditioning Reduces Hypoxia/Reoxygenation Injury in Cardiomyocytes via Upregulation of Heat Shock Protein 70. J Microbiol Biotechnol 2021; 31:1069-1078. [PMID: 34226409 PMCID: PMC9705948 DOI: 10.4014/jmb.2103.03040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Sevoflurane postconditioning (SPostC) has been proved effective in cardioprotection against myocardial ischemia/reperfusion injury. It was also reported that heat shock protein 70 (HSP70) could be induced by sevoflurane, which played a crucial role in hypoxic/reoxygenation (HR) injury of cardiomyocytes. However, the mechanism by which sevoflurane protects cardiomyocytes via HSP70 is still not understood. Here, we aimed to investigate the related mechanisms of SPostC inducing HSP70 expression to reduce the HR injury of cardiomyocytes. After the HR cardiomyocytes model was established, the cells transfected with siRNA for HSP70 (siHSP70) or not were treated with sevoflurane during reoxygenation. The lactate dehydrogenase (LDH) level was detected by colorimetry while cell viability and apoptosis were detected by MTT and flow cytometry. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to detect HSP70, apoptosis-, cell cycle-associated factors, iNOS, and Cox-2 expressions. Enzyme-linked immuno sorbent assay (ELISA) was used to measure malondialdehyde (MDA) and superoxide dismutase (SOD). SPostC decreased apoptosis, cell injury, oxidative stress and inflammation and increased viability of HR-induced cardiomyocytes. In addition, SPostC downregulated Bax and cleaved caspase-3 levels, while SPostC upregulated Bcl-2, CDK-4, Cyclin D1, and HSP70 levels. SiHSP70 had the opposite effect that SPostC had on HR-induced cardiomyocytes. Moreover, siHSP70 further reversed the effect of SPostC on apoptosis, cell injury, oxidative stress, inflammation, viability and the expressions of HSP70, apoptosis-, and cell cycle-associated factors in HR-induced cardiomyocytes. In conclusion, this study demonstrates that SPostC can reduce the HR injury of cardiomyocytes by inducing HSP70 expression.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, P.R. China
| | - Haiyan Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, P.R. China
| | - Xizhi Sun
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, Shandong, P.R. China,Corresponding author Phone: +86-0535-6691999 E-mail:
| |
Collapse
|
8
|
Calpain-Mediated Mitochondrial Damage: An Emerging Mechanism Contributing to Cardiac Disease. Cells 2021; 10:cells10082024. [PMID: 34440793 PMCID: PMC8392834 DOI: 10.3390/cells10082024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Calpains belong to the family of calcium-dependent cysteine proteases expressed ubiquitously in mammals and many other organisms. Activation of calpain is observed in diseased hearts and is implicated in cardiac cell death, hypertrophy, fibrosis, and inflammation. However, the underlying mechanisms remain incompletely understood. Recent studies have revealed that calpains target and impair mitochondria in cardiac disease. The objective of this review is to discuss the role of calpains in mediating mitochondrial damage and the underlying mechanisms, and to evaluate whether targeted inhibition of mitochondrial calpain is a potential strategy in treating cardiac disease. We expect to describe the wealth of new evidence surrounding calpain-mediated mitochondrial damage to facilitate future mechanistic studies and therapy development for cardiac disease.
Collapse
|
9
|
Role of a Heat Shock Transcription Factor and the Major Heat Shock Protein Hsp70 in Memory Formation and Neuroprotection. Cells 2021; 10:cells10071638. [PMID: 34210082 PMCID: PMC8305005 DOI: 10.3390/cells10071638] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Heat shock proteins (Hsps) represent the most evolutionarily ancient, conserved, and universal system for protecting cells and the whole body from various types of stress. Among Hsps, the group of proteins with a molecular weight of 70 kDa (Hsp70) plays a particularly important role. These proteins are molecular chaperones that restore the native conformation of partially denatured proteins after exposure to proteotoxic forms of stress and are critical for the folding and intracellular trafficking of de novo synthesized proteins under normal conditions. Hsp70s are expressed at high levels in the central nervous system (CNS) of various animals and protect neurons from various types of stress, including heat shock, hypoxia, and toxins. Numerous molecular and behavioral studies have indicated that Hsp70s expressed in the CNS are important for memory formation. These proteins contribute to the folding and transport of synaptic proteins, modulate signaling cascades associated with synaptic activation, and participate in mechanisms of neurotransmitter release. In addition, HSF1, a transcription factor that is activated under stress conditions and mediates Hsps transcription, is also involved in the transcription of genes encoding many synaptic proteins, whose levels are increased in neurons under stress and during memory formation. Thus, stress activates the molecular mechanisms of memory formation, thereby allowing animals to better remember and later avoid potentially dangerous stimuli. Finally, Hsp70 has significant protective potential in neurodegenerative diseases. Increasing the level of endogenous Hsp70 synthesis or injecting exogenous Hsp70 reduces neurodegeneration, stimulates neurogenesis, and restores memory in animal models of ischemia and Alzheimer’s disease. These findings allow us to consider recombinant Hsp70 and/or Hsp70 pharmacological inducers as potential drugs for use in the treatment of ischemic injury and neurodegenerative disorders.
Collapse
|
10
|
Adini A, Adini I, Grad E, Tal Y, Danenberg HD, Kang PM, Matthews BD, D’Amato RJ. The Prominin-1-Derived Peptide Improves Cardiac Function Following Ischemia. Int J Mol Sci 2021; 22:5169. [PMID: 34068392 PMCID: PMC8153573 DOI: 10.3390/ijms22105169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Myocardial infarction (MI) remains the leading cause of death in the western world. Despite advancements in interventional revascularization technologies, many patients are not candidates for them due to comorbidities or lack of local resources. Non-invasive approaches to accelerate revascularization within ischemic tissues through angiogenesis by providing Vascular Endothelial Growth Factor (VEGF) in protein or gene form has been effective in animal models but not in humans likely due to its short half-life and systemic toxicity. Here, we tested the hypothesis that PR1P, a small VEGF binding peptide that we developed, which stabilizes and upregulates endogenous VEGF, could be used to improve outcome from MI in rodents. To test this hypothesis, we induced MI in mice and rats via left coronary artery ligation and then treated animals with every other day intraperitoneal PR1P or scrambled peptide for 14 days. Hemodynamic monitoring and echocardiography in mice and echocardiography in rats at 14 days showed PR1P significantly improved multiple functional markers of heart function, including stroke volume and cardiac output. Furthermore, molecular biology and histological analyses of tissue samples showed that systemic PR1P targeted, stabilized and upregulated endogenous VEGF within ischemic myocardium. We conclude that PR1P is a potential non-invasive candidate therapeutic for MI.
Collapse
Affiliation(s)
- Avner Adini
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (B.D.M.); (R.J.D.)
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Irit Adini
- Department of Surgery, Harvard Medical School, The Center for Engineering in Medicine, Mass General Hospital, Shriners Hospitals for Children Boston, Boston, MA 02114, USA;
| | - Etty Grad
- Interventional Cardiology, Heart Institute, Hadassah Hebrew University Medical Center, Jerusalem 91200, Israel; (E.G.); (H.D.D.)
| | - Yuval Tal
- Allergy and Clinical Immunology Unit and Department of Medicine, Hadassah University Medical Center, Jerusalem 91200, Israel;
| | - Haim D. Danenberg
- Interventional Cardiology, Heart Institute, Hadassah Hebrew University Medical Center, Jerusalem 91200, Israel; (E.G.); (H.D.D.)
| | - Peter M. Kang
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Benjamin D. Matthews
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (B.D.M.); (R.J.D.)
- Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert J. D’Amato
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (B.D.M.); (R.J.D.)
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Novo N, Ferreira P, Medina M. The apoptosis-inducing factor family: Moonlighting proteins in the crosstalk between mitochondria and nuclei. IUBMB Life 2021; 73:568-581. [PMID: 33035389 DOI: 10.1002/iub.2390] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
In Homo sapiens, the apoptosis-inducing factor (AIF) family is represented by three different proteins, known as AIF, AMID and AIFL, that have in common the mitochondrial localisation in healthy cells, the presence of FAD- and NADH-dependent domains involved in an -albeit yet not well understood- oxidoreductase function and their capability to induce programmed cell death. AIF is the best characterised family member, while the information about AMID and AIFL is much scarcer. Nonetheless, available data support different roles as well as mechanisms of action of their particular apoptogenic and redox domains regarding both pro-apoptotic and anti-apoptotic activities. Moreover, diverse cellular functions, to date far from fully clarified, are envisaged for the transcripts corresponding to these three proteins. Here, we review the so far available knowledge on the moonlighting human AIF family from their molecular properties to their relevance in health and disease, through the evaluation of their potential cell death and redox functions in their different subcellular locations. This picture emerging from the current knowledge of the AIF family envisages its contribution to regulate signalling and transcription machineries in the crosstalk among mitochondria, the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Nerea Novo
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| | - Patricia Ferreira
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
- Institute of Biocomputation and Physics of Complex Systems (BIFI-IQFR and CBsC-CSIC Joint Units, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
12
|
Manukhina EB, Tseilikman VE, Komelkova MV, Lapshin MS, Goryacheva AV, Kondashevskaya MV, Mkhitarov VA, Lazuko SS, Tseilikman OB, Sarapultsev AP, Dmitrieva YA, Strizhikov VK, Kuzhel OP, Downey HF. Сardiac injury in rats with experimental posttraumatic stress disorder and mechanisms of its limitation in experimental posttraumatic stress disorder-resistant rats. J Appl Physiol (1985) 2021; 130:759-771. [PMID: 33411642 DOI: 10.1152/japplphysiol.00694.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Traumatic stress causes posttraumatic stress disorder (PTSD). PTSD is associated with cardiovascular diseases and risk of sudden cardiac death in some subjects. We compared effects of predator stress (PS, cat urine scent, 10 days) on mechanisms of cardiac injury and protection in experimental PTSD-vulnerable (PTSD) and -resistant (PTSDr) rats. Fourteen days post-stress, rats were evaluated with an elevated plus-maze test, and assigned to PTSD and PTSDr groups according to an anxiety index calculated from the test results. Cardiac injury was evaluated by: 1) exercise tolerance; 2) ECG; 3) myocardial histomorphology; 4) oxidative stress; 5) pro- and anti-inflammatory cytokines. Myocardial heat shock protein 70 (HSP70) was also measured. Experimental PTSD developed in 40% of rats exposed to PS. Exercise tolerance of PTSD rats was 25% less than control rats and 21% less than PTSDr rats. ECG QRS, QT, and OTc intervals were significantly longer in PTSD rats than in control and PTSDr rats. Only cardiomyocytes of PTSD rats had histomorphological signs of metabolic and hypoxic injury and impaired contractility. Oxidative stress markers were higher in PTSD than in PTSDr rats. Pro-inflammatory IL-6 was higher in PTSD rats than in control and PTSDr rats, and anti-inflammatory IL-4 was lower in PTSD than in control and PTSDr rats. Myocardial HSP70 was lower in PTSD rats than in PTSDr and control rats. Our conclusion was that rats with PTSD developed multiple signs of cardiac injury. PTSDr rats were resistant also to cardiac injury. Factors that limit cardiac damage in PS rats include reduced inflammation and oxidative stress and increased protective HSP70.NEW & NOTEWORTHY For the first time, rats exposed to stress were segregated into experimental PTSD (ePTSD)-susceptible and ePTSD-resistant rats. Cardiac injury, ECG changes, and impaired exercise tolerance were more pronounced in ePTSD-susceptible rats. Resistance to ePTSD was associated with decreased inflammation and oxidative stress and with increased protective heat shock protein 70. Results may help identify individuals at high risk of PTSD and also provide a foundation for developing preventive and therapeutic means to restrict PTSD-associated cardiac morbidity.
Collapse
Affiliation(s)
- Eugenia B Manukhina
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,Laboratory for Regulatory Mechanisms of Stress and Adaptation, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation.,Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Vadim E Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Maria V Komelkova
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Maxim S Lapshin
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Anna V Goryacheva
- Laboratory for Regulatory Mechanisms of Stress and Adaptation, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Marina V Kondashevskaya
- Laboratory for Immunomorphology of Inflammation, Research Institute of Human Morphology, Moscow, Russian Federation
| | - Vladimir A Mkhitarov
- Laboratory for Immunomorphology of Inflammation, Research Institute of Human Morphology, Moscow, Russian Federation
| | - Svetlana S Lazuko
- Department of Normal Physiology, Vitebsk State Medical University, Vitebsk, Republic of Belarus
| | - Olga B Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,School of Basic Medicine, Chelyabinsk State University, Chelyabinsk, Russian Federation
| | - Alexey P Sarapultsev
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,Laboratory of Immunopathophysiology, Institute of Immunology and Physiology of RAS, Ekaterinburg, Russian Federation
| | - Yulia A Dmitrieva
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Viktor K Strizhikov
- Department of Morphology and Histology, South Ural State Agricultural University, Troitsk, Russian Federation
| | - Olga P Kuzhel
- Department of Normal Physiology, Vitebsk State Medical University, Vitebsk, Republic of Belarus
| | - H Fred Downey
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
13
|
Boisguérin P, Covinhes A, Gallot L, Barrère C, Vincent A, Busson M, Piot C, Nargeot J, Lebleu B, Barrère-Lemaire S. A novel therapeutic peptide targeting myocardial reperfusion injury. Cardiovasc Res 2020; 116:633-644. [PMID: 31147690 DOI: 10.1093/cvr/cvz145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/16/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022] Open
Abstract
AIMS Regulated cell death is a main contributor of myocardial ischaemia-reperfusion (IR) injury during acute myocardial infarction. In this context, targeting apoptosis could be a potent therapeutical strategy. In a previous study, we showed that DAXX (death-associated protein) was essential for transducing the FAS-dependent apoptotic signal during IR injury. The present study aims at evaluating the cardioprotective effects of a synthetic peptide inhibiting FAS:DAXX interaction. METHODS AND RESULTS An interfering peptide was engineered and then coupled to the Tat cell penetrating peptide (Tat-DAXXp). Its internalization and anti-apoptotic properties were demonstrated in primary cardiomyocytes. Importantly, an intravenous bolus injection of Tat-DAXXp (1 mg/kg) 5 min before reperfusion in a murine myocardial IR model decreased infarct size by 48% after 24 h of reperfusion. In addition, Tat-DAXXp was still efficient after a 30-min delayed administration, and was completely degraded and eliminated within 24 h thereby reducing risks of potential side effects. Importantly, Tat-DAXXp reduced mouse early post-infarction mortality by 67%. Mechanistically, cardioprotection was supported by both anti-apoptotic and pro-survival effects, and an improvement of myocardial functional recovery as evidenced in ex vivo experiments. CONCLUSIONS Our study demonstrates that a single dose of Tat-DAXXp injected intravenously at the onset of reperfusion leads to a strong cardioprotection in vivo by inhibiting IR injury validating Tat-DAXXp as a promising candidate for therapeutic application.
Collapse
Affiliation(s)
- Prisca Boisguérin
- CRBM, Univ. Montpellier, CNRS, F-34293 Montpellier, France.,DIMNP, Univ. Montpellier, CNRS, F-34095 Montpellier, France
| | - Aurélie Covinhes
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| | - Laura Gallot
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| | - Christian Barrère
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| | - Anne Vincent
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| | - Muriel Busson
- IRCM, Univ. Montpellier, INSERM, F-34298 Montpellier, France
| | - Christophe Piot
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France.,Département de Cardiologie Interventionnelle, Clinique du Millénaire, F-34000 Montpellier, France
| | - Joël Nargeot
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| | - Bernard Lebleu
- DIMNP, Univ. Montpellier, CNRS, F-34095 Montpellier, France
| | - Stéphanie Barrère-Lemaire
- IGF, Univ. Montpellier, CNRS, INSERM, F-34094 Montpellier, France.,Laboratory of Excellence Ion Channel Science and Therapeutics, F-06560 Valbonne, France
| |
Collapse
|
14
|
Wu J, Chen S, Liu Y, Liu Z, Wang D, Cheng Y. Therapeutic perspectives of heat shock proteins and their protein-protein interactions in myocardial infarction. Pharmacol Res 2020; 160:105162. [DOI: 10.1016/j.phrs.2020.105162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022]
|
15
|
Alpha-Lipoic Acid Protects Cardiomyocytes against Heat Stroke-Induced Apoptosis and Inflammatory Responses Associated with the Induction of Hsp70 and Activation of Autophagy. Mediators Inflamm 2019; 2019:8187529. [PMID: 31885498 PMCID: PMC6914879 DOI: 10.1155/2019/8187529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/21/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Heat stroke (HS) is a life-threatening illness and defined as when body temperature elevates above 40°C accompanied by the systemic inflammatory response syndrome that results in multiple organ dysfunctions. α-Lipoic acid (ALA) acts as a cofactor of mitochondrial enzymes and exerts anti-inflammatory and antioxidant properties in a variety of diseases. This study investigates the beneficial effects of ALA on myocardial injury and organ damage caused by experimental HS and further explores its underlying mechanism. Male Wistar rats were exposed to 42°C until their rectal core temperature reached 42.9°C and ALA was pretreared 40 or 80 mg/kg (i.v.) 1.5 h prior to heat exposure. Results showed that HS-induced lethality and hypothermia were significantly alleviated by ALA treatment that also improved plasma levels of CRE, LDH, and CPK and myocardial injury biomarkers myoglobin and troponin. In addition, ALA reduced cardiac superoxide anion formation and protein expression of cleaved caspase 3 caused by HS. Proinflammatory cytokine TNF-α and NF-κB pathways were significantly reduced by ALA treatment which may be associated with the upregulation of Hsp70. ALA significantly increased the Atg5-12 complex and LC3B II/LC3B I ratio, whereas the p62 and p-mTOR expression was attenuated in HS rats, indicating the activation of autophagy by ALA. In conclusion, ALA ameliorated the deleterious effects of HS by exerting antioxidative and anti-inflammatory capacities. Induction of Hsp70 and activation of autophagy contribute to the protective effects of ALA in HS-induced myocardial injury.
Collapse
|
16
|
Dou Y, Jiang X, Xie H, He J, Xiao S. The Jun N-terminal kinases signaling pathway plays a "seesaw" role in ovarian carcinoma: a molecular aspect. J Ovarian Res 2019; 12:99. [PMID: 31639019 PMCID: PMC6802331 DOI: 10.1186/s13048-019-0573-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/21/2019] [Indexed: 12/16/2022] Open
Abstract
Ovarian cancer is the most common gynecological malignancy that causes cancer-related deaths in women today; this being the case, developing an understanding of ovarian cancer has become one of the major driving forces behind cancer research overall. Moreover, such research over the last 20 years has shown that the Jun N-terminal kinase (JNK) signaling pathway plays an important role in regulating cell death, survival, growth and proliferation in the mitogen-activated protein kinases (MAPK) signaling pathway, an important pathway in the formation of cancer. Furthermore, the JNK signaling pathway is often regulated by an abnormal activation in human tumors and is frequently reported in the literature for its effect on the progression of ovarian cancer. Although the FDA has approved some JNK inhibitors for melanoma, the agency has not approved JNK inhibitors for ovarian cancer. However, there are some experimental data on inhibitors and activators of the JNK signaling pathway in ovarian cancer, but related clinical trials need to be further improved. Although the Jun N-terminal kinase (JNK) signaling pathway is implicated in the formation of cancer in general, research has also indicated that it has a role in suppressing cancer as well. Here, we summarize this seemingly contradictory role of the JNK signaling pathway in ovarian cancer, that ‘seesaws’ between promoting and suppressing cancer, as well as summarizing the application of several JNK pathway inhibitors in cancer in general, and ovarian cancer in particular.
Collapse
Affiliation(s)
- Yingyu Dou
- Department of Gynecology and Obstetrics, the third Xiangya Hospital, the Central South University, Changsha, 410013, Hunan, China
| | - Xiaoyan Jiang
- Department of Gynecology and Obstetrics, the third Xiangya Hospital, the Central South University, Changsha, 410013, Hunan, China
| | - Hui Xie
- Department of Gynecology and Obstetrics, the third Xiangya Hospital, the Central South University, Changsha, 410013, Hunan, China
| | - Junyu He
- Cancer Research Institute, the Central South University, Changsha, 410011, Hunan, China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, the third Xiangya Hospital, the Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
17
|
Fadeeva NP, Antipova NV, Shender VO, Anufrieva KS, Stepanov GA, Bastola S, Shakhparonov MI, Pavlyukov MS. Identification of Novel Interaction Partners of AIF Protein on the Outer Mitochondrial Membrane. Acta Naturae 2018; 10:100-109. [PMID: 30713768 PMCID: PMC6351035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 10/25/2022] Open
Abstract
In response to the wide variety of external and internal signals, mammalian cells undergo apoptosis, programmed cell death. Dysregulation of apoptosis is involved in multiple human diseases, including cancer, autoimmunity, and ischemic injuries. Two types of apoptosis have been described: the caspase-dependent one, leading to digestion of cellular proteins, and caspase-independent apoptosis, resulting in DNA fragmentation. The latter type of apoptosis is executed by AIF protein and is believed to have appeared first during evolution. The key step in the caspase-independent apoptosis program is the dissociation of AIF from the outer mitochondrial membrane (OMM). However, the molecular mechanism of interaction between AIF and OMM remains poorly understood. In this study, we demonstrated that AIF can bind to OMM via mortalin protein. We confirmed interaction between AIF and mortalin both in vitro and in vivo and mapped the amino acid sequences that are important for the binding of these proteins. Next, we showed that apoptosis induction by chemotherapy leads to downregulation of AIF-mortalin interaction and dissociation of AIF from the OMM. Finally, a bioinformatic analysis demonstrated that a high level of mortalin expression correlates with a worse survival prognosis for glioma patients. Altogether, our data revealed that mortalin plays an important role in the regulation of the caspase-independent apoptotic pathway and allowed us to speculate that inhibition of AIF-mortalin interaction may induce a dissociation of AIF from the OMM and subsequent apoptosis of cancer cells.
Collapse
Affiliation(s)
- N. P. Fadeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - N. V. Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - V. O. Shender
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - K. S. Anufrieva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - G. A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Akad. Lavrentiev Ave., 8, Novosibirsk, 630090, Russia
| | - S. Bastola
- Department of Neurosurgery, University of Alabama at Birmingham, AL 35294, USA
| | - M. I. Shakhparonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| | - M. S. Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, Moscow, 117997, Russia
| |
Collapse
|
18
|
Song Y, Zhong C, Wang X. Heat shock protein 70: A promising therapeutic target for myocardial ischemia–reperfusion injury. J Cell Physiol 2018; 234:1190-1207. [DOI: 10.1002/jcp.27110] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/29/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Yan‐Jun Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
- School of Laboratory Medicine and Biotechnology Southern Medical University Guangzhou China
| | - Chong‐Bin Zhong
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
| | - Xian‐Bao Wang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
19
|
Wang S, Wu J, You J, Shi H, Xue X, Huang J, Xu L, Jiang G, Yuan L, Gong X, Luo H, Ge J, Cui Z, Zou Y. HSF1 deficiency accelerates the transition from pressure overload-induced cardiac hypertrophy to heart failure through endothelial miR-195a-3p-mediated impairment of cardiac angiogenesis. J Mol Cell Cardiol 2018; 118:193-207. [DOI: 10.1016/j.yjmcc.2018.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/10/2018] [Accepted: 03/27/2018] [Indexed: 01/30/2023]
|
20
|
Heat shock protein 70 protects cardiomyocytes through suppressing SUMOylation and nucleus translocation of phosphorylated eukaryotic elongation factor 2 during myocardial ischemia and reperfusion. Apoptosis 2018; 22:608-625. [PMID: 28205128 DOI: 10.1007/s10495-017-1355-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Myocardial ischemia and reperfusion (MIR) results in cardiomyocyte apoptosis with severe outcomes, which blocks cardiac tissue recovering from myocardial ischemia diseases. Heat shock protein 70 (HSP70) is one of protective molecule chaperones which could regulate the nucleus translocation of other proteins. In addition, eukaryotic elongation factor 2 (eEF2), which modulates protein translation process, is vital to the recovery of heart during MIR. However, the relationship between HSP70 and eEF2 and its effects on MIR are unclear. The expression and relationship between HSP70 and eEF2 is confirmed by western blot, immunoprecipitation in vitro using cardiomyocyte cell line H9c2 and in vivo rat MIR model. The further investigation was conducted in H9c2 cells with detection for cell-cycle and apoptosis. It is revealed that eEF2 interacted and be regulated by HSP70, which kept eEF2 as dephosphorylated status and preserved the function of eEF2 during MIR. In addition, HSP70 suppressed the nucleus translocation of phosphorylated eEF2, which inhibited cardiomyocyte apoptosis during myocardial reperfusion stage. Furthermore, HSP70 also interacted with C-terminal fragment of eEF2, which could reverse the nucleus translocation and cardiomyocyte apoptosis caused by N-terminal fragment of eEF2. HSP70 draw on advantage and avoid defect of MIR through regulating phosphorylation and nucleus translocation of eEF2.
Collapse
|
21
|
Krech J, Tong G, Wowro S, Walker C, Rosenthal LM, Berger F, Schmitt KRL. Moderate therapeutic hypothermia induces multimodal protective effects in oxygen-glucose deprivation/reperfusion injured cardiomyocytes. Mitochondrion 2017; 35:1-10. [PMID: 28396253 DOI: 10.1016/j.mito.2017.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/01/2017] [Accepted: 04/04/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Therapeutic hypothermia has been shown to attenuate myocardial cell death due to ischemia/reperfusion injury. However, cellular mechanisms of cooling remain to be elucidated. Especially during reperfusion, mitochondrial dysfunction contributes to cell death by releasing apoptosis inductors. The aim of the present study was to investigate the effects of moderate therapeutic hypothermia (33.5°C) on mitochondrial mediated apoptosis in ischemia/reperfusion-injured cardiomyocytes. METHODS Ischemic injury was simulated by oxygen-glucose deprivation for 6h in glucose/serum-free medium at 0.2% O2 in mouse atrial HL-1 cardiomyocytes. Simulation of reperfusion was achieved by restoration of nutrients in complete supplemented medium and incubation at 21% O2. Early application of therapeutic hypothermia, cooling during the oxygen-glucose deprivation phase, was initiated after 3h of oxygen-glucose deprivation and maintained for 24h. Mitochondrial membrane integrity was assessed by cytochrome c and AIF protein releases. Furthermore, mitochondria were stained with MitoTracker Red and intra-cellular cytochrome c localization was visualized by immunofluorescence staining. Moreover, anti-apoptotic Bcl-2 and Hsp70 as well as phagophore promoting LC3-II protein expressions were analyzed by Western-blot analysis. RESULTS Therapeutic hypothermia initiated during oxygen-glucose deprivation significantly reduced mitochondrial release of cytochrome c and AIF in cardiomyocytes during reperfusion. Secondly, anti-apoptotic Bcl-2/Bax ratio and Hsp70 protein expressions were significantly upregulated due to hypothermia, indicating an inhibition of both caspase-dependent and -independent apoptosis. Furthermore, cardiomyocytes treated with therapeutic hypothermia showed increased LC3-II protein levels associated with the mitochondria during the first 3h of reperfusion, indicating the initiation of phagophores formation and sequestration of presumably damaged mitochondrion. CONCLUSION Early application of therapeutic hypothermia effectively inhibited cardiomyocyte cell death due to oxygen-glucose deprivation/reperfusion-induced injury via multiple pathways. As hypothermia preserved mitochondrial membrane integrity, which resulted in reduced cytochrome c and AIF releases, induction of both caspase-dependent and -independent apoptosis was minimized. Secondly, cooling attenuated intrinsic apoptosis via Hsp70 upregulation and increasing anti-apoptotic Bcl-2/Bax ratio. Moreover, therapeutic hypothermia promoted mitochondrial associated LC3-II during the early phase of reperfusion, possibly leading to the sequestration and degradation of damaged mitochondrion to attenuate the activation of cell death.
Collapse
Affiliation(s)
- Jana Krech
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Giang Tong
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Sylvia Wowro
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Christoph Walker
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Lisa-Maria Rosenthal
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Felix Berger
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; Department of Pediatric Cardiology, Charité - University Medical Center, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Katharina Rose Luise Schmitt
- Department of Congenital Heart Disease/Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
22
|
Sun Y, Gao W, Zhao Y, Cao W, Liu Z, Cui G, Tong L, Lei F, Tang B. Visualization and Inhibition of Mitochondria-Nuclear Translocation of Apoptosis Inducing Factor by a Graphene Oxide-DNA Nanosensor. Anal Chem 2017; 89:4642-4647. [PMID: 28359155 DOI: 10.1021/acs.analchem.7b00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High concentrations of oxidized low density lipoprotein (oxLDL) induce aberrant apoptosis of vascular smooth muscle cells (VSMCs) in atherosclerotic plaques. This apoptosis cannot be blocked completely by the inhibition of caspase, and it eventually potentiates plaque disruption and risk for cardiovascular disease. Given the important role of apoptosis inducing factor (AIF) in caspase-independent apoptosis, here we develop an AIF-targeting nanosensor by the assembly of graphene oxide (GO) nanosheets and dye-labeled DNA hybrid structures. This nanosensor selectively localizes in the cytosol of VSMCs, where it exhibits a "turn-off" fluorescence signal. Under oxLDL stimuli, the release of AIF from mitochondria into cytosol liberates the DNA hybrid structures from the surface of GO and results in a "turn-on" fluorescence signal. This nanosensor is shown to possess rapid response, high sensitivity, and selectivity for AIF that enables real-time imaging of AIF translocation in VSMCs. Using this novel nanosensor, a better assessment of the apoptotic level of VSMCs and a more accurate evaluation of the extent of atherosclerotic lesions can be obtained. More importantly, the abundant binding between DNA hybrid structures and AIF inhibits the translocation of AIF into the nucleus and subsequent apoptosis in VSMCs. This inhibition may help stabilize plaque and reduce the risk of heart attack and stroke.
Collapse
Affiliation(s)
- Yuhui Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Yujie Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Wenhua Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Guanwei Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Fengcai Lei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| |
Collapse
|
23
|
Xie L, Wang Z, Li C, Yang K, Liang Y. Protective effect of nicotinamide adenine dinucleotide (NAD +) against spinal cord ischemia-reperfusion injury via reducing oxidative stress-induced neuronal apoptosis. J Clin Neurosci 2016; 36:114-119. [PMID: 27887979 DOI: 10.1016/j.jocn.2016.10.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/29/2016] [Indexed: 01/29/2023]
Abstract
As previous studies demonstrate that oxidative stress and apoptosis play crucial roles in ischemic pathogenesis and nicotinamide adenine dinucleotide (NAD+) treatment attenuates oxidative stress-induced cell death among primary neurons and astrocytes as well as significantly reduce cerebral ischemic injury in rats. We used a spinal cord ischemia injury (SCII) model in rats to verify our hypothesis that NAD+ could ameliorate oxidative stress-induced neuronal apoptosis. Adult male rats were subjected to transient spinal cord ischemia for 60min, and different doses of NAD+ were administered intraperitoneally immediately after the start of reperfusion. Neurological function was determined by Basso, Beattie, Bresnahan (BBB) scores. The oxidative stress level was assessed by superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The degree of apoptosis was analyzed by deoxyuridinetriphosphate nick-end labeling (TUNEL) staining and protein levels of cleaved caspase-3 and AIF (apoptosis inducing factor). The results showed that NAD+ at 50 or 100mg/kg significantly decreased the oxidative stress level and neuronal apoptosis in the spinal cord of ischemia-reperfusion rats compared with saline, as accompanied with the decreased oxidative stress, NAD+ administration significantly restrained the neuronal apoptosis after ischemia injury while improved the neurological and motor function. These findings suggested that NAD+ might protect against spinal cord ischemia-reperfusion via reducing oxidative stress-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Lei Xie
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Zhenfei Wang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Kai Yang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yu Liang
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, People's Republic of China; Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
24
|
Bae S, Park M, Kang C, Dilmen S, Kang TH, Kang DG, Ke Q, Lee SU, Lee D, Kang PM. Hydrogen Peroxide-Responsive Nanoparticle Reduces Myocardial Ischemia/Reperfusion Injury. J Am Heart Assoc 2016; 5:JAHA.116.003697. [PMID: 27930351 PMCID: PMC5210353 DOI: 10.1161/jaha.116.003697] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background During myocardial ischemia/reperfusion (I/R), a large amount of reactive oxygen species (ROS) is produced. In particular, overproduction of hydrogen peroxide (H2O2) is considered to be a main cause of I/R‐mediated tissue damage. We generated novel H2O2‐responsive antioxidant polymer nanoparticles (PVAX and HPOX) that are able to target the site of ROS overproduction and attenuate the oxidative stress‐associated diseases. In this study, nanoparticles were examined for their therapeutic effect on myocardial I/R injury. Methods and Results The therapeutic effect of nanoparticles during cardiac I/R was evaluated in mice. A single dose of PVAX (3 mg/kg) showed a significant improvement in both cardiac output and fraction shortening compared with poly(lactic‐coglycolic acid) (PLGA) particle, a non‐H2O2‐activatable nanoparticle. PVAX also significantly reduced the myocardial infarction/area compared with PLGA (48.7±4.2 vs 14.5±2.1). In addition, PVAX effectively reduced caspase‐3 activation and TUNEL‐positive cells compared with PLGA. Furthermore, PVAX significantly decreased TNF‐α and MCP‐1 mRNA levels. To explore the antioxidant effect of PVAX by scavenging ROS, dihydroethidium staining was used as an indicator of ROS generation. PVAX effectively suppressed the generation of ROS caused by I/R, whereas a number of dihydroethidium‐positive cells were observed in a group with PLGA I/R. In addition, PVAX significantly reduced the level of NADPH oxidase (NOX) 2 and 4 expression, which favors the reduction in ROS generation after I/R. Conclusions Taken together, these results suggest that H2O2‐responsive antioxidant PVAX has tremendous potential as a therapeutic agent for myocardial I/R injury.
Collapse
Affiliation(s)
- Soochan Bae
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Minhyung Park
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA.,Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea
| | - Changsun Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA.,Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea
| | - Serkan Dilmen
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Tae Hi Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Dong Goo Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA.,Department of Cardiology, Gwangju Christian Hospital, Gwangju, South Korea
| | - Qingen Ke
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA.,Harvard Medical School, Boston, MA
| | - Seung Uk Lee
- Department of Cardiology, Gwangju Christian Hospital, Gwangju, South Korea
| | - Dongwon Lee
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea
| | - Peter M Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA .,Harvard Medical School, Boston, MA.,Department of BIN Fusion Technology, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
25
|
Pal R, Ke Q, Pihan GA, Yesilaltay A, Penman ML, Wang L, Chitraju C, Kang PM, Krieger M, Kocher O. Carboxy-terminal deletion of the HDL receptor reduces receptor levels in liver and steroidogenic tissues, induces hypercholesterolemia, and causes fatal heart disease. Am J Physiol Heart Circ Physiol 2016; 311:H1392-H1408. [PMID: 27694217 DOI: 10.1152/ajpheart.00463.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/13/2016] [Indexed: 01/15/2023]
Abstract
The HDL receptor SR-BI mediates the transfer of cholesteryl esters from HDL to cells and controls HDL abundance and structure. Depending on the genetic background, loss of SR-BI causes hypercholesterolemia, anemia, reticulocytosis, splenomegaly, thrombocytopenia, female infertility, and fatal coronary heart disease (CHD). The carboxy terminus of SR-BI (505QEAKL509) must bind to the cytoplasmic adaptor PDZK1 for normal hepatic-but not steroidogenic cell-expression of SR-BI protein. To determine whether SR-BI's carboxy terminus is also required for normal protein levels in steroidogenic cells, we introduced into SR-BI's gene a 507Ala/STOP mutation that produces a truncated receptor (SR-BIΔCT). As expected, the dramatic reduction of hepatic receptor protein in SR-BIΔCT mice was similar to that in PDZK1 knockout (KO) mice. Unlike SR-BI KO females, SR-BIΔCT females were fertile. The severity of SR-BIΔCT mice's hypercholesterolemia was intermediate between those of SR-BI KO and PDZK1 KO mice. Substantially reduced levels of the receptor in adrenal cortical cells, ovarian cells, and testicular Leydig cells in SR-BIΔCT mice suggested that steroidogenic cells have an adaptor(s) functionally analogous to hepatic PDZK1. When SR-BIΔCT mice were crossed with apolipoprotein E KO mice (SR-BIΔCT/apoE KO), pathologies including hypercholesterolemia, macrocytic anemia, hepatic and splenic extramedullary hematopoiesis, massive splenomegaly, reticulocytosis, thrombocytopenia, and rapid-onset and fatal occlusive coronary arterial atherosclerosis and CHD (median age of death: 9 wk) were observed. These results provide new insights into the control of SR-BI in steroidogenic cells and establish SR-BIΔCT/apoE KO mice as a new animal model for the study of CHD.
Collapse
Affiliation(s)
- Rinku Pal
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Qingen Ke
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - German A Pihan
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ayce Yesilaltay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Marsha L Penman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Li Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Peter M Kang
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
26
|
Lee D, Park S, Bae S, Jeong D, Park M, Kang C, Yoo W, Samad MA, Ke Q, Khang G, Kang PM. Hydrogen peroxide-activatable antioxidant prodrug as a targeted therapeutic agent for ischemia-reperfusion injury. Sci Rep 2015; 5:16592. [PMID: 26563741 PMCID: PMC4643254 DOI: 10.1038/srep16592] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022] Open
Abstract
Overproduction of hydrogen peroxide (H2O2) causes oxidative stress and is the main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury. Suppression of oxidative stress is therefore critical in the treatment of I/R injury. Here, we report H2O2-activatable antioxidant prodrug (BRAP) that is capable of specifically targeting the site of oxidative stress and exerting anti-inflammatory and anti-apoptotic activities. BRAP with a self-immolative boronic ester protecting group was designed to scavenge H2O2 and release HBA (p-hydroxybenzyl alcohol) with antioxidant and anti-inflammatory activities. BRAP exerted potent antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)- and H2O2-stimulated cells by suppressing the generation of ROS and pro-inflammatory cytokines. In mouse models of hepatic I/R and cardiac I/R, BRAP exerted potent antioxidant, anti-inflammatory and anti-apoptotic activities due to the synergistic effects of H2O2-scavenging boronic esters and therapeutic HBA. In addition, administration of high doses of BRAP daily for 7 days showed no renal or hepatic function abnormalities. Therefore BRAP has tremendous therapeutic potential as H2O2-activatable antioxidant prodrug for the treatment of I/R injuries.
Collapse
Affiliation(s)
- Dongwon Lee
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea.,Polymer Fusion Research Center, Department of Polymer·Nano Science and Technology, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Seunggyu Park
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Soochan Bae
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| | - Dahee Jeong
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Minhyung Park
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Changsun Kang
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Wooyoung Yoo
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Mohammed A Samad
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea.,Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| | - Qingen Ke
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| | - Gilson Khang
- Department of BIN Convergence Technology, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea.,Polymer Fusion Research Center, Department of Polymer·Nano Science and Technology, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea
| | - Peter M Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, United States
| |
Collapse
|
27
|
Liu SB, Liu J, Liu DW, Wang XT, Yang RL. Inhibition of Poly-(ADP-Ribose) Polymerase Protects the Kidney in a Canine Model of Endotoxic Shock. Nephron Clin Pract 2015; 130:281-92. [PMID: 26184635 DOI: 10.1159/000435815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
Poly-(ADP-ribose) polymerases (PARPs), a super family of enzymes, play important roles in preserving genomic integrity, regulating transcriptions, protecting telomeres and determining cell fate. PARP overactivation leads to metabolic disorder and cell injury via depletion of energy substance. However, it is still unclear whether PARP overactivation happens during acute kidney injury (AKI) caused by endotoxic shock (ES). Here, we built a canine model of lipopolysaccharide-induced ES to explore the role of PARP during the development AKI. We also used an intravenous injection of 3-aminobenzamide (3-AB) to further explore whether PARP inhibition rescues the kidney from injury. Cell fate and energy metabolism were detected to explore the underlying mechanisms. As a result, Western blot and immunohistochemistry assays showed PARP overactivation in the very early phase of ES. Through PARP inhibition by 3-AB, we observed significant improvement of systemic hemodynamics, renal hemodynamics, renal oxygen metabolism and renal tubular cell apoptosis. These findings indicated that overactivation of PARP plays an important role in septic AKI. Inhibition of PARP overactivation may protect renal function against hemodynamic disorder, renal metabolism disturbance and renal cell apoptosis during endotoxic AKI.
Collapse
Affiliation(s)
- Si-bo Liu
- Surgical Intensive Care Unit, Dalian Municipal Central Hospital, Dalian City, China
| | | | | | | | | |
Collapse
|
28
|
Liu L, Chowdhury S, Uppal S, Fang X, Liu JL, Srikant CB. mReg2 inhibits nuclear entry of apoptosis-inducing factor in mouse insulinoma cells. Growth Factors 2015; 33:1-7. [PMID: 25370781 DOI: 10.3109/08977194.2014.980041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have reported earlier that murine-regenerating gene mReg2 protects MIN6 mouse insulinoma cells from ER stress and caspase-mediated apoptosis. In apoptotic cells, DNA damage is induced by the nuclear translocation of mitochondrial apoptosis-inducing factor (AIF). Here we tested the hypothesis that mReg2 may regulate Scythe and/or hsp70 which influence the nuclear import of AIF. Treatment with thapsigargin (Tg) or doxorubicin induced an increase in nuclear AIF in MIN6 cells carrying the empty transfection vector (MIN6-VC) but not in cells overexpressing mReg2 (MIN6-mReg2). On one hand, nuclear Scythe was higher in the nucleus of MIN6-mReg2 compared with that in MIN6-VC cells. mReg2 did not alter the expression of AIF or Scythe. On the other hand, mReg2 induced the expression of hsp70 which is known to promote cytosolic retention of AIF. We conclude that mReg2 inhibits AIF-mediated apoptosis by promoting the nuclear presence of Scythe and inducing hsp70.
Collapse
Affiliation(s)
- Lu Liu
- Fraser Laboratories, Department of Medicine, McGill University Health Science Centre and Royal Victoria Hospital , Montreal, Quebec , Canada
| | | | | | | | | | | |
Collapse
|
29
|
Choudhury S, Bae S, Ke Q, Lee JY, Singh SS, St-Arnaud R, del Monte F, Kang PM. Abnormal calcium handling and exaggerated cardiac dysfunction in mice with defective vitamin d signaling. PLoS One 2014; 9:e108382. [PMID: 25268137 PMCID: PMC4182450 DOI: 10.1371/journal.pone.0108382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022] Open
Abstract
Aim Altered vitamin D signaling is associated with cardiac dysfunction, but the pathogenic mechanism is not clearly understood. We examine the mechanism and the role of vitamin D signaling in the development of cardiac dysfunction. Methods and Results We analyzed 1α-hydroxylase (1α-OHase) knockout (1α-OHase−/−) mice, which lack 1α-OH enzymes that convert the inactive form to hormonally active form of vitamin D. 1α-OHase−/− mice showed modest cardiac hypertrophy at baseline. Induction of pressure overload by transverse aortic constriction (TAC) demonstrated exaggerated cardiac dysfunction in 1α-OHase−/− mice compared to their WT littermates with a significant increase in fibrosis and expression of inflammatory cytokines. Analysis of calcium (Ca2+) transient demonstrated profound Ca2+ handling abnormalities in 1α-OHase−/− mouse cardiomyocytes (CMs), and treatment with paricalcitol (PC), an activated vitamin D3 analog, significantly attenuated defective Ca2+ handling in 1α-OHase−/− CMs. We further delineated the effect of vitamin D deficiency condition to TAC by first correcting the vitamin D deficiency in 1α-OHase−/− mice, followed then by either a daily maintenance dose of vitamin D or vehicle (to achieve vitamin D deficiency) at the time of sham or TAC. In mice treated with vitamin D, there was a significant attenuation of TAC-induced cardiac hypertrophy, interstitial fibrosis, inflammatory markers, Ca2+ handling abnormalities and cardiac function compared to the vehicle treated animals. Conclusions Our results provide insight into the mechanism of cardiac dysfunction, which is associated with severely defective Ca2+ handling and defective vitamin D signaling in 1α-OHase−/− mice.
Collapse
Affiliation(s)
- Sangita Choudhury
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Soochan Bae
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Qingen Ke
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ji Yoo Lee
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sylvia S. Singh
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - René St-Arnaud
- Shriners Hospital and Departments of Surgery and Human Genetics, McGill University, Montreal, Canada
| | - Federica del Monte
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
30
|
Overexpression of the muscle-specific protein, melusin, protects from cardiac ischemia/reperfusion injury. Basic Res Cardiol 2014; 109:418. [PMID: 24859929 DOI: 10.1007/s00395-014-0418-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 02/02/2023]
Abstract
Melusin is a muscle-specific protein which interacts with β1 integrin cytoplasmic domain and acts as chaperone protein. Its overexpression induces improved resistance to cardiac overload delaying left ventricle dilation and reducing the occurrence of heart failure. Here, we investigated possible protective effect of melusin overexpression against acute ischemia/reperfusion (I/R) injury with or without Postconditioning cardioprotective maneuvers. Melusin transgenic (Mel-TG) mice hearts were subjected to 30-min global ischemia followed by 60-min reperfusion. Interestingly, infarct size was reduced in Mel-TG mice hearts compared to wild-type (WT) hearts (40.3 ± 3.5 % Mel-TG vs. 59.5 ± 3.8 % WT hearts; n = 11 animals/group; P < 0.05). The melusin protective effect was also demonstrated by measuring LDH release, which was 50 % lower in Mel-TG compared to WT. Mel-TG hearts had a higher baseline level of AKT, ERK1/2 and GSK3β phosphorylation, and displayed increased phospho-kinases level after I/R compared to WT mice. Post-ischemic Mel-TG hearts displayed also increased levels of the anti-apoptotic factor phospho-BAD. Importantly, pharmacological inhibition of PI3K/AKT (Wortmannin) and ERK1/2 (U0126) pathways abrogated the melusin protective effect. Notably, HSP90, a chaperone known to protect heart from I/R injury, showed high levels of expression in the heart of Mel-TG mice suggesting a possible collaboration of this molecule with AKT/ERK/GSK3β pathways in the melusin-induced protection. Postconditioning, known to activate AKT/ERK/GSK3β pathways, significantly reduced IS and LDH release in WT hearts, but had no additive protective effects in Mel-TG hearts. These findings implicate melusin as an enhancer of AKT and ERK pathways and as a novel player in cardioprotection from I/R injury.
Collapse
|
31
|
Protective role of heparin in the injury of the liver and kidney on the experimental model of ischemia/reperfusion. J Cardiothorac Surg 2014; 9:35. [PMID: 24533613 PMCID: PMC3931476 DOI: 10.1186/1749-8090-9-35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/03/2014] [Indexed: 01/14/2023] Open
Abstract
Background Surgery of thoracoabdominal aortic aneurysms (TAAA) is associated with high incidence of serious complications. Ischemia/reperfusion (I/R) injury may be responsible for these complications. We investigated the effect of degree of anticoagulation on remote organ I/R injuries and whether heparin is protective against I/R injury in addition to its anticoagulant properties. Methods Spraque Dawley rats were used to determine both liver and kidney concentrations of HSP-70,IL-6, MPO in four groups: ischemic control (operation with cross-clamping and intraperitoneal administration of 0.9% saline, n = 7), sham (operation without cross-clamping, n = 7), heparin (ACT level about 200), and high dose heparin (ACT level up to 600). Histological analyses of the organs were performed. Results Histopathological evaluation of kidney presented significant differences between groups with regards to the cytoplasmic vacuole formation, hemorrhage, tubular cell degeneration and tubular dilatation while heparinized group had best results. The kidney MPO and HSP-70 levels significantly decreased (p < 0.05), but IL-6 level was not significant (p > 0.05) in heparinized group when compared to ischemic control group. No statistically significant intergroup differences were detected in the tissue samples of liver. Immunohistochemical markers of the liver were compared and no statistically significant difference was found among the groups. Conclusion Heparin is an important anticoagulation agent in TAAA surgical procedures but the use of higher levels of heparin in the present study revealed no beneficial effects. Bleeding complications is much less when heparin is used in the real-world clinical practice as ACT levels of 200.
Collapse
|
32
|
Lee D, Bae S, Ke Q, Lee J, Song B, Karumanchi SA, Khang G, Choi HS, Kang PM. Hydrogen peroxide-responsive copolyoxalate nanoparticles for detection and therapy of ischemia-reperfusion injury. J Control Release 2013; 172:1102-10. [PMID: 24096013 DOI: 10.1016/j.jconrel.2013.09.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/02/2013] [Accepted: 09/24/2013] [Indexed: 01/01/2023]
Abstract
The main culprit in the pathogenesis of ischemia/reperfusion (I/R) injury is the generation of high level of hydrogen peroxide (H2O2). In this study, we report a novel diagnostic and therapeutic strategy for I/R injury based on H2O2-activatable copolyoxalate nanoparticles using a murine model of hind limb I/R injury. The nanoparticles are composed of hydroxybenzyl alcohol (HBA)-incorporating copolyoxalate (HPOX) that, in the presence of H2O2, degrades completely into three known and safe compounds, cyclohexanedimethanol, HBA and CO2. HPOX effectively scavenges H2O2 in a dose-dependent manner and hydrolyzes to release HBA which exerts intrinsic antioxidant and anti-inflammatory activities both in vitro and in vivo models of hind limb I/R. HPOX nanoparticles loaded with fluorophore effectively and robustly image H2O2 generated in hind limb I/R injury, demonstrating their potential for bioimaging of H2O2-associated diseases. Furthermore, HPOX nanoparticles loaded with anti-apoptotic drug effectively release the drug payload after I/R injury, exhibiting their effectiveness for a targeted drug delivery system for I/R injury. We anticipate that multifunctional HPOX nanoparticles have great potential as H2O2 imaging agents, therapeutics and drug delivery systems for H2O2-associated diseases.
Collapse
Affiliation(s)
- Dongwon Lee
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Chonbuk 561-756, South Korea; Department of Polymer Nano Science and Technology, Chonbuk National University, Jeonju, Chonbuk 561-756, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lin YT, Huang AC, Kuo CL, Yang JS, Lan YH, Yu CC, Huang WW, Chung JG. Induction of cell cycle arrest and apoptosis in human osteosarcoma U-2 OS cells by Solanum lyratum extracts. Nutr Cancer 2013; 65:469-79. [PMID: 23530647 DOI: 10.1080/01635581.2013.757627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This research focused on a Chinese herb medicine, Solanum lyratum Thunb (Solanaceae) by ethanol extracts (SLE) for investigating the molecular anticancer mechanism in vitro for exploring the means of cell death through the effects on mitochondrial function. We found that SLE induced cytotoxic effects in human osteosacroma U-2 OS cells, and these effects include cell morphological changes, a decrease of the percentage of viable cells and induction of apoptosis. The results suggest that cell death induced by SLE is closely related to apoptosis based on the observations of DAPI staining and sub-G1 phase in U-2 OS cells. Flow cytometric assays also showed that SLE promoted the production of reactive oxygen species and nitric oxide but decreased the levels of mitochondrial membrane potential and promoted the activations of caspase-8 and -9 in U-2 OS cells. SLE inhibited the level of Bcl-2 but promoted the Bax level, and both proteins led to the release of cytochrome c from mitochondria to cytosol and activation of caspase-9 and -3, resulting in the apoptotic death which is mediated through the mitochondrial pathway. Taken together, SLE was demonstrated to be effective in killing U-2 OS osteosacroma cells via the ROS-promoted and mitochondria- and caspase-dependent apoptotic pathways.
Collapse
Affiliation(s)
- Yi-Ting Lin
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Schriewer JM, Peek CB, Bass J, Schumacker PT. ROS-mediated PARP activity undermines mitochondrial function after permeability transition pore opening during myocardial ischemia-reperfusion. J Am Heart Assoc 2013; 2:e000159. [PMID: 23598272 PMCID: PMC3647275 DOI: 10.1161/jaha.113.000159] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Ischemia–reperfusion (I/R) studies have implicated oxidant stress, the mitochondrial permeability transition pore (mPTP), and poly(ADP‐ribose) polymerase (PARP) as contributing factors in myocardial cell death. However, the interdependence of these factors in the intact, blood‐perfused heart is not known. We therefore wanted to determine whether oxidant stress, mPTP opening, and PARP activity contribute to the same death pathway after myocardial I/R. Methods and Results A murine left anterior descending coronary artery (LAD) occlusion (30 minutes) and release (1 to 4 hours) model was employed. Experimental groups included controls and antioxidant‐treated, mPTP‐inhibited, or PARP‐inhibited hearts. Antioxidant treatment prevented oxidative damage, mPTP opening, ATP depletion, and PARP activity, placing oxidant stress as the proximal death trigger. Genetic deletion of cyclophilin D (CypD−/−) prevented loss of total NAD+ and PARP activity, and mPTP‐mediated loss of mitochondrial function. Control hearts showed progressive mitochondrial depolarization and loss of ATP from 1.5 to 4 hours of reperfusion, but not outer mitochondrial membrane rupture. Neither genetic deletion of PARP‐1 nor its pharmacological inhibition prevented the initial mPTP‐mediated depolarization or loss of ATP, but PARP ablation did allow mitochondrial recovery by 4 hours of reperfusion. Conclusions These results indicate that oxidant stress, the mPTP, and PARP activity contribute to a single death pathway after I/R in the heart. PARP activation undermines cell survival by preventing mitochondrial recovery after mPTP opening early in reperfusion. This suggests that PARP‐mediated prolongation of mitochondrial depolarization contributes significantly to cell death via an energetic crisis rather than by mitochondrial outer membrane rupture.
Collapse
Affiliation(s)
- Jacqueline M Schriewer
- Division of Neonatology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
35
|
Lafci G, Gedik HS, Korkmaz K, Erdem H, Cicek OF, Nacar OA, Yildirim L, Kaya E, Ankarali H. Efficacy of iloprost and montelukast combination on spinal cord ischemia/reperfusion injury in a rat model. J Cardiothorac Surg 2013; 8:64. [PMID: 23557242 PMCID: PMC3639838 DOI: 10.1186/1749-8090-8-64] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 04/01/2013] [Indexed: 01/25/2023] Open
Abstract
Background The thoracic or thoracoabdominal aortic aneurysm surgery may cause spinal cord ischemia because of aortic cross-clamping and may result in severe postoperative complications caused by spinal cord injury. Ischemia/reperfusion injury may directly or indirectly be responsible for these complications. In this study we sought to determine whether combination of iloprost and montelukast can reduce the ischemia/reperfusion injury of spinal cord in a rat model. Methods Medulla spinalis tissue concentrations of interleukin-6 (IL-6), myeloperoxidase (MPO) and heat shock protein 70 (HSP-70) were determined in 3 groups of Spraque Dawley rats: control group (operation with cross clamping and intraperitoneal administration of 0.9% saline, n = 7), sham group (operation without cross clamping, n = 7), and study group (operation with cross-clamping and intraperitoneal administration of iloprost (25 ng/kg) and montelukast (1 mg/kg), n = 7). The abdominal aorta was clamped for 45 minutes, with a proximal (just below the left renal artery) and a distal (just above the aortic bifurcation) clip in control and study groups. Hindlimb motor functions were evaluated at 6, 12, 24, and 48 hours using the Motor Deficit Index score. All rats were sacrificed 48 hours after the procedure and spinal cord tissue levels of myeloperoxidase, interleukin-6, and heat shock protein (HSP-70) were evaluated as markers of oxidative stress and inflammation. Histopathological analyses of spinal cord were also performed. Results The tissue level of HSP-70 was found to be similar among the 3 groups, however, MPO was highest and IL-6 receptor level was lowest in the control group (p = 0.007 and p = 0.005; respectively). In histopathological examination, there was no significant difference among the groups with respect to the neuronal cell degeneration, edema, or inflammation, but vascular congestion was found to be significantly more prominent in the control group than in the sham or in the study group (p = 0.05). Motor deficit index scores at 24 and 48 hours after ischemia were significantly lower in the study group than in the control group. Conclusion This study suggests that combined use of iloprost and montelukast may reduce ischemic damage in transient spinal cord ischemia and may provide better neurological outcome.
Collapse
|
36
|
Bae S, Singh SS, Yu H, Lee JY, Cho BR, Kang PM. Vitamin D signaling pathway plays an important role in the development of heart failure after myocardial infarction. J Appl Physiol (1985) 2013; 114:979-87. [PMID: 23429874 DOI: 10.1152/japplphysiol.01506.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Accumulating evidence suggests that vitamin D deficiency plays a crucial role in heart failure. However, whether vitamin D signaling itself plays an important role in cardioprotection is poorly understood. In this study, we examined the mechanism of modulating vitamin D signaling on progression to heart failure after myocardial infarction (MI) in mice. Vitamin D signaling was activated by administration of paricalcitol (PC), an activated vitamin D analog. Wild-type (WT) mice underwent sham or MI surgery and then were treated with either vehicle or PC. Compared with vehicle group, PC attenuated development of heart failure after MI associated with decreases in biomarkers, apoptosis, inflammation, and fibrosis. There was also improvement of cardiac function with PC treatment after MI. Furthermore, vitamin D receptor (VDR) mRNA and protein levels were restored by PC treatment. Next, to explore whether defective vitamin D signaling exhibited deleterious responses after MI, WT and VDR knockout (KO) mice underwent sham or MI surgery and were analyzed 4 wk after MI. VDR KO mice displayed a significant decline in survival rate and cardiac function compared with WT mice after MI. VDR KO mice also demonstrated a significant increase in heart failure biomarkers, apoptosis, inflammation, and fibrosis. Vitamin D signaling promotes cardioprotection after MI through anti-inflammatory, antifibrotic and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Soochan Bae
- Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
37
|
Choi YJ, Om JY, Kim NH, Chang JE, Park JH, Kim JY, Lee HJ, Kim SS, Chun W. Heat shock transcription factor-1 suppresses apoptotic cell death and ROS generation in 3-nitropropionic acid-stimulated striatal cells. Mol Cell Biochem 2012; 375:59-67. [PMID: 23225230 DOI: 10.1007/s11010-012-1528-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/23/2012] [Indexed: 12/25/2022]
Abstract
Striatal neuronal cell death is one of the pathological features of Huntington's disease (HD). Overexpression of some heat shock proteins (HSPs) has been reported to suppress the aggregate formation of mutant huntingtin and concurrent cell death. Heat shock transcription factor-1 (HSF 1), a major transcription factor of HSPs, has also been reported to be increased in HD models. However, the exact role of HSF 1 in the pathogenesis of HD has not been clearly elucidated. 3-Nitropropionic acid (3NP), an irreversible inhibitor of the mitochondrial complex II, induces selective damage to the striatum in animals and produces clinical features of HD. To investigate roles of HSF 1 on 3NP-induced oxidative stress, HSF 1 was transiently overexpressed in striatal cells. Expression of HSF 1 significantly attenuated 3NP-induced apoptotic striatal cell death and resulted in increased expression of HSP 70. Furthermore, expression of HSF 1 significantly attenuated 3NP-induced intracellular reactive oxygen species (ROS) generation. Taken together, the present study clearly demonstrates that HSF 1 attenuates 3NP-induced apoptotic striatal cell death and ROS generation, possibly through HSP70 expression, suggesting that HSF 1 might be a valuable therapeutic target in the treatment of HD.
Collapse
Affiliation(s)
- Yong-Joon Choi
- Department of Pharmacology, College of Medicine, Kangwon National University, Hyoja-2, Chunchon, Kangwon 200-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gedik HS, Korkmaz K, Erdem H, Karakilic E, Lafci G, Ankarali H. Protective effect of heparin in the end organ ischemia/reperfusion injury of the lungs and heart. J Cardiothorac Surg 2012; 7:123. [PMID: 23151309 PMCID: PMC3558397 DOI: 10.1186/1749-8090-7-123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/03/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Ischemia/reperfusion (I/R) injury is harmful to the cardiovascular system and is responsible for the inflammatory response and multiple organ dysfunctions. In this study we investigated the effect of activated clotting time level on the aortic cross-clamping triggers a systemic inflammatory response and it effects to lungs and heart. METHODS End organ concentrations of interleukin-6 (IL-6), myeloperoxidase (MPO) and heat shock protein 70 (HSP-70) were determined in four groups of Spraque Dawley rats: ischemic control (operation with cross clamping received IP of 0.9% saline at 2 ml/kg n=7) Sham (operation without cross clamping, n=7), heparin (ACT level about 200), High dose heparin (ACT level up to 600) The infrarenal aorta was clamped for 45 minutes by a mini cross clamp approximately 1cm below the renal artery and 1cm iliac bifurcation in all groups without sham group. Heparin was given intraperitoneal (IP) before the procedure. All rats were sacrificed 48 h later. In a second experiment, the effects of I/R on remote organs (lungs and heart) were harvested for analysis. We evaluated tissue levels of myeloperoxidase, interleukin-6, and heat shock protein (HSP-70) were analyzed as markers oxidative stress and inflammation. Histological analyses of the organs were performed. RESULTS The lungs paranchymal MPO and HSP-70 levels significantly decreased (p<0.05), but IL-6 level was not significant (p>0.05) in heparinized and high dose heparinized groups when compared to ischemic control group. Histopathological evaluation as edema, cell degeneration, inflammation statistically significantly decreased in both group heparinized and high dose heparinized compared with ischemic control group (p<0.05). The heart paranchymal MPO levels significantly decreased in heparinized and high dose heparinized groups when compared to ischemic control group (p=0.023). IL-6, HSP-70 levels were not significant heparinized and high dose heparinized groups when compared to ischemic control group (p=0.0489, p=0.0143). Histopathological evaluation as degeneration statistically significantly decreased in both group heparinized and High dose heparinized compared with ischemic control group (p=0.005). CONCLUSION Heparin decreased remote organs injury on the lung and heart after ischemia/reperfusion of infra-renal section of the body in the rat model. So, we should be balance to act level for avoid to I/R injury per operative and early post operative period as providing ACT level nearly 200.
Collapse
Affiliation(s)
- Hikmet Selcuk Gedik
- Cardiovascular Surgery Department of Ankara Numune Education and Research Hospital, Talatpasa Bulvari, 06100, Ankara, Turkey
| | - Kemal Korkmaz
- Cardiovascular Surgery Department of Ankara Numune Education and Research Hospital, Talatpasa Bulvari, 06100, Ankara, Turkey
| | - Havva Erdem
- Pathology Department of Duzce University School of Medicine, Konuralp, Duzce, Turkey
| | - Evvah Karakilic
- Emergency Department of Ankara Numune Education and Research Hospital, Talatpasa Bulvari, 06100, Ankara, Turkey
| | - Gokhan Lafci
- Cardiovascular Surgery Department of Turkiye Yuksek Ihtisas Hospital Sihhiye, 06100, Ankara, Turkey
| | - Handan Ankarali
- Biostatistic Department of Duzce University School of Medicine, Konuralp, Duzce, Turkey
| |
Collapse
|
39
|
Zhou C, Pan W, Wang XP, Chen TS. Artesunate induces apoptosis via a Bak-mediated caspase-independent intrinsic pathway in human lung adenocarcinoma cells. J Cell Physiol 2012; 227:3778-86. [PMID: 22378505 DOI: 10.1002/jcp.24086] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This report is designed to explore the exact molecular mechanism by which artesunate (ART), a semisynthetic derivative of the herbal antimalaria drug artemisinin, induces apoptosis in human lung adenocarcinoma (ASTC-a-1 and A549) cell lines. ART treatment induced ROS-mediated apoptosis in a concentration- and time-dependent fashion accompanying the loss of mitochondrial potential and subsequent release of Smac and AIF indicative of intrinsic apoptosis pathway. Blockage of casapse-8 and -9 did not show any inhibitory effect on the ART-induced apoptosis, but which was remarkably prevented by silencing AIF. Of the utmost importance, ART treatment induced the activation of Bak but not Bax, and silencing Bak but not Bax remarkably inhibited ART-induced apoptosis and AIF release. Furthermore, although ART treatment did not induced a significant down-regulation of voltage-dependent anion channel 2 (VDAC2) expression and up-regulation of Bim expression, silencing VDAC2 potently enhanced the ART-induced Bak activation and apoptosis which were significantly prevented by silencing Bim. Collectively, our data firstly demonstrate that ART induces Bak-mediated caspase-independent intrinsic apoptosis in which Bim and VDAC2 as well as AIF play important roles in both ASTC-a-1 and A549 cell lines, indicating a potential therapeutic effect of ART for lung cancer.
Collapse
Affiliation(s)
- Chenjuan Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | | | | | | |
Collapse
|
40
|
Abstract
Pyridine nucleotides (PNs), such as NAD(H) and NADP(H), mediate electron transfer in many catabolic and anabolic processes. In general, NAD(+) and NADP(+) receive electrons to become NADH and NADPH by coupling with catabolic processes. These electrons are utilized for biologically essential reactions such as ATP production, anabolism and cellular oxidation-reduction (redox) regulation. Thus, in addition to ATP, NADH and NADPH could be defined as high-energy intermediates and "molecular units of currency" in energy transfer. We discuss the significance of PNs as energy/electron transporters and signal transducers, in regulating cell death and/or survival processes. In the first part of this review, we describe the role of NADH and NADPH as electron donors for NADPH oxidases (Noxs), glutathione (GSH), and thioredoxin (Trx) systems in cellular redox regulation. Noxs produce superoxide/hydrogen peroxide yielding oxidative environment, whereas GSH and Trx systems protect against oxidative stress. We then describe the role of NAD(+) and NADH as signal transducers through NAD(+)-dependent enzymes such as PARP-1 and Sirt1. PARP-1 is activated by damaged DNA in order to repair the DNA, which attenuates energy production through NAD(+) consumption; Sirt1 is activated by an increased NAD(+)/NADH ratio to facilitate signal transduction for metabolic adaption as well as stress responses. We conclude that PNs serve as an important interface for distinct cellular responses, including stress response, energy metabolism, and cell survival/death.
Collapse
Affiliation(s)
- Shin-Ichi Oka
- Cardiovascular Research Institute, UMDNJ-Newark, 185 S Orange Ave, MSB G609, Newark, NJ 07103, USA
| | | | | |
Collapse
|
41
|
Abstract
Pyridine nucleotides are abundant soluble coenzymes and they undergo reversible oxidation and reduction in several biological electron-transfer reactions. They are comprised of two mononucleotides, adenosine monophosphate and nicotinamide mononucleotide, and are present as oxidized and reduced nicotinamide adenine dinucleotides in their unphosphorylated (NAD(+) and NADH) and phosphorylated (NADP(+) and NADPH) forms. In the past, pyridine nucleotides were considered to be primarily electron-shuttling agents involved in supporting the activity of enzymes that catalyze oxidation-reduction reactions. However, it has recently been demonstrated that pyridine nucleotides and the balance between the oxidized and reduced forms play a wide variety of pivotal roles in cellular functions as important interfaces, beyond their coenzymatic activity. These include maintenance of redox status, cell survival and death, ion channel regulation, and cell signaling under normal and pathological conditions. Furthermore, targeting pyridine nucleotides could potentially provide therapeutically useful avenues for treating cardiovascular diseases. This review series will highlight the functional significance of pyridine nucleotides and underscore their physiological role in cardiovascular function and their clinical relevance to cardiovascular medicine.
Collapse
Affiliation(s)
- Michinari Nakamura
- Cardiovascular Research Institute, UMDNJ, New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ 07103, USA
| | | | | |
Collapse
|
42
|
Weiss JBW, Eisenhardt SU, Stark GB, Bode C, Moser M, Grundmann S. MicroRNAs in ischemia-reperfusion injury. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2012; 2:237-247. [PMID: 22937493 PMCID: PMC3427975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/21/2012] [Indexed: 06/01/2023]
Abstract
Ischemia-reperfusion injury (IRI) is a major causal factor of tissue injury in various clinical settings including myocardial infarction, stroke, and free microsurgical tissue transfer. MicroRNAs (miRNAs, miRs) are short, non-coding RNA molecules involved in post-transcriptional regulation of gene expression. During the last years they have emerged as regulators of IRI as well as ischemic preconditioning and ischemic postconditioning. Here we give an overview of the current literature and describe the potential use of miRNA-based therapeutics for the treatment and prevention of ischemia-reperfusion injury in the future.
Collapse
Affiliation(s)
- Jakob BW Weiss
- Department of Internal Medicine III, University Hospital FreiburgGermany
- Department of Plastic and Hand Surgery, University Hospital FreiburgGermany
| | | | - G Björn Stark
- Department of Plastic and Hand Surgery, University Hospital FreiburgGermany
| | - Christoph Bode
- Department of Internal Medicine III, University Hospital FreiburgGermany
| | - Martin Moser
- Department of Internal Medicine III, University Hospital FreiburgGermany
| | | |
Collapse
|
43
|
Natarajan SK, Becker DF. Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress. ACTA ACUST UNITED AC 2012; 2012:11-27. [PMID: 22593641 DOI: 10.2147/chc.s4955] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Flavoproteins catalyze a variety of reactions utilizing flavin mononucleotide or flavin adenine dinucleotide as cofactors. The oxidoreductase properties of flavoenzymes implicate them in redox homeostasis, oxidative stress, and various cellular processes, including programmed cell death. Here we explore three critical flavoproteins involved in apoptosis and redox signaling, ie, apoptosis-inducing factor (AIF), proline dehydrogenase, and NADPH oxidase. These proteins have diverse biochemical functions and influence apoptotic signaling by unique mechanisms. The role of AIF in apoptotic signaling is two-fold, with AIF changing intracellular location from the inner mitochondrial membrane space to the nucleus upon exposure of cells to apoptotic stimuli. In the mitochondria, AIF enhances mitochondrial bioenergetics and complex I activity/assembly to help maintain proper cellular redox homeostasis. After translocating to the nucleus, AIF forms a chromatin degrading complex with other proteins, such as cyclophilin A. AIF translocation from the mitochondria to the nucleus is triggered by oxidative stress, implicating AIF as a mitochondrial redox sensor. Proline dehydrogenase is a membrane-associated flavoenzyme in the mitochondrion that catalyzes the rate-limiting step of proline oxidation. Upregulation of proline dehydrogenase by the tumor suppressor, p53, leads to enhanced mitochondrial reactive oxygen species that induce the intrinsic apoptotic pathway. NADPH oxidases are a group of enzymes that generate reactive oxygen species for oxidative stress and signaling purposes. Upon activation, NADPH oxidase 2 generates a burst of superoxide in neutrophils that leads to killing of microbes during phagocytosis. NADPH oxidases also participate in redox signaling that involves hydrogen peroxide-mediated activation of different pathways regulating cell proliferation and cell death. Potential therapeutic strategies for each enzyme are also highlighted.
Collapse
Affiliation(s)
- Sathish Kumar Natarajan
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE
| | | |
Collapse
|
44
|
Cellular FLICE-inhibitory protein protects against cardiac remodelling after myocardial infarction. Basic Res Cardiol 2011; 107:239. [PMID: 22202974 DOI: 10.1007/s00395-011-0239-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/28/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
Cellular FLICE-inhibitory protein (cFLIP) is a member of the tumour necrosis factor signalling pathway and a regulator of apoptosis, and it has a role in cardiac remodelling following myocardial infarction (MI) that remains largely uncharacterised. This study aimed to determine the function of cFLIP as a potential mediator of post-infarction cardiac remodelling. Our results show diminished cFLIP expression in failing human and murine post-infarction hearts. Genetically engineered cFLIP heterozygous (cFLIP+/-, HET) mice, cardiac-specific cFLIP-overexpressing transgenic (TG) mice and their respective wild-type (WT) and non-transgenic controls were subjected to MI by permanent ligation of their left anterior descending artery. Cardiac structure and function were assessed by echocardiography and pressure-volume loop analysis. Apoptosis, inflammation, angiogenesis, and fibrosis were evaluated in the myocardium. The HET mice showed exacerbated left ventricular (LV) contractile dysfunction, dilatation, and remodelling compared with WT mice 28 days after MI. Impaired LV function in the HET mice was associated with increases in infarct size, hypertrophy, apoptosis, inflammation, and interstitial fibrosis, and reduced capillary density. The TG mice displayed the opposite phenotype after MI. Moreover, adenovirus-mediated overexpression of cFLIP decreased LV dilatation and improved LV function and remodelling in both HET and WT mice. Further analysis of signalling events suggests that cFLIP promotes cardioprotection by interrupting JNK1/2 signalling and augmenting Akt signalling. In conclusion, our results indicate that cFLIP protects against the development of post-infarction cardiac remodelling. Thus, cFLIP gene delivery shows promise as a clinically powerful and novel therapeutic strategy for the treatment of heart failure after MI.
Collapse
|
45
|
Payne CM, Holubec H, Crowley-Skillicorn C, Nguyen H, Bernstein H, Wilcox G, Bernstein C. Maspin is a deoxycholate-inducible, anti-apoptotic stress-response protein differentially expressed during colon carcinogenesis. Clin Exp Gastroenterol 2011; 4:239-53. [PMID: 22162927 PMCID: PMC3234125 DOI: 10.2147/ceg.s24093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increased maspin expression in the colon is related to colon cancer risk and patient survival. Maspin is induced by the hydrophobic bile acid, deoxycholate (DOC), which is an endogenous carcinogen and inducer of oxidative stress and DNA damage in the colon. Persistent exposure of colon epithelial cells, in vitro, to high physiologic levels of DOC results in increased constitutive levels of maspin protein expression associated with the development of apoptosis resistance. When an apoptosis-resistant colon epithelial cell line (HCT-116RC) developed in the authors' laboratory was treated with a maspin-specific siRNA probe, there was a statistically significant increase in apoptosis compared to treatment with an siRNA control probe. These results indicate, for the first time, that maspin is an anti-apoptotic protein in the colon. Immunohistochemical evaluation of maspin expression in human colonic epithelial cells during sporadic colon carcinogenesis (131 human tissues evaluated) indicated a statistically significant increase in maspin protein expression beginning at the polyp stage of carcinogenesis. There was no statistically significant difference in maspin expression between hyperplastic/adenomatous polyps and colonic adenocarcinomas. The absence of "field defects" in the non-neoplastic colonic mucosa of patients with colonic neoplasia indicates that maspin may drive the growth of tumors, in part, through its anti-apoptotic function.
Collapse
Affiliation(s)
- Claire M Payne
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona
| | | | | | | | | | | | | |
Collapse
|