1
|
Wang MM, Zhao Y, Liu J, Fan RR, Tang YQ, Guo ZY, Li T. The role of the cGAS-STING signaling pathway in viral infections, inflammatory and autoimmune diseases. Acta Pharmacol Sin 2024; 45:1997-2010. [PMID: 38822084 PMCID: PMC11420349 DOI: 10.1038/s41401-023-01185-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/18/2023] [Indexed: 06/02/2024] Open
Abstract
Pattern recognition receptors are an essential part of the immune system, which detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) and help shape both innate and adaptive immune responses. When dsDNA is present, cyclic GMP-AMP Synthase (cGAS) produces a second messenger called cyclic GMP-AMP (cGAMP), which then triggers an adaptor protein called STING, and eventually activates the expression of type I interferon (IFN) and pro-inflammatory cytokines in immune cells. The cGAS-STING signaling pathway has been receiving a lot of attention lately as a key immune-surveillance mediator. In this review, we summarize the present circumstances of the cGAS-STING signaling pathway in viral infections and inflammatory diseases, as well as autoimmune diseases. Modulation of the cGAS-STING signaling pathway provides potential strategies for treating viral infections, inflammatory diseases, and autoimmune diseases.
Collapse
Affiliation(s)
- Ming-Ming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Yue Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Rong-Rong Fan
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, 14183, Sweden
| | - Yan-Qing Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Zheng-Yang Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, 999078, China.
| |
Collapse
|
2
|
Wang Y. Immune-related biomarkers in myocardial infarction; diagnostic/prognostic value and therapeutic potential. J Biochem Mol Toxicol 2023; 37:e23489. [PMID: 37574886 DOI: 10.1002/jbt.23489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/24/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
The incidence of myocardial infarction (MI) is increasing worldwide on an annual basis. The incorporation of circulating biomarkers, along with electrocardiography, echocardiography, coronary angiograms, and other diagnostic techniques, is essential in the evaluation, prediction, and therapeutic efficacy assessment of patients afflicted with MI. Biomarker evaluation has been employed in the diagnosis of MI for over five decades. Further biomarker research can be carried out as newer biomarkers have been discovered in pathways such as inflammatory response, neurohormonal stimulation, or myocardial stress that initiate significantly earlier than myocyte necrosis and the diagnostic establishment of cardiac troponins. The assessment of biomarkers for MI is on the brink of a significant transformation due to advancements in comprehending the intricate pathophysiology of the condition. This has led to a pursuit of innovative biomarkers that could potentially overcome the limitations of current biomarkers. For individuals with a high-risk profile, this may facilitate tailoring of appropriate treatment. This review places emphasis on a diverse array of biomarkers that have the potential to offer diagnostic and prognostic information, as well as the latest clinical and preclinical evidence that is driving theoretical advancements in cardiovascular immunotherapy.
Collapse
Affiliation(s)
- Yanhai Wang
- Clinical Laboratory Department, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
3
|
Lei C, Tan Y, Ni D, Peng J, Yi G. cGAS-STING signaling in ischemic diseases. Clin Chim Acta 2022; 531:177-182. [DOI: 10.1016/j.cca.2022.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 12/15/2022]
|
4
|
The cGAS-STING signaling in cardiovascular and metabolic diseases: Future novel target option for pharmacotherapy. Acta Pharm Sin B 2022; 12:50-75. [PMID: 35127372 PMCID: PMC8799861 DOI: 10.1016/j.apsb.2021.05.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling exert essential regulatory function in microbial-and onco-immunology through the induction of cytokines, primarily type I interferons. Recently, the aberrant and deranged signaling of the cGAS-STING axis is closely implicated in multiple sterile inflammatory diseases, including heart failure, myocardial infarction, cardiac hypertrophy, nonalcoholic fatty liver diseases, aortic aneurysm and dissection, obesity, etc. This is because of the massive loads of damage-associated molecular patterns (mitochondrial DNA, DNA in extracellular vesicles) liberated from recurrent injury to metabolic cellular organelles and tissues, which are sensed by the pathway. Also, the cGAS-STING pathway crosstalk with essential intracellular homeostasis processes like apoptosis, autophagy, and regulate cellular metabolism. Targeting derailed STING signaling has become necessary for chronic inflammatory diseases. Meanwhile, excessive type I interferons signaling impact on cardiovascular and metabolic health remain entirely elusive. In this review, we summarize the intimate connection between the cGAS-STING pathway and cardiovascular and metabolic disorders. We also discuss some potential small molecule inhibitors for the pathway. This review provides insight to stimulate interest in and support future research into understanding this signaling axis in cardiovascular and metabolic tissues and diseases.
Collapse
Key Words
- AA, amino acids
- AAD, aortic aneurysm and dissection
- AKT, protein kinase B
- AMPK, AMP-activated protein kinase
- ATP, adenosine triphosphate
- Ang II, angiotensin II
- CBD, C-binding domain
- CDG, c-di-GMP
- CDNs, cyclic dinucleotides
- CTD, C-terminal domain
- CTT, C-terminal tail
- CVDs, cardiovascular diseases
- Cardiovascular diseases
- Cys, cysteine
- DAMPs, danger-associated molecular patterns
- Damage-associated molecular patterns
- DsbA-L, disulfide-bond A oxidoreductase-like protein
- ER stress
- ER, endoplasmic reticulum
- GTP, guanosine triphosphate
- HAQ, R71H-G230A-R293Q
- HFD, high-fat diet
- ICAM-1, intracellular adhesion molecule 1
- IFN, interferon
- IFN-I, type 1 interferon
- IFNAR, interferon receptors
- IFNIC, interferon-inducible cells
- IKK, IκB kinase
- IL, interleukin
- IRF3, interferon regulatory factor 3
- ISGs, IRF-3-dependent interferon-stimulated genes
- Inflammation
- LBD, ligand-binding pocket
- LPS, lipopolysaccharides
- MI, myocardial infarction
- MLKL, mixed lineage kinase domain-like protein
- MST1, mammalian Ste20-like kinases 1
- Metabolic diseases
- Mitochondria
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor-kappa B
- NLRP3, NOD-, LRR- and pyrin domain-containing protein 3
- NO2-FA, nitro-fatty acids
- NTase, nucleotidyltransferase
- PDE3B/4, phosphodiesterase-3B/4
- PKA, protein kinase A
- PPI, protein–protein interface
- Poly: I.C, polyinosinic-polycytidylic acid
- ROS, reactive oxygen species
- SAVI, STING-associated vasculopathy with onset in infancy
- SNPs, single nucleotide polymorphisms
- STIM1, stromal interaction molecule 1
- STING
- STING, stimulator of interferon genes
- Ser, serine
- TAK1, transforming growth factor β-activated kinase 1
- TBK1, TANK-binding kinase 1
- TFAM, mitochondrial transcription factor A
- TLR, Toll-like receptors
- TM, transmembrane
- TNFα, tumor necrosis factor-alpha
- TRAF6, tumor necrosis factor receptor-associated factor 6
- TREX1, three prime repair exonuclease 1
- YAP1, Yes-associated protein 1
- cGAMP, 2′,3′-cyclic GMP–AMP
- cGAS
- cGAS, cyclic GMP–AMP synthase
- dsDNA, double-stranded DNA
- hSTING, human stimulator of interferon genes
- mTOR, mammalian target of rapamycin
- mtDNA, mitochondrial DNA
Collapse
|
5
|
Silvis MJM, Kaffka genaamd Dengler SE, Odille CA, Mishra M, van der Kaaij NP, Doevendans PA, Sluijter JPG, de Kleijn DPV, de Jager SCA, Bosch L, van Hout GPJ. Damage-Associated Molecular Patterns in Myocardial Infarction and Heart Transplantation: The Road to Translational Success. Front Immunol 2020; 11:599511. [PMID: 33363540 PMCID: PMC7752942 DOI: 10.3389/fimmu.2020.599511] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
In the setting of myocardial infarction (MI), ischemia reperfusion injury (IRI) occurs due to occlusion (ischemia) and subsequent re-establishment of blood flow (reperfusion) of a coronary artery. A similar phenomenon is observed in heart transplantation (HTx) when, after cold storage, the donor heart is connected to the recipient's circulation. Although reperfusion is essential for the survival of cardiomyocytes, it paradoxically leads to additional myocardial damage in experimental MI and HTx models. Damage (or danger)-associated molecular patterns (DAMPs) are endogenous molecules released after cellular damage or stress such as myocardial IRI. DAMPs activate pattern recognition receptors (PRRs), and set in motion a complex signaling cascade resulting in the release of cytokines and a profound inflammatory reaction. This inflammatory response is thought to function as a double-edged sword. Although it enables removal of cell debris and promotes wound healing, DAMP mediated signalling can also exacerbate the inflammatory state in a disproportional matter, thereby leading to additional tissue damage. Upon MI, this leads to expansion of the infarcted area and deterioration of cardiac function in preclinical models. Eventually this culminates in adverse myocardial remodeling; a process that leads to increased myocardial fibrosis, gradual further loss of cardiomyocytes, left ventricular dilation and heart failure. Upon HTx, DAMPs aggravate ischemic damage, which results in more pronounced reperfusion injury that impacts cardiac function and increases the occurrence of primary graft dysfunction and graft rejection via cytokine release, cardiac edema, enhanced myocardial/endothelial damage and allograft fibrosis. Therapies targeting DAMPs or PRRs have predominantly been investigated in experimental models and are potentially cardioprotective. To date, however, none of these interventions have reached the clinical arena. In this review we summarize the current evidence of involvement of DAMPs and PRRs in the inflammatory response after MI and HTx. Furthermore, we will discuss various current therapeutic approaches targeting this complex interplay and provide possible reasons why clinical translation still fails.
Collapse
Affiliation(s)
- Max J. M. Silvis
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Clémence A. Odille
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mudit Mishra
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels P. van der Kaaij
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Central Military Hospital, Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- UMC Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Saskia C. A. de Jager
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Netherlands
| | - Lena Bosch
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gerardus P. J. van Hout
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
6
|
Cherubini JM, Cheng JL, Williams JS, MacDonald MJ. Sleep deprivation and endothelial function: reconciling seminal evidence with recent perspectives. Am J Physiol Heart Circ Physiol 2020; 320:H29-H35. [PMID: 33064569 DOI: 10.1152/ajpheart.00607.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sleep is critical for the maintenance of physiological homeostasis and, as such, inadequate sleep beckons a myriad of pathologies. Sleep deprivation is a growing health concern in contemporary society since short sleep durations are associated with increased cardiovascular disease risk and atherosclerotic plaque development. Vascular endothelial dysfunction is an antecedent to atherosclerosis and cardiovascular disease. Herein, we review seminal literature indicating that short sleep durations attenuate endothelial function and explore more recent evidence indicating that sleep deprivation perturbs autonomic balance and the circadian rhythmicity of peripheral vascular clock components. We further examine literature that indicates a mechanistic link between short sleep duration and endothelial dysfunction and subsequent morbidity. Understanding the mechanisms that regulate endothelial function in the context of sleep deprivation facilitates the development and optimization of interventions, such as exercise, that mitigate the ramifications of inadequate sleep on vascular function and cardiovascular health.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/sleep-deprivation-and-endothelial-function/.
Collapse
Affiliation(s)
| | - Jem L Cheng
- Vascular Dynamics Lab, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
7
|
Wang J, Zhou H. Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia -reperfusion injury. Acta Pharm Sin B 2020; 10:1866-1879. [PMID: 33163341 PMCID: PMC7606115 DOI: 10.1016/j.apsb.2020.03.004] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/19/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial damage is a critical contributor to cardiac ischemia/reperfusion (I/R) injury. Mitochondrial quality control (MQC) mechanisms, a series of adaptive responses that preserve mitochondrial structure and function, ensure cardiomyocyte survival and cardiac function after I/R injury. MQC includes mitochondrial fission, mitochondrial fusion, mitophagy and mitochondria-dependent cell death. The interplay among these responses is linked to pathological changes such as redox imbalance, calcium overload, energy metabolism disorder, signal transduction arrest, the mitochondrial unfolded protein response and endoplasmic reticulum stress. Excessive mitochondrial fission is an early marker of mitochondrial damage and cardiomyocyte death. Reduced mitochondrial fusion has been observed in stressed cardiomyocytes and correlates with mitochondrial dysfunction and cardiac depression. Mitophagy allows autophagosomes to selectively degrade poorly structured mitochondria, thus maintaining mitochondrial network fitness. Nevertheless, abnormal mitophagy is maladaptive and has been linked to cell death. Although mitochondria serve as the fuel source of the heart by continuously producing adenosine triphosphate, they also stimulate cardiomyocyte death by inducing apoptosis or necroptosis in the reperfused myocardium. Therefore, defects in MQC may determine the fate of cardiomyocytes. In this review, we summarize the regulatory mechanisms and pathological effects of MQC in myocardial I/R injury, highlighting potential targets for the clinical management of reperfusion.
Collapse
Affiliation(s)
- Jin Wang
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| |
Collapse
|
8
|
Li P, Wang J, Zhao X, Ru J, Tian T, An Y, Tang L, Bai Y. PTEN inhibition attenuates endothelial cell apoptosis in coronary heart disease via modulating the AMPK-CREB-Mfn2-mitophagy signaling pathway. J Cell Physiol 2020; 235:4878-4889. [PMID: 31654396 DOI: 10.1002/jcp.29366] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Atherosclerosis (AS) is a major pathogenic factor in patients with cardiovascular diseases, and endothelial dysfunction (ED) plays a primary role in the occurrence and development of AS. In our study, we attempted to evaluate the role of phosphatase and tensin homolog (PTEN) in endothelial cell apoptosis under oxidized low-density lipoprotein (ox-LDL) stimulation and identify the associated mechanisms. The results of our study demonstrated that ox-LDL induced human umbilical vein endothelial cell (HUVEC) death via mitochondrial apoptosis, as evidenced by reduced mitochondrial potential, increased mitochondria permeability transition pore opening, cellular calcium overload, and caspase-9/-3 activation. In addition, ox-LDL also suppressed cellular energy production via downregulating the mitochondrial respiratory complex. Moreover, ox-LDL impaired HUVECs migration. Western blot analysis showed that PTEN expression was upregulated after exposure to ox-LDL and knockdown of PTEN could attenuate ox-LDL-mediated endothelial cell damage. Furthermore, we found that ox-LDL impaired mitophagy activity, whereas PTEN deletion could improve mitophagic flux and this effect relied on the activity of the AMP-activated protein kinase (AMPK)-cAMP-response element-binding protein (CREB)-Mitofusin-2 (Mfn2) axis. When the AMPK-CREB-Mfn2 pathway was inhibited, PTEN deletion-associated HUVECs protection was significantly reduced, suggesting that the AMPK-CREB-Mfn2-mitophagy axis is required for PTEN deletion-mediated endothelial cell survival under ox-LDL. Taken together, our results indicate that ox-LDL-induced endothelial cell damage is associated with PTEN overexpression, and inhibition of PTEN could promote endothelial survival via activating the AMPK-CREB-Mfn2-mitophagy signaling pathway.
Collapse
Affiliation(s)
- Pei Li
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xia Zhao
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Jing Ru
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Tian Tian
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yun An
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Liying Tang
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yuzhi Bai
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Fu Z, Jiao Y, Wang J, Zhang Y, Shen M, Reiter RJ, Xi Q, Chen Y. Cardioprotective Role of Melatonin in Acute Myocardial Infarction. Front Physiol 2020; 11:366. [PMID: 32411013 PMCID: PMC7201093 DOI: 10.3389/fphys.2020.00366] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a pleiotropic, indole secreted, and synthesized by the human pineal gland. Melatonin has biological effects including anti-apoptosis, protecting mitochondria, anti-oxidation, anti-inflammation, and stimulating target cells to secrete cytokines. Its protective effect on cardiomyocytes in acute myocardial infarction (AMI) has caused widespread interest in the actions of this molecule. The effects of melatonin against oxidative stress, promoting autophagic repair of cells, regulating immune and inflammatory responses, enhancing mitochondrial function, and relieving endoplasmic reticulum stress, play crucial roles in protecting cardiomyocytes from infarction. Mitochondrial apoptosis and dysfunction are common occurrence in cardiomyocyte injury after myocardial infarction. This review focuses on the targets of melatonin in protecting cardiomyocytes in AMI, the main molecular signaling pathways that melatonin influences in its endogenous protective role in myocardial infarction, and the developmental prospect of melatonin in myocardial infarction treatment.
Collapse
Affiliation(s)
- Zhenhong Fu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Jiao
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jihang Wang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingzhi Shen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
- San Antonio Cellular Therapeutics Institute, Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, United States
| | - Qing Xi
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Song J, Zhao W, Lu C, Shao X. Spliced X-box binding protein 1 induces liver cancer cell death via activating the Mst1-JNK-mROS signalling pathway. J Cell Physiol 2020; 235:9378-9387. [PMID: 32335916 DOI: 10.1002/jcp.29742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/11/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022]
Abstract
Previous studies have found that the primary pathogenesis of liver cancer progression is linked to excessive cancer cell proliferation and rapid metastasis. Although therapeutic advances have been made for the treatment of liver cancer, the mechanism underlying the liver cancer progression has not been fully addressed. In the present study, we explored the role of spliced X-box binding protein 1 (XBP1) in regulating the viability and death of liver cancer cells in vitro. Our study demonstrated that XBP1 was upregulated in liver cancer cells when compared to the primary hepatocytes. Interestingly, the deletion of XBP1 could reduce the viability of liver cancer cells in vitro via inducing apoptotic response. Further, we found that XBP1 downregulation was also linked to proliferation arrest and migration inhibition. At the molecular levels, XBP1 inhibition is followed by activation of the Mst1 pathway which promoted the phosphorylation of c-Jun N-terminal kinase (JNK). Then, the active Mst1-JNK pathway mediated mitochondrial reactive oxygen species (mROS) overproduction and then excessive ROS induced cancer cell death. Therefore, our study demonstrated a novel role played by XBP1 in modulating the viability of liver cancer cells via the Mst1-JNK-mROS pathways.
Collapse
Affiliation(s)
- Jie Song
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Chang Lu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Xue Shao
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 2020; 23:299-314. [PMID: 32246225 DOI: 10.1007/s10456-020-09720-2] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
As reperfusion therapies have become more widely used in acute myocardial infarction patients, ischemia-induced myocardial damage has been markedly reduced, but reperfusion-induced cardiac injury has become increasingly evident. The features of cardiac ischemia-reperfusion (I/R) injury include microvascular perfusion defects, platelet activation and sequential cardiomyocyte death due to additional ischemic events at the reperfusion stage. Microvascular obstruction, defined as a no-reflow phenomenon, determines the infarct zone, myocardial function and peri-operative mortality. Cardiac microvascular endothelial cell injury may occur much earlier and with much greater severity than cardiomyocyte injury. Endothelial cells contain fewer mitochondria than other cardiac cells, and several of the pathological alterations during cardiac microvascular I/R injury involve mitochondria, such as increased mitochondrial reactive oxygen species (mROS) levels and disturbed mitochondrial dynamics. Although mROS are necessary physiological second messengers, high mROS levels induce oxidative stress, endothelial senescence and apoptosis. Mitochondrial dynamics, including fission, fusion and mitophagy, determine the shape, distribution, size and function of mitochondria. These adaptive responses modify extracellular signals and orchestrate intracellular processes such as cell proliferation, migration, metabolism, angiogenesis, permeability transition, adhesive molecule expression, endothelial barrier function and anticoagulation. In this review, we discuss the involvement of mROS and mitochondrial morphofunction in cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China. .,Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
12
|
Wang J, Toan S, Li R, Zhou H. Melatonin fine-tunes intracellular calcium signals and eliminates myocardial damage through the IP3R/MCU pathways in cardiorenal syndrome type 3. Biochem Pharmacol 2020; 174:113832. [PMID: 32006470 DOI: 10.1016/j.bcp.2020.113832] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022]
Abstract
Cardiorenal syndrome type-3 (CRS-3) is characterized by acute cardiac injury induced by acute kidney injury. Here, we investigated the causes of CRS-3 by analyzing cardiac function after renal ischemia-reperfusion injury (IRI) using echocardiography and evaluation of pro-inflammatory markers, calcium balance, mitochondrial function, and cardiomyocyte death. Our results show that renal IRI reduces cardiac diastolic function associated with cardiomyocyte death and inflammatory responses. Renal IRI also disrupts cardiomyocyte energy metabolism, induces calcium overload, and impairs mitochondrial function, as evidenced by reduced mitochondrial membrane potential and increased mitochondrial fission. Further, renal IRI induces phosphorylation of inositol 1,4,5-trisphosphate receptor (IP3R) and expression of mitochondrial calcium uniporter (MCU), resulting in cytoplasmic calcium overload and mitochondrial calcium accumulation. Pretreatment with melatonin attenuates renal IRI-mediated cardiac damage by maintaining myocardial diastolic function and reducing cardiomyocyte death. Melatonin also inhibits IP3R phosphorylation and MCU expression, thereby alleviating cytoplasmic and mitochondrial calcium overload. Blockade of IP3R has similar cardioprotective effects, whereas MCU activation abrogates the melatonin-mediated cardioprotection. These results show that the negative effects of renal IRI on myocardial viability and cardiac function are caused by induced IP3R phosphorylation, MCU upregulation, and calcium overload. Melatonin protects cardiac function against CRS-3 by suppressing IP3R-MCU signaling.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Sam Toan
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812, USA
| | - Ruibing Li
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing 100853, China.
| |
Collapse
|
13
|
Xing J, Wang Z, Xu H, Liu C, Wei Z, Zhao L, Ren L. Pak2 inhibition promotes resveratrol-mediated glioblastoma A172 cell apoptosis via modulating the AMPK-YAP signaling pathway. J Cell Physiol 2020; 235:6563-6573. [PMID: 32017068 DOI: 10.1002/jcp.29515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 01/08/2020] [Indexed: 12/28/2022]
Abstract
As a polyphenolic compound, resveratrol (Res) is widely present in a variety of plants. Previous studies have shown that Res can inhibit various tumors. However, its role in c remains largely unexplored. In the present study, we first demonstrated that Res inhibited cell viability and induced apoptosis of glioblastoma A172 cell. Further experiments showed that Res induced mitochondrial dysfunction and activated the activity of caspase-9. Functional studies have found that Res treatment is associated with an increase in the expression of Pak2. Interestingly, inhibition of Pak2 could further augment the proapoptotic effect of Res. Mechanistically, Pak2 inhibition induced reactive oxygen species overproduction, mitochondria-JNK pathway activation, and AMPK-YAP axis suppression. However, overexpression of YAP could abolish the anticancer effects of Res and Pak2 inhibition, suggesting a necessary role played by the AMPK-YAP pathway in regulating cancer-suppressive actions of Res and Pak2 inhibition. Altogether, our results indicated that Res in combination with Pak2 inhibition could further enhance the anticancer property of Res and this effect is mediated via the AMPK-YAP pathway.
Collapse
Affiliation(s)
- Jin Xing
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Zhihan Wang
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Hao Xu
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Chaobo Liu
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Zilong Wei
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Liang Zhao
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| | - Li Ren
- Department of Neurosurgery, Shanghai Pudong Hospital, Shanghai Fu Dan University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Li P, Hu F, Cao X, Luo L, Tu Q. Melatonin receptor protects cardiomyocyte against oxidative stress-induced apoptosis through the MAPK-ERK signaling pathway. J Recept Signal Transduct Res 2020; 40:117-125. [PMID: 31986953 DOI: 10.1080/10799893.2020.1719151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Li
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Fang Hu
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Xin Cao
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Liyun Luo
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| | - Qiuyun Tu
- Department of Gerontology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People’s Republic of China
| |
Collapse
|
15
|
Zhang Y, Zhang H, Shi W, Wang W. Mief1 augments thyroid cell dysfunction and apoptosis through inhibiting AMPK-PTEN signaling pathway. J Recept Signal Transduct Res 2020; 40:15-23. [PMID: 31960779 DOI: 10.1080/10799893.2020.1716799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Inflammation-mediated thyroid cell dysfunction and apoptosis increases the like-hood of hypothyroidism.Aim: Our aim in the present study is to explore the role of mitochondrial elongation factor 1 (Mief1) in thyroid cell dysfunction induced by TNFα.Materials and methods: Different doses of TNFα were used to incubate with thyroid cells in vitro. The survival rate, apoptotic index and proliferation capacity of thyroid cells were measured. Cellular energy metabolism and endoplasmic reticulum function related to protein synthesis were detected.Results: In response to TNFα treatment, the levels of Mief1 were increased, coinciding with a drop in the viability of thyroid cells in vitro. Loss of Mief1 attenuates TNFα-induced cell death through reducing the ratio of cell apoptosis. Further, we found that Mief1 deletion reversed cell energy metabolism and this effect was attributable to mitochondrial protection. Mief1 knockdown sustained mitochondrial membrane potential and reduced mitochondrial ROS overproduction. In addition, Mief1 knockdown also reduced endoplasmic reticulum stress, as evidenced by decreased levels of Chop and Caspase-12. Finally, our data verified that TNFα treatment inhibited the activity of AMPK-PTEN pathway whereas Mief1 deletion reversed the activity of AMPK and thus promoted the upregulation of PTEN. However, inhibition of AMPK-PTEN pathways could abolish the beneficial effects exerted by Mief1 deletion on thyroid cells damage and dysfunction.Conclusions: Altogether, our data indicate that immune abnormality-mediated thyroid cell dysfunction and death are alleviated by Mief1 deletion possible driven through reversing the activity of AMPK-PTEN pathways.
Collapse
Affiliation(s)
- Yonglan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Otorhinolaryngology Research Institute of Tianjin, Tianjin Key Laboratory of Auditory Speech Balance Medicine, Tianjin, People's Republic of China
| | - Haichao Zhang
- Department of Thyroid and Breast Surgery, Tianjin Fourth Central Hospital, Tianjin, People's Republic of China
| | - Wenjie Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Otorhinolaryngology Research Institute of Tianjin, Tianjin Key Laboratory of Auditory Speech Balance Medicine, Tianjin, People's Republic of China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, Otorhinolaryngology Research Institute of Tianjin, Tianjin Key Laboratory of Auditory Speech Balance Medicine, Tianjin, People's Republic of China
| |
Collapse
|
16
|
Pathological Roles of Mitochondrial Oxidative Stress and Mitochondrial Dynamics in Cardiac Microvascular Ischemia/Reperfusion Injury. Biomolecules 2020; 10:biom10010085. [PMID: 31948043 PMCID: PMC7023463 DOI: 10.3390/biom10010085] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are key regulators of cell fate through controlling ATP generation and releasing pro-apoptotic factors. Cardiac ischemia/reperfusion (I/R) injury to the coronary microcirculation has manifestations ranging in severity from reversible edema to interstitial hemorrhage. A number of mechanisms have been proposed to explain the cardiac microvascular I/R injury including edema, impaired vasomotion, coronary microembolization, and capillary destruction. In contrast to their role in cell types with higher energy demands, mitochondria in endothelial cells primarily function in signaling cellular responses to environmental cues. It is clear that abnormal mitochondrial signatures, including mitochondrial oxidative stress, mitochondrial fission, mitochondrial fusion, and mitophagy, play a substantial role in endothelial cell function. While the pathogenic role of each of these mitochondrial alterations in the endothelial cells I/R injury remains complex, profiling of mitochondrial oxidative stress and mitochondrial dynamics in endothelial cell dysfunction may offer promising potential targets in the search for novel diagnostics and therapeutics in cardiac microvascular I/R injury. The objective of this review is to discuss the role of mitochondrial oxidative stress on cardiac microvascular endothelial cells dysfunction. Mitochondrial dynamics, including mitochondrial fission and fusion, are critically discussed to understand their roles in endothelial cell survival. Finally, mitophagy, as a degradative mechanism for damaged mitochondria, is summarized to figure out its contribution to the progression of microvascular I/R injury.
Collapse
|
17
|
Gao J, Wang H, Li Y, Li W. Resveratrol attenuates cerebral ischaemia reperfusion injury via modulating mitochondrial dynamics homeostasis and activating AMPK-Mfn1 pathway. Int J Exp Pathol 2019; 100:337-349. [PMID: 31867811 DOI: 10.1111/iep.12336] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/04/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of cerebral ischaemia reperfusion injury (IRI) has not been fully described. Accordingly, there is little effective drug available for the treatment of cerebral IRI. The aim of our study was to explore the exact role played by Mfn1-mediated mitochondrial protection in cerebral IRI and evaluate the beneficial action of resveratrol on reperfused brain. Our study demonstrated that hypoxia-reoxygenation (HR) injury caused N2a cell apoptosis and this process was highly affected by mitochondrial dysfunction. Decreased mitochondrial membrane potential, increased mitochondrial oxidative stress, and an activated mitochondrial apoptosis pathway were noted in HR-treated N2a cells. Interestingly, resveratrol treatment could attenuate N2a cell apoptosis via sustaining mitochondrial homeostasis. Further, we found that resveratrol modulated mitochondrial performance via activating the Mfn1-related mitochondrial protective system. Knockdown of Mfn1 could abolish the beneficial effects of resveratrol on HR-treated N2a cells. Besides, we also report that resveratrol regulated Mfn1 expression via the AMPK pathway; inhibition of AMPK pathway also neutralized the anti-apoptotic effect of resveratrol on N2a cells in the setting of cerebral IRI. Taken together our results show that mitochondrial damage is closely associated with the progression of cerebral IRI. In addition we also demonstrate the protective action played by resveratrol on reperfused brain and show that this effect is achieved via activating the AMPK-Mfn1 pathway.
Collapse
Affiliation(s)
- Jinbao Gao
- Department of Neurosurgery, the Seventh Medical Center, the PLA Army General Hospital, Beijing, China
| | - Haijiang Wang
- Department of Neurosurgery, the Seventh Medical Center, the PLA Army General Hospital, Beijing, China
| | - Yunjun Li
- Department of Neurosurgery, the Seventh Medical Center, the PLA Army General Hospital, Beijing, China
| | - Wende Li
- Department of Neurosurgery, the Seventh Medical Center, the PLA Army General Hospital, Beijing, China
| |
Collapse
|
18
|
Tian Y, Lv W, Lu C, Zhao X, Zhang C, Song H. LATS2 promotes cardiomyocyte H9C2 cells apoptosis via the Prx3-Mfn2-mitophagy pathways. J Recept Signal Transduct Res 2019; 39:470-478. [PMID: 31829064 DOI: 10.1080/10799893.2019.1701031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Context: The pathogenesis of cardiomyocyte death is closely associated with mitochondrial homeostasis via poorly understood mechanisms.Objective: The aim of our study is to explore the contribution of large tumor suppressor kinase 2 (LATS2) to the apoptosis of cardiomyocyte H9C2 cells.Materials and Methods: Adenovirus-mediated LATS2 overexpression was carried out in H9C2 cells. The cell viability and apoptosis rate were measured via an MTT assay, TUNEL staining, western blotting, an ELISA, and an LDH release assay. Mitophagy was quantified using immunofluorescence and western blotting.Results: The overexpression of LATS2 in H9C2 cells drastically promoted cell death. Molecular investigations showed that LATS2 overexpression was associated with mitochondrial injury, as evidenced by increased mitochondrial ROS production, reduced antioxidant factor levels, increased cyt-c liberation into the nucleus and activated mitochondrial caspase-9-dependent apoptotic pathway activity. Furthermore, our results demonstrated that LATS2-mediated mitochondrial malfunction by repressing mitophagy and that the reactivation of mitophagy could sustain mitochondrial integrity and homeostasis in response to LATS2 overexpression. Furthermore, we found that LATS2 inhibited mitophagy by inactivating the Prx3-Mfn2 axis. The reactivation of Prx3-Mfn2 pathways abrogated the LATS2-mediated inhibition of mitochondrial apoptosis in H9C2 cells.Conclusions: The overexpression of LATS2 induces mitochondrial stress by repressing protective mitophagy in a manner dependent on Prx3-Mfn2 pathways, thus reducing the survival of H9C2 cells.
Collapse
Affiliation(s)
| | - Wei Lv
- Tianjin First Central Hospital, Tianjin, China
| | - Chengzhi Lu
- Tianjin First Central Hospital, Tianjin, China
| | | | - Chunguang Zhang
- North District Maternal and Child Health Family Planning Service Center, Qingdao, China
| | - Haoming Song
- Department of Cardiology, Shanghai Tongji Hospital, Shanghai, China
| |
Collapse
|
19
|
Dong Q, Jie Y, Ma J, Li C, Xin T, Yang D. Renal tubular cell death and inflammation response are regulated by the MAPK-ERK-CREB signaling pathway under hypoxia-reoxygenation injury. J Recept Signal Transduct Res 2019; 39:383-391. [PMID: 31782334 DOI: 10.1080/10799893.2019.1698050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Context: Cell death and inflammation response have been found to the primary features of acute kidney injury.Objective: The aim of our study is to figure out the molecular mechanism by which hypoxia-reoxygenation injury affects the viability of tubular cell death.Materials and methods: HK2 cells were treated with hypoxia-reoxygenation injury in vitro. Pathway agonist was added into the medium of HK2 cell to activate MAPK-EEK-CREB axis.Results: Hypoxia-reoxygenation injury reduced HK2 cell viability and increased cell apoptosis rate in vitro. Besides, inflammation response has been found to be induced by hypoxia-reoxygenation injury in HK2 cells in vitro. In addition, MAPK-ERK-CREB pathway was deactivated during hypoxia-reoxygenation injury. Interestingly, activation of MAPK-ERK-CREB pathway could attenuate hypoxia-reoxygenation injury-mediated HK2 cell apoptosis and inflammation. Mechanistically, MAPK-ERK-CREB pathway activation upregulated the transcription of anti-apoptotic genes and reduced the levels of pro-apoptotic factors under hypoxia-reoxygenation injury.Conclusions: Our results report a novel signaling pathway responsible for acute kidney injury-related tubular cell death. Activation of MAPK-ERK-CREB signaling could protect tubular cell against hypoxia-reoxygenation-related cell apoptosis and inflammation response.
Collapse
Affiliation(s)
- Qi Dong
- Department of Nephrology, Tianjin Hospital, Tianjin, P.R. China
| | - Yingxin Jie
- Department of Emergency, Tianjin Hospital, Tianjin, P.R. China
| | - Jian Ma
- Tianjin Women's and Children's Health Center, Tianjin Hospital, Tianjin, P.R. China
| | - Chen Li
- Department of Orthopaedics, Tianjin Hospital, Tianjin, P.R. China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Dingwei Yang
- Department of Nephrology, Tianjin Hospital, Tianjin, P.R.China
| |
Collapse
|
20
|
Ma G, Liu Y. NURR1 inhibition reduces hypoxia-mediated cardiomyocyte necrosis via blocking Mst1-JNK-mPTP pathway. J Recept Signal Transduct Res 2019; 39:350-358. [PMID: 31755334 DOI: 10.1080/10799893.2019.1690514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guanqun Ma
- Department of Cardiology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Yingwu Liu
- Department of Cardiology, The Third Central Hospital of Tianjin, Tianjin, China
| |
Collapse
|
21
|
Wang Y, Zhang X, Wang P, Shen Y, Yuan K, Li M, Liang W, Que H. Sirt3 overexpression alleviates hyperglycemia-induced vascular inflammation through regulating redox balance, cell survival, and AMPK-mediated mitochondrial homeostasis. J Recept Signal Transduct Res 2019; 39:341-349. [PMID: 31680596 DOI: 10.1080/10799893.2019.1684521] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Context: Sirtuin-3 (Sirt3), a NAD-dependent deacetylase, has been reported to be involved in many biological processes.Objective: The present study aimed to investigate the effect and mechanism of Sirt3 on diabetic mice and human umbilical vein endothelial cells (HUVECs) under high glucose (HG) condition.Materials and methods: HUVECs were cultured under HG and inflammation pathway was determined via qPCR, western blots, and immunofluorescence.Results: Sirt3 expression was reduced in the progression of diabetic nephropathy. Overexpression of Sirt3 sustains renal function and retard the development of diabetic nephropathy. Mechanistically, Sirt3 overexpression attenuated hyperglycemia-mediated endothelial cells apoptosis in kidney. Besides, Sirt3 overexpression repressed oxidative injury and blocked caspase-9-related apoptosis pathway. Moreover, we found that Sirt3 overexpression was associated with AMPK activation and the latter elevates PGC1α-related mitochondrial protective system, especially mitochondrial autophagy. Loss of opa1 and/or inhibition of AMPK could depress mitochondrial autophagy and exacerbates mitochondrial function, finally contributing to the death of human renal mesangial cells.Conclusions: Our results demonstrated the beneficial effects of Sirt3 in the progression of diabetic nephropathy. Increased Sirt3-activated AMPK pathway, augments PGC1α-related mitochondrial protective system, sustained redox balance and closed caspase-9-involved apoptosis pathway in the setting of diabetic nephropathy.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Traditional Chinese Medicine Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Zhang
- Department of Vascular Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Wang
- Department of Vascular Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiting Shen
- Department of Traditional Chinese Medicine Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Yuan
- Department of Vascular Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Maoran Li
- Department of Vascular Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Liang
- Department of Vascular Surgery, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huafa Que
- Department of Traditional Chinese Medicine Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Song J, Lu C, Zhao W, Shao X. Melatonin attenuates TNF-α-mediated hepatocytes damage via inhibiting mitochondrial stress and activating the Akt-Sirt3 signaling pathway. J Cell Physiol 2019; 234:20969-20979. [PMID: 31025320 DOI: 10.1002/jcp.28701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/25/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022]
Abstract
The role of mitochondrial dysfunction and its molecular mechanism in inflammation-induced acute liver failure (ALF) remain unknown. Despite the numerous studies performed to date, very few therapies are available for inflammation-induced ALF. Therefore, our study is aimed to explore the regulatory effects of mitochondrial stress and the Akt-Sirt3 pathway on the development of TNF-α-induced hepatocyte death and assess the therapeutic effects of melatonin on the damaged liver. Our results exhibited that TNF-α treatment induced hepatocyte damage in vitro; the effect of which was dose-dependently inhibited by melatonin. At the molecular level, TNF-α-treated hepatocytes expressed lower levels of Sirt3 and subsequently exhibited mitochondrial stress. Interestingly, melatonin treatment improved mitochondrial bioenergetics, reduced mitochondrial oxidative stress, reversed mitochondrial dynamics, and repressed mitochondrial apoptosis by reversing the decrease in Sirt3 expression after TNF-α challenge. In addition, we found that melatonin-regulated Sirt3 expression in a manner dependent on the Akt pathway. Blockade of the Akt pathway abolished the protective exerted by melatonin on mitochondria and hepatocyte under TNF-α treatment. In conclusion, TNF-α promotes hepatocyte apoptosis by inducing mitochondrial stress. However, melatonin significantly increases the activity of the Akt/Sirt3 axis and consequently maintains mitochondrial homeostasis, restoring hepatocyte viability in an inflammatory environment. Thus, the information compiled here might provide important perspectives for the use of melatonin in the clinic for preventive and therapeutic applications in patients with ALF based on its anti-inflammatory and mitochondria-protective effects.
Collapse
Affiliation(s)
- Jie Song
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Chang Lu
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Xue Shao
- Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Fan L, Wang J, Ma C. miR125a attenuates BMSCs apoptosis via the MAPK‐ERK pathways in the setting of craniofacial defect reconstruction. J Cell Physiol 2019; 235:2857-2865. [PMID: 31578723 DOI: 10.1002/jcp.29191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Longkun Fan
- Department of Medical Plastic Surgery, Cangzhou Central Hospital, Hebei, China
| | - Jingxian Wang
- Department of Medical Plastic Surgery, Cangzhou Central Hospital, Hebei, China
| | - Chao Ma
- Department of Medical Plastic Surgery, Cangzhou Central Hospital, Hebei, China
| |
Collapse
|
24
|
Ma C, Wang J, Fan L. Therapeutic effects of bone mesenchymal stem cells on oral and maxillofacial defects: a novel signaling pathway involving miR-31/CXCR4/Akt axis. J Recept Signal Transduct Res 2019; 39:321-330. [PMID: 31573375 DOI: 10.1080/10799893.2019.1669054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Context: Although bone mesenchymal stem cells (BMSCs) have been used for the treatment of oral and maxillofacial defects, the survival rate and limited proliferation reduces the therapeutic efficiency of BMSC.Objective: The aim of our study is to explore the role of miR-31 in regulating survival, proliferation, and migration of BMSC in vitro.Materials and methods: LPS was used in vitro to induce BMSC damage and then miR-31 was used to incubate with BMSC. Subsequently, BMSC proliferation, survival, and migration were determined via ELISA, qPCR, western blots, and immunofluorescence.Results: The expression of miR-31 was downregulated in response to LPS stress. Interestingly, supplementation of miR-31 could reverse the survival, proliferation and migration of BMSC under LPS. Mechanically, miR-31 treatment inhibited the activation of caspase, and thus promoted BMSC survival. Besides, miR-31 upregulated the genes related to cell proliferation, an effect that was followed by an increase in the levels of migratory factors. Further, we found that miR-31 treatment activated the CXCR4/Akt pathway and blockade of CXCR4/Akt could abolish the beneficial effects of miR-31 on BMSC proliferation, survival, and migration.Conclusions: miR-31 could increase the therapeutic efficiency of BMSC via the CXCR4/Akt pathway.
Collapse
Affiliation(s)
- Chao Ma
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, China
| | - Jingxian Wang
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, China
| | - Longkun Fan
- Department of Oral and Maxillofacial Surgery, Cangzhou Central Hospital of Hebei Province, Cangzhou, China
| |
Collapse
|
25
|
Zhang J, Wang L, Xie W, Hu S, Zhou H, Zhu P, Zhu H. Melatonin attenuates ER stress and mitochondrial damage in septic cardiomyopathy: A new mechanism involving BAP31 upregulation and MAPK-ERK pathway. J Cell Physiol 2019; 235:2847-2856. [PMID: 31535369 DOI: 10.1002/jcp.29190] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/03/2019] [Indexed: 12/29/2022]
Abstract
Septic cardiomyopathy is associated with mitochondrial damage and endoplasmic reticulum (ER) dysfunction. However, the upstream mediator of mitochondrial injury and ER stress has not been identified and thus little drug is available to treat septic cardiomyopathy. Here, we explored the role of B-cell receptor-associated protein 31 (BAP31) in septic cardiomyopathy and figure out whether melatonin could attenuate sepsis-mediated myocardial depression via modulating BAP31. Lipopolysaccharide (LPS) was used to establish the septic cardiomyopathy model. Pathway analysis was performed via western blot, quantitative polymerase chain reaction and immunofluorescence. Mitochondrial function and ER stress were detected via enzyme-linked immunosorbent assay, western blot, and immunofluorescence. After exposure to LPS, cardiac function was reduced due to excessive inflammation response and extensive cardiomyocyte death. Mechanistically, melatonin treatment could dose-dependently improve cardiomyocyte viability via preserving mitochondrial function and reducing ER stress. Further, we found that BAP31 transcription was repressed by LPS whereas melatonin could restore BAP31 expression; this effect was dependent on the MAPK-ERK pathway. Inhibition of the ERK pathway and/or knockdown of BAP31 could attenuate the beneficial effects of melatonin on mitochondrial function and ER homeostasis under LPS stress. Altogether, our results indicate that ERK-BAP31 pathway could be used as a critical mediator for mitochondrial function and ER homeostasis in sepsis-related myocardial injury. Melatonin could stabilize BAP31 via the ERK pathway and thus contribute to the preservation of cardiac function in septic cardiomyopathy.
Collapse
Affiliation(s)
- Jiabing Zhang
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China
| | - Leili Wang
- Center of Project Management, Department of Aerospace Systems, Strategic Support Force, China
| | - Wei Xie
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China
| | - Shunying Hu
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China
| | - Hao Zhou
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China.,Center for Cardiovascular Research and Alternative Medicine, Wyoming University, Laramie, Wyoming
| | - Pingjun Zhu
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China
| | - Hang Zhu
- Graduate School of Medical School of Chinese PLA Hospital, Beijing, China
| |
Collapse
|
26
|
Hou S, Wang L, Zhang G. Mitofusin-2 regulates inflammation-mediated mouse neuroblastoma N2a cells dysfunction and endoplasmic reticulum stress via the Yap-Hippo pathway. J Physiol Sci 2019; 69:697-709. [PMID: 31134519 PMCID: PMC10717024 DOI: 10.1007/s12576-019-00685-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) stress is involved in inflammation-induced neurotoxicity. Mitofusin 2 (Mfn2), a member of the GTPase family of proteins, resides in the ER membrane and is known to regulate ER stress. However, the potential role and underlying mechanism of Mfn2 in inflammation-induced neuronal dysfunction is unknown. In our study, we explored the potential of Mfn2 to attenuate inflammation-mediated neuronal dysfunction by inhibiting ER stress. Our data show that Mfn2 overexpression significantly ameliorated tumor necrosis factor alpha (TNFα)-induced ER stress, as indicated by the downregulation of the ER stress proteins PERK, GRP78 and CHOP. Mfn2 overexpression also prevented the TNFα-mediated activation of caspase-3, caspase-12 and cleaved poly (ADP-ribose) polymerase (PARP). Cellular antioxidant dysfunction and reactive oxygen species overproduction were also improved by Mfn2 in the setting of TNFα in mouse neuroblastoma N2a cells in vitro. Similarly, disordered calcium homeostasis, indicated by disturbed levels of calcium-related proteins and calcium overloading, was corrected by Mfn2, as evidenced by the increased expression of store-operated calcium entry (SERCA), decreased levels of inositol trisphosphate receptor (IP3R), and normalized calcium content in TNFα-treated N2a cells. Mfn2 overexpression was found to elevate Yes-associated protein (Yap) expression; knockdown of Yap abolished the regulatory effects of Mfn2 on ER stress, oxidative stress, calcium balance, neural death and inflammatory injury. These results lead us to conclude that re-activation of the Mfn2-Yap signaling pathway alleviates TNFα-induced ER stress and dysfunction of mouse neuroblastoma N2a cells. Our findings provide a better understanding of the regulatory role of Mfn2-Yap-ER stress in neuroinflammation and indicate that the Mfn2-Yap axis may be a focus of research in terms of having therapeutic value for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shu Hou
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, No 10 Tieyi Road, Haidian District, Beijing, China
| | - Lili Wang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, No 10 Tieyi Road, Haidian District, Beijing, China
| | - Guoping Zhang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, No 10 Tieyi Road, Haidian District, Beijing, China.
| |
Collapse
|
27
|
Zhong J, Ouyang H, Sun M, Lu J, Zhong Y, Tan Y, Hu Y. Tanshinone IIA attenuates cardiac microvascular ischemia-reperfusion injury via regulating the SIRT1-PGC1α-mitochondrial apoptosis pathway. Cell Stress Chaperones 2019; 24:991-1003. [PMID: 31388827 PMCID: PMC6717231 DOI: 10.1007/s12192-019-01027-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/04/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiac microvascular ischemia-reperfusion (IR) injury has been a neglected topic in recent decades. In the current study, we investigated the mechanism underlying microvascular IR injury, with a focus on mitochondrial homeostasis. We also explored the protective role of tanshinone IIA (Tan IIA) in microvascular protection in the context of IR injury. Through animal studies and cell experiments, we demonstrated that IR injury mediated microvascular wall destruction, lumen stenosis, perfusion defects, and cardiac microvascular endothelial cell (CMEC) apoptosis via inducing mitochondrial damage. In contrast, Tan IIA administration had the ability to sustain CMEC viability and microvascular homeostasis, finally attenuating microvascular IR injury. Function studies have confirmed that the SIRT1/PGC1α pathway is responsible for the microvascular protection from the Tan IIA treatment. SIRT1 activation by Tan IIA sustained the mitochondrial potential, alleviated the mitochondrial pro-apoptotic factor leakage, reduced the mPTP opening, and blocked mitochondrial apoptosis, providing a survival advantage for CMECs and preserving microvascular structure and function. By comparison, inhibiting SIRT1 abrogated the beneficial effects of Tan IIA on mitochondrial function, CMEC survival, and microvascular homeostasis. Collectively, this study indicated that Tan IIA should be considered a microvascular-protective drug that alleviates acute cardiac microcirculation IR injury via activating the SIRT1/PGC1α pathway and thereby blocking mitochondrial damage.
Collapse
Affiliation(s)
- Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
| | - Haichun Ouyang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
| | - Mingming Sun
- Department of Animal Science, University of Wyoming, Laramie, WY, 82071, USA
| | - Jianhua Lu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
| | - Yuanlin Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China
| | - Ying Tan
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, 528300, Guangdong, China.
| |
Collapse
|
28
|
Bao L, Li X, Lin Z. PTEN overexpression promotes glioblastoma death through triggering mitochondrial division and inactivating the Akt pathway. J Recept Signal Transduct Res 2019; 39:215-225. [PMID: 31464538 DOI: 10.1080/10799893.2019.1655051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: PTEN has been acknowledged as an anticancer factor in the progression of glioblastoma. Mitochondrial division has been found to be associated with cancer cell death. Objective: The aim of our study is to explore whether PTEN attenuates the development of glioblastoma by modulating mitochondrial division. Materials and methods: PTEN adenovirus was used to overexpress PTEN in U87 cells. Mitochondrial function was detected via western blot and immunofluorescence. Pathway blocker was used to inhibit the Akt activation. Results: The results of our study demonstrated that PTEN overexpression reduced cell viability by increasing cell apoptosis. At the molecular level, PTEN overexpression activated mitochondrial apoptosis by mediating mitochondrial dysfunction. Furthermore, we found that Drp1-related mitochondrial division was required for PTEN-mediated mitochondrial dysfunction and cell death. Finally, we found that PTEN modulated Drp1-related mitochondrial division via the Akt pathway; inactivation of Akt induced cell death, and mitochondrial damage, similar to the results obtained via PTEN overexpression. Conclusions: Taken together, our results clarify that the anticancer mechanism of PTEN in glioblastoma is dependent on the activation of Drp1-related mitochondrial division via Akt pathway modulation. This finding might provide new insight into the tumor-suppressive role played by PTEN in glioblastoma.
Collapse
Affiliation(s)
- Long Bao
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University , Beijing , China
| | - Xiang Li
- Department of Pediatrics, The First Affiliated Hospital of Jinzhou Medical University , Jinzhou , Liaoning , China
| | - Zhixiong Lin
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
29
|
Song X, Li T. Ripk3 mediates cardiomyocyte necrosis through targeting mitochondria and the JNK-Bnip3 pathway under hypoxia-reoxygenation injury. J Recept Signal Transduct Res 2019; 39:331-340. [PMID: 31658855 DOI: 10.1080/10799893.2019.1676259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022]
Abstract
Context: Cardiomyocyte necrosis following myocardial infarction drastically the progression of heart failure.Objective: In the current study, we explored the upstream mediator for cardiomyocytes necrosis induced by hypoxia-reoxygenation (HR) injury with a focus on mitochondrial function and JNK-Bnip3 pathway.Materials and methods: Cell necrosis was determined via MTT assay, TUNEL staining and PI staining. siRNA transfection was performed to inhibit Ripk3 activation in response to HR injury. Pathway blocker was applied to prevent JNK activation.Results: Ripk3 was rapidly increased in HR-treated cardiomyocytes and correlated with the necrosis of cardiomyocytes. Interestingly, silencing of Ripk3 attenuated HR-mediated cardiomyocytes necrosis. At the molecular levels, Ripk3 deletion sustained mitochondrial bioenergetics and stabilized mitochondrial glucose metabolism. Besides, Ripk3 deletion also reduced mitochondrial oxidative stress and inhibited mPTP opening. To the end, we found Ripk3 activation was along with JNK pathway activation and Bnip3 upregulation. Interestingly, blockade of JNK pathway abolished the harmful effects of HR injury on mitochondrial function, energy metabolism and redox balance. Moreover, overexpression of Bnip3 abrogated the protection action played by Ripk3 deletion on cardiomyocytes survival.Conclusions: Taken together, these data may identify Ripk3 upregulation, mitochondrial dysfunction and JNK-Bnip3 axis activation as the novel mechanisms underlying cardiomyocytes necrosis achieved by HR injury. Thereby, approaches targeted to the Ripk3-JNK-Bnip3-mitochondria cascade have the potential to ameliorate the progression of HR-related cardiomyocytes necrosis in the clinical practice.
Collapse
Affiliation(s)
- Xinyu Song
- Department of Cardiology, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Tianchang Li
- Department of Cardiology, Sixth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Tian H, Wang K, Jin M, Li J, Yu Y. Proinflammation effect of Mst1 promotes BV-2 cell death via augmenting Drp1-mediated mitochondrial fragmentation and activating the JNK pathway. J Cell Physiol 2019; 235:1504-1514. [PMID: 31283035 DOI: 10.1002/jcp.29070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022]
Abstract
Inflammation has been increasingly studied as part of the pathophysiology of neurodegenerative diseases. Mammalian Ste20-like kinase 1 (Mst1), a key factor of the Hippo pathway, is connected to cell death. Unfortunately, little study has been performed to detect the impact of Mst1 in neuroninflammation. The results indicated that Mst1 expression was upregulated because of LPS treatment. However, the loss of Mst1 sustained BV-2 cell viability and promoted cell survival in the presence of LPS treatment. Molecular investigation assay demonstrated that Mst1 deletion was followed by a drop in the levels of mitochondrial fission via repressing Drp1 expression. However, Drp1 adenovirus transfection reduced the protective impacts of Mst1 knockdown on mitochondrial stress and neuronal dysfunction. Finally, our results illuminated that Mst1 affected Drp1 content and mitochondrial fission in a JNK-dependent mechanism. Reactivation of the JNK axis inhibited Mst1 knockdown-mediated neuronal protection and mitochondrial homeostasis. Altogether, our results indicated that Mst1 upregulation and the activation of JNK-Drp1-mitochondrial fission pathway could be considered as the novel mechanism regulating the progression of neuroninflammation. This finding would pave a new road for the treatment of neurodegenerative diseases via modulating the Mst1-JNK-Drp1-mitochondrial fission axis.
Collapse
Affiliation(s)
- Hong Tian
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Kang Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Miao Jin
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Jingtao Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, China
| | - Yanbing Yu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
31
|
Liu Y, Fu Y, Hu X, Chen S, Miao J, Wang Y, Zhou Y, Zhang Y. Caveolin-1 knockdown increases the therapeutic sensitivity of lung cancer to cisplatin-induced apoptosis by repressing Parkin-related mitophagy and activating the ROCK1 pathway. J Cell Physiol 2019; 235:1197-1208. [PMID: 31270811 DOI: 10.1002/jcp.29033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022]
Abstract
Chemotherapy is the first-line treatment option for patients with lung cancer. However, therapeutic resistance occurs through an incompletely understood mechanism. Our research wants to investigate the influence of Caveolin-1 (Cav-1) on the therapeutic sensitivity of lung cancer in vitro. Results in this study demonstrated that Cav-1 levels were markedly inhibited in A549 lung cancer cells after exposure to cisplatin. Knockdown of caveolin further enhanced cisplatin-triggered cancer death in A549 cells. The functional investigation demonstrated that Cav-1 inhibition amplified the mitochondrial stress signaling induced by cisplatin, as evidenced by the mitochondrial reactive oxygen species burst, cellular metabolic disruption, mitochondrial membrane potential reduction, and mitochondrial caspase-9-related apoptosis activation. At the molecular level, cav-1 augmented cisplatin-mediated mitochondrial damage by inhibiting Parkin-related mitochondrial autophagy. Mitophagy activation effectively attenuated the promotive impact of Cav-1 knockdown on mitochondrial damage and cell death. Furthermore, our data indicated that Cav-1 affected Parkin-related mitophagy by activating the Rho-associated coiled-coil kinase 1 (ROCK1) pathway; inhibition of the ROCK1 axis prevented cav-1 knockdown-mediated cell death and mitochondrial damage. Taken together, our results provide ample data illuminate the necessary action exerted by Cav-1 on affecting cisplatin-related therapeutic resistance. Silencing of Cav-1 inhibited Parkin-related mitophagy, thus amplifying cisplatin-mediated mitochondrial apoptotic signaling. This finding identifies the Cav-1/ROCK1/Parkin/mitophagy axis as a potential target to overcome cisplatin-related resistance in lung cancer cells.
Collapse
Affiliation(s)
- Yi Liu
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Yili Fu
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Xianoxing Hu
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Shuo Chen
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Jinbai Miao
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Yang Wang
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Ying Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, Yangpu, China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, Yangpu, China
| |
Collapse
|
32
|
Inhibitory effect of melatonin on Mst1 ameliorates myocarditis through attenuating ER stress and mitochondrial dysfunction. J Mol Histol 2019; 50:405-415. [PMID: 31256303 DOI: 10.1007/s10735-019-09836-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022]
Abstract
Viral myocarditis has been found to be one of the leading causes of sudden death in young adults. However, no effective drugs have been developed to intervene the progression of myocarditis. Accordingly, the present study is carried out to explore the protective role played by melatonin in the setting of viral myocarditis with a focus on Mst1-Hippo pathway, mitochondrial dysfunction and ER stress. Cardiac function was determined via echocardiographic examination. Mitochondrial function and ER stress were detected via ELISA, western blots, and immunofluorescence. Our data demonstrated that virus injection induced cardiac dysfunction as evidenced by reduced contractile function in myocardium. Besides, LDH release assay and western blotting analysis demonstrated that cardiomyocyte death was activated by virus injection. Interestingly, melatonin treatment improved cardiac function and repressed virus-mediated cardiomyocyte apoptosis. At the molecular levels, mitochondrial dysfunction was induced by virus infection, as indicated by mitochondrial membrane potential reduction, mPTP opening rate elevation and caspase-9-related apoptosis activation. Besides, ER stress parameters were also elevated in virus-treated cardiomyocytes. Interestingly, melatonin treatment maintained mitochondrial dysfunction and repressed ER stress. To the end, we found that Mst1 was upregulated by virus infection; this effect was attenuated through supplementation with melatonin. However, Mst1 overexpression reduced the beneficial impact exerted by melatonin on cardiomyocyte viability, mitochondrial function and ER homeostasis. Our study illustrated that melatonin treatment attenuated viral myocarditis via sustaining cardiomyocyte viability, repressing mitochondrial dysfunction and inhibiting ER stress in a manner dependent on Mst1 inhibition.
Collapse
|
33
|
Qin R, Lin D, Zhang L, Xiao F, Guo L. Mst1 deletion reduces hyperglycemia-mediated vascular dysfunction via attenuating mitochondrial fission and modulating the JNK signaling pathway. J Cell Physiol 2019; 235:294-303. [PMID: 31206688 DOI: 10.1002/jcp.28969] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022]
Abstract
Diabetes is a leading cause of microvascular complications, such as nephropathy and retinopathy. Recent studies have proposed that hyperglycemia-induced endothelial cell dysfunction is modulated by mitochondrial stress. Therefore, our experiment was to detect the upstream mediator of mitochondrial stress in hyperglycemia-treated endothelial cells with a focus on macrophage-stimulating 1 (Mst1) and mitochondrial fission. Our data illuminated that hyperglycemia incubation reduced cell viability, as well as increased apoptosis ratio in endothelial cell, and this alteration seemed to be associated with Mst1 upregulation. Inhibition of Mst1 via transfection of Mst1 siRNA into an endothelial cell could sustain cell viability and maintain mitochondrial function. At the molecular levels, endothelial cell death was accompanied with the activation of mitochondrial oxidative stress, mitochondrial apoptosis, and mitochondrial fission. Genetic ablation of Mst1 could reduce mitochondrial oxidative injury, block mitochondrial apoptosis, and repress mitochondrial fission. Besides, we also found Mst1 triggered mitochondrial dysfunction as well as endothelial cell damage through augmenting JNK pathway. Suppression of JNK largely ameliorated the protective actions of Mst1 silencing on hyperglycemia-treated endothelial cells and sustain mitochondrial function. The present study identifies Mst1 as a primary key mediator for hyperglycemia-induced mitochondrial damage and endothelial cell dysfunction. Increased Mst1 impairs mitochondrial function and activates endothelial cell death via opening mitochondrial death pathway through JNK.
Collapse
Affiliation(s)
- Ruijie Qin
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Lin
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lina Zhang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Fei Xiao
- Department of Pathology, The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Lixin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
34
|
Lu K, Liu X, Guo W. Melatonin attenuates inflammation‐related venous endothelial cells apoptosis through modulating the MST1–MIEF1 pathway. J Cell Physiol 2019; 234:23675-23684. [PMID: 31169304 DOI: 10.1002/jcp.28935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Lu
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular Surgery Da Qing Oil General Hospital Daquing Hei Longjiang China
| | - Xiaoping Liu
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular and Endovascular Surgery 301 General Hospital of PLA Beijing China
| | - Wei Guo
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular and Endovascular Surgery 301 General Hospital of PLA Beijing China
| |
Collapse
|
35
|
Zhang L, Li S, Wang R, Chen C, Ma W, Cai H. Anti-tumor effect of LATS2 on liver cancer death: Role of DRP1-mediated mitochondrial division and the Wnt/β-catenin pathway. Biomed Pharmacother 2019; 114:108825. [PMID: 30981110 DOI: 10.1016/j.biopha.2019.108825] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 12/17/2022] Open
Abstract
Large tumor suppressor 2 (LATS2), an important mediator of the cell apoptotic response pathway, has been linked to the progression of several cancers. Here, we described the molecular feature of LATS2 as a novel antitumor factor in liver cancer cells in vitro. Western blotting was used to detect the expression of LATS2 and its downstream factors. ELISA, immunofluorescence, and flow cytometry were used to evaluate the alterations of mitochondrial function in response to LATS2 overexpression. Adenovirus-loaded LATS2 and siRNA against DRP1 were transfected into liver cancer cells to overexpress LATS2 and knockdown DRP1 expression, respectively. The results of the present study demonstrated that overexpression of LATS2 was closely associated with more liver cancer cell death. Mechanistically, LATS2 overexpression increased the expression of DRP1, and DRP1 elevated mitochondrial division, an effect that was accompanied by mitochondrial dysfunction, including mitochondrial membrane potential reduction, mitochondrial respiratory complex downregulation, mitochondrial cyt-c release into the nucleus and mitochondrial oxidative injury. Moreover, LATS2 overexpression also initiated mitochondrial apoptosis, and this process was highly dependent on DRP1-related mitochondrial division. Molecular investigations demonstrated that LATS2 modulated DRP1 expression via the Wnt/β-catenin pathway. Inhibition of the Wnt/β-catenin pathway pregented LATS2-mediated DRP1 upregulation, ultimately sustaining mitochondrial function and cell viability in the presence of LATS2 overexpression. Altogether, the above data identify LATS2-Wnt/β-catenin/DRP1/mitochondrial division as a novel anticancer signaling pathway promoting cancer cell death, which might be an attractive therapeutic target for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Radiotherapy, Gansu Province Hospital, No.204 Donggang West Road, Chengguan District, Lanzhou 730000, Gansu Province, People's Republic of China; Department of Cardiology, Shanghai Songjiang District Central Hospital, No.746 Zhongshan Middle Road, Songjiang District, Shanghai 201600, People's Republic of China.
| | - Shuping Li
- Department of Radiotherapy, Gansu Province Hospital, No.204 Donggang West Road, Chengguan District, Lanzhou 730000, Gansu Province, People's Republic of China.
| | - Rong Wang
- Department of Radiotherapy, Gansu Province Hospital, No.204 Donggang West Road, Chengguan District, Lanzhou 730000, Gansu Province, People's Republic of China.
| | - Changyuan Chen
- Department of Cardiology, Shanghai Songjiang District Central Hospital, No.746 Zhongshan Middle Road, Songjiang District, Shanghai 201600, People's Republic of China.
| | - Wen Ma
- Department of Radiotherapy, Gansu Province Hospital, No.204 Donggang West Road, Chengguan District, Lanzhou 730000, Gansu Province, People's Republic of China.
| | - Hongyi Cai
- Department of Radiotherapy, Gansu Province Hospital, No.204 Donggang West Road, Chengguan District, Lanzhou 730000, Gansu Province, People's Republic of China.
| |
Collapse
|
36
|
Zhao S, Li P, Wang P, Yang J, Song P, Zhang D, Zhou G. Nurr1 Promotes Lung Cancer Apoptosis Via Enhancing Mitochondrial Stress and p53-Drp1 Pathway. Open Life Sci 2019; 14:262-274. [PMID: 33817160 PMCID: PMC7874811 DOI: 10.1515/biol-2019-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Mitochondrial homeostasis is vital for the progression of lung cancer. Nurr1 has been identified as a novel mediator of mitochondrial homeostasis in several types of cancers. The aim of our study was to investigate whether Nurr1 modulates the viability of A549 lung cancer cells by inducing mitochondrial dysfunction, with a focus on the p53-Drp1 signaling pathway. METHODS western blotting, ELISA and immunofluorescence assay was used to verify the alterations of cell death. siRNA was used to determine the role of p53-Drp1 pathway in lung cancer death. RESULTS Nurr1 was downregulated in A549 lung cancer cells compared to normal pulmonary epithelial cells. Interestingly, overexpression of Nurr1 reduced the viability of A549 lung cancer cells by activating apoptosis and mitochondrial stress. At the molecular level, we provide data to support the regulatory effects of Nurr1 on the p53-Drp1 signaling pathway. Blockade of the p53-Drp1 signaling pathway abolished the proapoptotic action of Nurr1 on A549 cells and sustained mitochondrial homeostasis. CONCLUSION Taken together, our results depict the tumor-suppressive role played by Nurr1 in A549 lung cancer in vitro and show that the anticancer effects of Nurr1 are executed via triggering of mitochondrial dysfunction and activation of the p53-Drp1 signaling pathway.
Collapse
Affiliation(s)
- Shu Zhao
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Peng Li
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Peng Wang
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Jing Yang
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Peng Song
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Dong Zhang
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| | - Gang Zhou
- Department of Oncology, the Second Medical Center, Chinese PLA (People’s Liberation Army)General Hospital, Beijing, 100853,China
| |
Collapse
|