1
|
Sussman CR, Wang X, Chebib FT, Torres VE. Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling. Cell Signal 2020; 72:109649. [PMID: 32335259 DOI: 10.1016/j.cellsig.2020.109649] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic disorder associated with polycystic liver disease (PLD) and other extrarenal manifestations, the most common monogenic cause of end-stage kidney disease, and a major burden for public health. Many studies have shown that alterations in G-protein and cAMP signaling play a central role in its pathogenesis. As for many other diseases (35% of all approved drugs target G-protein coupled receptors (GPCRs) or proteins functioning upstream or downstream from GPCRs), treatments targeting GPCR have shown effectiveness in slowing the rate of progression of ADPKD. Tolvaptan, a vasopressin V2 receptor antagonist is the first drug approved by regulatory agencies to treat rapidly progressive ADPKD. Long-acting somatostatin analogs have also been effective in slowing the rates of growth of polycystic kidneys and liver. Although no treatment has so far been able to prevent the development or stop the progression of the disease, these encouraging advances point to G-protein and cAMP signaling as a promising avenue of investigation that may lead to more effective and safe treatments. This will require a better understanding of the relevant GPCRs, G-proteins, cAMP effectors, and of the enzymes and A-kinase anchoring proteins controlling the compartmentalization of cAMP signaling. The purpose of this review is to provide an overview of general GPCR signaling; the function of polycystin-1 (PC1) as a putative atypical adhesion GPCR (aGPCR); the roles of PC1, polycystin-2 (PC2) and the PC1-PC2 complex in the regulation of calcium and cAMP signaling; the cross-talk of calcium and cAMP signaling in PKD; and GPCRs, adenylyl cyclases, cyclic nucleotide phosphodiesterases, and protein kinase A as therapeutic targets in ADPKD.
Collapse
Affiliation(s)
- Caroline R Sussman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Xiaofang Wang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Fouad T Chebib
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
2
|
Maryam A, Khalid RR, Siddiqi AR, Ece A. E-pharmacophore based virtual screening for identification of dual specific PDE5A and PDE3A inhibitors as potential leads against cardiovascular diseases. J Biomol Struct Dyn 2020; 39:2302-2317. [DOI: 10.1080/07391102.2020.1748718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Arooma Maryam
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | | | | | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| |
Collapse
|
3
|
Zhang W, Tao Q, Guo Z, Fu Y, Chen X, Shar PA, Shahen M, Zhu J, Xue J, Bai Y, Wu Z, Wang Z, Xiao W, Wang Y. Systems Pharmacology Dissection of the Integrated Treatment for Cardiovascular and Gastrointestinal Disorders by Traditional Chinese Medicine. Sci Rep 2016; 6:32400. [PMID: 27597117 PMCID: PMC5011655 DOI: 10.1038/srep32400] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/04/2016] [Indexed: 02/07/2023] Open
Abstract
Though cardiovascular diseases (CVDs) and gastrointestinal disorders (GIDs) are different diseases associated with different organs, they are highly correlated clinically. Importantly, in Traditional Chinese Medicine (TCM), similar treatment strategies have been applied in both diseases. However, the etiological mechanisms underlying them remain unclear. Here, an integrated systems pharmacology approach is presented for illustrating the molecular correlations between CVDs and GIDs. Firstly, we identified pairs of genes that are associated with CVDs and GIDs and found that these genes are functionally related. Then, the association between 115 heart meridian (HM) herbs and 163 stomach meridian (SM) herbs and their combination application in Chinese patent medicine was investigated, implying that both CVDs and GIDs can be treated by the same strategy. Exemplified by a classical formula Sanhe Decoration (SHD) treating chronic gastritis, we applied systems-based analysis to introduce a drug-target-pathway-organ network that clarifies mechanisms of different diseases being treated by the same strategy. The results indicate that SHD regulated several pathological processes involved in both CVDs and GIDs. We experimentally confirmed the predictions implied by the effect of SHD for myocardial ischemia. The systems pharmacology suggests a novel integrated strategy for rational drug development for complex associated diseases.
Collapse
Affiliation(s)
- Wenjuan Zhang
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
- Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qin Tao
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
- Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zihu Guo
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
- Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yingxue Fu
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
- Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xuetong Chen
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
- Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Piar Ali Shar
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
- Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Mohamed Shahen
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
- Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jinglin Zhu
- College of Life Science, Northwest University, Xi’an, Shaanxi 710069, China
| | - Jun Xue
- College of Life Science, Northwest University, Xi’an, Shaanxi 710069, China
| | - Yaofei Bai
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
- Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ziyin Wu
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
- Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Yonghua Wang
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
- Center of Bioinformatics, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
4
|
Distinct patterns of constitutive phosphodiesterase activity in mouse sinoatrial node and atrial myocardium. PLoS One 2012; 7:e47652. [PMID: 23077656 PMCID: PMC3471891 DOI: 10.1371/journal.pone.0047652] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/14/2012] [Indexed: 01/13/2023] Open
Abstract
Phosphodiesterases (PDEs) are critical regulators of cyclic nucleotides in the heart. In ventricular myocytes, the L-type Ca(2+) current (I(Ca,L)) is a major target of regulation by PDEs, particularly members of the PDE2, PDE3 and PDE4 families. Conversely, much less is known about the roles of PDE2, PDE3 and PDE4 in the regulation of action potential (AP) properties and I(Ca,L) in the sinoatrial node (SAN) and the atrial myocardium, especially in mice. Thus, the purpose of our study was to measure the effects of global PDE inhibition with Isobutyl-1-methylxanthine (IBMX) and selective inhibitors of PDE2, PDE3 and PDE4 on AP properties in isolated mouse SAN and right atrial myocytes. We also measured the effects of these inhibitors on I(Ca,L) in SAN and atrial myocytes in comparison to ventricular myocytes. Our data demonstrate that IBMX markedly increases spontaneous AP frequency in SAN myocytes and AP duration in atrial myocytes. Spontaneous AP firing in SAN myocytes was also increased by the PDE2 inhibitor erythro-9-[2-hydroxy-3-nonyl] adenine (EHNA), the PDE3 inhibitor milrinone (Mil) and the PDE4 inhibitor rolipram (Rol). In contrast, atrial AP duration was increased by EHNA and Rol, but not by Mil. IBMX also potently, and similarly, increased I(Ca,L) in SAN, atrial and ventricular myocytes; however, important differences emerged in terms of which inhibitors could modulate I(Ca,L) in each myocyte type. Consistent with our AP measurements, EHNA, Mil and Rol each increased I(Ca,L) in SAN myocytes. Also, EHNA and Rol, but not Mil, increased atrial I(Ca,L). In complete contrast, no selective PDE inhibitors increased I(Ca,L) in ventricular myocytes when given alone. Thus, our data show that the effects of selective PDE2, PDE3 and PDE4 inhibitors are distinct in the different regions of the myocardium indicating important differences in how each PDE family constitutively regulates ion channel function in the SAN, atrial and ventricular myocardium.
Collapse
|
5
|
Haworth RS, Cuello F, Avkiran M. Regulation by phosphodiesterase isoforms of protein kinase A-mediated attenuation of myocardial protein kinase D activation. Basic Res Cardiol 2010; 106:51-63. [PMID: 20725733 PMCID: PMC3012212 DOI: 10.1007/s00395-010-0116-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 08/02/2010] [Accepted: 08/12/2010] [Indexed: 11/29/2022]
Abstract
Protein kinase D (PKD) targets several proteins in the heart, including cardiac troponin I (cTnI) and class II histone deacetylases, and regulates cardiac contraction and hypertrophy. In adult rat ventricular myocytes (ARVM), PKD activation by endothelin-1 (ET1) occurs via protein kinase Cε and is attenuated by cAMP-dependent protein kinase (PKA). Intracellular compartmentalisation of cAMP, arising from localised activity of distinct cyclic nucleotide phosphodiesterase (PDE) isoforms, may result in spatially constrained regulation of the PKA activity that inhibits PKD activation. We have investigated the roles of the predominant cardiac PDE isoforms, PDE2, PDE3 and PDE4, in PKA-mediated inhibition of PKD activation. Pretreatment of ARVM with the non-selective PDE inhibitor isobutylmethylxanthine (IBMX) attenuated subsequent PKD activation by ET1. However, selective inhibition of PDE2 [by erythro-9-(2-hydroxy-3-nonyl) adenine, EHNA], PDE3 (by cilostamide) or PDE4 (by rolipram) individually had no effect on ET1-induced PKD activation. Selective inhibition of individual PDE isoforms also had no effect on the phosphorylation status of the established cardiac PKA substrates phospholamban (PLB; at Ser16) and cTnI (at Ser22/23), which increased markedly with IBMX. Combined administration of cilostamide and rolipram, like IBMX alone, attenuated ET1-induced PKD activation and increased PLB and cTnI phosphorylation, while combined administration of EHNA and cilostamide or EHNA and rolipram was ineffective. Thus, cAMP pools controlled by PDE3 and PDE4, but not PDE2, regulate the PKA activity that inhibits ET1-induced PKD activation. Furthermore, PDE3 and PDE4 play redundant roles in this process, such that inhibition of both isoforms is required to achieve PKA-mediated attenuation of PKD activation.
Collapse
Affiliation(s)
- Robert S Haworth
- King's College London British Heart Foundation Centre, Cardiovascular Division, King's College London, The Rayne Institute, St Thomas' Hospital, Lambeth Palace Road, London, SE1 7EH, UK.
| | | | | |
Collapse
|
6
|
Van Tassell BW, Radwanski P, Movsesian M, Munger MA. Combination therapy with beta-adrenergic receptor antagonists and phosphodiesterase inhibitors for chronic heart failure. Pharmacotherapy 2009; 28:1523-30. [PMID: 19025433 DOI: 10.1592/phco.28.12.1523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract Rational use of phosphodiesterase inhibitors represents an ongoing controversy in contemporary pharmacotherapy for heart failure. In randomized clinical trials, phosphodiesterase inhibitors increased cardiac output at the expense of worsening the rates of sudden cardiac death and cardiovascular mortality. Preliminary findings from ongoing clinical and preclinical investigations of phosphodiesterase activity suggest that combined use of phosphodiesterase inhibitors with beta-adrenergic antagonists may prevent these adverse outcomes. Compartmentation of cyclic adenosine 3',5'-monophosphate signaling may prove critical in determining myocardial response to combination therapy.
Collapse
Affiliation(s)
- Benjamin W Van Tassell
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | |
Collapse
|
7
|
Abstract
Growing evidence suggests that multiple spatially, temporally, and functionally distinct pools of cyclic nucleotides exist and regulate cardiac performance, from acute myocardial contractility to chronic gene expression and cardiac structural remodeling. Cyclic nucleotide phosphodiesterases (PDEs), by hydrolyzing cAMP and cyclic GMP, regulate the amplitude, duration, and compartmentation of cyclic nucleotide-mediated signaling. In particular, PDE3 enzymes play a major role in regulating cAMP metabolism in the cardiovascular system. PDE3 inhibitors, by raising cAMP content, have acute inotropic and vasodilatory effects in treating congestive heart failure but have increased mortality in long-term therapy. PDE3A expression is downregulated in human and animal failing hearts. In vitro, inhibition of PDE3A function is associated with myocyte apoptosis through sustained induction of a transcriptional repressor ICER (inducible cAMP early repressor) and thereby inhibition of antiapoptotic molecule Bcl-2 expression. Sustained induction of ICER may also cause the change of other protein expression implicated in human and animal failing hearts. These data suggest that the downregulation of PDE3A observed in failing hearts may play a causative role in the progression of heart failure, in part, by inducing ICER and promoting cardiac myocyte dysfunction. Hence, strategies that maintain PDE3A function may represent an attractive approach to circumvent myocyte apoptosis and cardiac dysfunction.
Collapse
Affiliation(s)
- Chen Yan
- Center for Cardiovascular Research, Aab Institute of Biomedical Science, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
8
|
Iancu RV, Jones SW, Harvey RD. Compartmentation of cAMP signaling in cardiac myocytes: a computational study. Biophys J 2007; 92:3317-31. [PMID: 17293406 PMCID: PMC1852367 DOI: 10.1529/biophysj.106.095356] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptor-mediated changes in cAMP production play an essential role in sympathetic and parasympathetic regulation of the electrical, mechanical, and metabolic activity of cardiac myocytes. However, responses to receptor activation cannot be easily ascribed to a uniform increase or decrease in cAMP activity throughout the entire cell. In this study, we used a computational approach to test the hypothesis that in cardiac ventricular myocytes the effects of beta(1)-adrenergic receptor (beta(1)AR) and M(2) muscarinic receptor (M(2)R) activation involve compartmentation of cAMP. A model consisting of two submembrane (caveolar and extracaveolar) microdomains and one bulk cytosolic domain was created using published information on the location of beta(1)ARs and M(2)Rs, as well as the location of stimulatory (G(s)) and inhibitory (G(i)) G-proteins, adenylyl cyclase isoforms inhibited (AC5/6) and stimulated (AC4/7) by G(i), and multiple phosphodiesterase isoforms (PDE2, PDE3, and PDE4). Results obtained with the model indicate that: 1), bulk basal cAMP can be high ( approximately 1 microM) and only modestly stimulated by beta(1)AR activation ( approximately 2 microM), but caveolar cAMP varies in a range more appropriate for regulation of protein kinase A ( approximately 100 nM to approximately 2 microM); 2), M(2)R activation strongly reduces the beta(1)AR-induced increases in caveolar cAMP, with less effect on bulk cAMP; and 3), during weak beta(1)AR stimulation, M(2)R activation not only reduces caveolar cAMP, but also produces a rebound increase in caveolar cAMP following termination of M(2)R activity. We conclude that compartmentation of cAMP can provide a quantitative explanation for several aspects of cardiac signaling.
Collapse
Affiliation(s)
- Radu V Iancu
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
9
|
Han SJ, Vaccari S, Nedachi T, Andersen CB, Kovacina KS, Roth RA, Conti M. Protein kinase B/Akt phosphorylation of PDE3A and its role in mammalian oocyte maturation. EMBO J 2006; 25:5716-25. [PMID: 17124499 PMCID: PMC1698880 DOI: 10.1038/sj.emboj.7601431] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 10/19/2006] [Indexed: 11/08/2022] Open
Abstract
cGMP-inhibited cAMP phosphodiesterase 3A (PDE3A) is expressed in mouse oocytes, and its function is indispensable for meiotic maturation as demonstrated by genetic ablation. Moreover, PDE3 activity is required for insulin/insulin-like growth factor-1 stimulation of Xenopus oocyte meiotic resumption. Here, we investigated the cAMP-dependent protein kinase B (PKB)/Akt regulation of PDE3A and its impact on oocyte maturation. Cell-free incubation of recombinant mouse PDE3A with PKB/Akt or cAMP-dependent protein kinase A catalytic subunits leads to phosphorylation of the PDE3A protein. Coexpression of PDE3A with constitutively activated PKB/Akt (Myr-Akt) increases PDE activity as well as its phosphorylation state. Injection of pde3a mRNA potentiates insulin-dependent maturation of Xenopus oocytes and rescues the phenotype of pde3(-/-) mouse oocytes. This effect is greatly decreased by mutation of any of the PDE3A serines 290-292 to alanine in both Xenopus and mouse. Microinjection of myr-Akt in mouse oocytes causes in vitro meiotic maturation and this effect requires PDE3A. Collectively, these data indicate that activation of PDE3A by PKB/Akt-mediated phosphorylation plays a role in the control of PDE3A activity in mammalian oocytes.
Collapse
Affiliation(s)
- Seung Jin Han
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Sergio Vaccari
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
| | - Taku Nedachi
- Tohoku University Biomedical Engineering Research Organization, Sendai, Japan
| | - Carsten B Andersen
- Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Kristina S Kovacina
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
| | - Richard A Roth
- Department of Molecular Pharmacology, Stanford University, Stanford, CA, USA
| | - Marco Conti
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University, Stanford, CA, USA
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University, 300 Pasteur dr., Stanford, CA 94305, USA. Tel.: +1 650 725 2452; Fax: +1 650 725 7102; E-mail:
| |
Collapse
|
10
|
Zausig YA, Stowe DF, Zink W, Grube C, Martin E, Graf BM. A comparison of three phosphodiesterase type III inhibitors on mechanical and metabolic function in guinea pig isolated hearts. Anesth Analg 2006; 102:1646-52. [PMID: 16717301 DOI: 10.1213/01.ane.0000216290.74626.27] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Little is known about of the comparative cardiac lusitropic and coronary vasoactive effects of type III phosphodiesterase inhibitors independent of their systemic circulatory effects. We hypothesized that phosphodiesterase inhibitors have dissimilar concentration-dependent effects on cardiac function and metabolism and that their coronary vasodilatory effects are solely dependent on flow autoregulation secondary to positive inotropic effects. Our aim was to compare the dose-response electrophysiologic, mechanical, vasodilatory, and metabolic properties of three clinically available phosphodiesterase inhibitors in isolated Langendorff perfused guinea pig hearts. We found that, over a range from 10(-7) to 10(-4) M, amrinone, enoximone, and milrinone each produced maximal concentration-dependent positive chronotropic (12%, 18%, 26%), inotropic (16%, 26%, 26%), and lusitropic (14%, 21%, 19%) effects. At clinical concentrations, all phosphodiesterase inhibitors increased heart rate, but only milrinone significantly enhanced contractility and relaxation (11%). Each phosphodiesterase inhibitor similarly increased contractility at its highest concentration; this was accompanied by an increase in oxygen consumption, which was matched by comparable increases in coronary flow and oxygen delivery. Coronary flow reserve was preserved at the highest concentration of each drug, indicating that an increased metabolic rate was responsible for the increase in coronary flow by each drug at each concentration. Over the concentrations examined, we conclude that each of the phosphodiesterase inhibitors does not directly promote coronary vasodilation and that milrinone has the most prominent effects on contractility and relaxation at clinically relevant concentrations.
Collapse
Affiliation(s)
- York A Zausig
- Department of Anaesthesia, ZARI, University of Goettingen, Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Lerner A, Epstein P. Cyclic nucleotide phosphodiesterases as targets for treatment of haematological malignancies. Biochem J 2006; 393:21-41. [PMID: 16336197 PMCID: PMC1383661 DOI: 10.1042/bj20051368] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cAMP signalling pathway has emerged as a key regulator of haematopoietic cell proliferation, differentiation and apoptosis. In parallel, general understanding of the biology of cyclic nucleotide PDEs (phosphodiesterases) has advanced considerably, revealing the remarkable complexity of this enzyme system that regulates the amplitude, kinetics and location of intracellular cAMP-mediated signalling. The development of therapeutic inhibitors of specific PDE gene families has resulted in a growing appreciation of the potential therapeutic application of PDE inhibitors to the treatment of immune-mediated illnesses and haematopoietic malignancies. This review summarizes the expression and function of PDEs in normal haematopoietic cells and the evidence that family-specific inhibitors will be therapeutically useful in myeloid and lymphoid malignancies.
Collapse
Affiliation(s)
- Adam Lerner
- *Evans Department of Medicine, Section of Hematology and Oncology, Boston Medical Center, Boston, MA 02118, U.S.A
- †Department of Pathology, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Paul M. Epstein
- ‡Department of Pharmacology, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|