1
|
Sajid I, Hassan A, Begum R, Zhou S, Irfan A, Chaudhry AR, Farooqi ZH. Yolk-shell smart polymer microgels and their hybrids: fundamentals and applications. RSC Adv 2024; 14:8409-8433. [PMID: 38476178 PMCID: PMC10929002 DOI: 10.1039/d4ra00035h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Yolk-shell microgels and their hybrids have attained great importance in modern-day research owing to their captivating features and potential uses. This manuscript provides the strategies for preparation, classification, properties and current applications of yolk-shell microgels and their hybrids. Some of the yolk-shell microgels and their hybrids are identified as smart polymer yolk-shell microgels and smart hybrid microgels, respectively, as they react to changes in particular environmental stimuli such as pH, temperature and ionic strength of the medium. This unique behavior makes them a perfect candidate for utilization in drug delivery, selective catalysis, adsorption of metal ions, nanoreactors and many other fields. This review demonstrates the contemporary progress along with suggestions and future perspectives for further research in this specific field.
Collapse
Affiliation(s)
- Iqra Sajid
- School of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-9231269 +92-42-9230463 ext. 817
| | - Ahmad Hassan
- School of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-9231269 +92-42-9230463 ext. 817
| | - Robina Begum
- School of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-9231269 +92-42-9230463 ext. 817
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island, PhD Program in Chemistry of The Graduate Centre, The City University of New York 2800 Victory Boulevard, Staten Island NY 10314 USA
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha P. O. Box 551, Bisha 61922 Saudi Arabia
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-9231269 +92-42-9230463 ext. 817
| |
Collapse
|
2
|
Echeverría C, Mijangos C. Rheology Applied to Microgels: Brief (Revision of the) State of the Art. Polymers (Basel) 2022; 14:1279. [PMID: 35406152 PMCID: PMC9003433 DOI: 10.3390/polym14071279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/10/2022] Open
Abstract
The ability of polymer microgels to rapidly respond to external stimuli is of great interest in sensors, lubricants, and biomedical applications, among others. In most of their uses, microgels are subjected to shear, deformation, and compression forces or a combination of them, leading to variations in their rheological properties. This review article mainly refers to the rheology of microgels, from the hard sphere versus soft particles' model. It clearly describes the scaling theories and fractal structure formation, in particular, the Shih et al. and Wu and Morbidelli models as a tool to determine the interactions among microgel particles and, thus, the viscoelastic properties. Additionally, the most recent advances on the characterization of microgels' single-particle interactions are also described. The review starts with the definition of microgels, and a brief introduction addresses the preparation and applications of microgels and hybrid microgels.
Collapse
Affiliation(s)
- Coro Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
| | | |
Collapse
|
3
|
Oberdisse J, Hellweg T. Recent advances in stimuli-responsive core-shell microgel particles: synthesis, characterisation, and applications. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04629-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractInspired by the path followed by Matthias Ballauff over the past 20 years, the development of thermosensitive core-shell microgel structures is reviewed. Different chemical structures, from hard nanoparticle cores to double stimuli-responsive microgels have been devised and successfully implemented by many different groups. Some of the rich variety of these systems is presented, as well as some recent progress in structural analysis of such microstructures by small-angle scattering of neutrons or X-rays, including modelling approaches. In the last part, again following early work by the group of Matthias Ballauff, applications with particular emphasis on incorporation of catalytic nanoparticles inside core-shell structures—stabilising the nanoparticles and granting external control over activity—will be discussed, as well as core-shell microgels at interfaces.
Collapse
|
4
|
Doña M, Ortega-Rodriguez A, Alarcón-Fernández C, López-Romero JM, Contreras-Cáceres R. Effect of the cross-linking density on the gold core oxidation in hybrid core@shell Au@pNIPAM and Janus Au@p4VP systems. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
|
6
|
AuNPs-Based Thermoresponsive Nanoreactor as an Efficient Catalyst for the Reduction of 4-Nitrophenol. NANOMATERIALS 2018; 8:nano8120963. [PMID: 30469465 PMCID: PMC6315678 DOI: 10.3390/nano8120963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 11/17/2022]
Abstract
A new AuNPs-based thermosensitive nanoreactor (SiO₂@PMBA@Au@PNIPAM) was designed and prepared by stabilizing AuNPs in the layer of poly(N,N'-methylenebisacrylamide) (PMBA) and subsequent wrapping with the temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) layer. The new nanoreactor exhibited high dispersibility and stability in aqueous solution and effectively prevented the aggregation of AuNPs caused by the phase transformation of PNIPAM. The XPS and ATR-FTIR results indicated that AuNPs could be well stabilized by PMBA due to the electron transfer between the N atoms of amide groups in the PMBA and Au atoms of AuNPs. The catalytic activity and thermoresponsive property of the new nanoreactor were invested by the reduction of the environmental pollutant, 4-nitrophenol (4-NP), with NaBH₄ as a reductant. It exhibited a higher catalytic activity at 20 °C and 30 °C (below LCST of PNIPAM), but an inhibited catalytic activity at 40 °C (above LCST of PNIPAM). The PNIPAM layer played a switching role in controlling the catalytic rate by altering the reaction temperature. In addition, this nanoreactor showed an easily recyclable property due to the existence of a silica core and also preserved a rather high catalytic efficiency after 16 times of recycling.
Collapse
|
7
|
Wang YF, Yang TT, Liu WL, Zhao D, Ren MM, Kong FG, Wang SJ, Wang XQ, Duan XL. Design of double-shelled and dual-cavity structures in Fe3O4@Void@PMAA@Void@TiO2 nanocomposite particles for comprehensive photocatalyst and adsorbent applications. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4390-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Nikravan G, Haddadi-Asl V, Salami-Kalajahi M. Synthesis of pH-responsive magnetic yolk-shell nanoparticles: A comparison between conventional etching and new deswelling approaches. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4272] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Goolia Nikravan
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; PO Box 15875-4413 Tehran Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; PO Box 15875-4413 Tehran Iran
| | - Mehdi Salami-Kalajahi
- Department of Polymer Engineering; Sahand University of Technology; PO Box 51335-1996 Tabriz Iran
- Institute of Polymeric Materials, Sahand University of Technology; PO Box 51335-1996 Tabriz Iran
| |
Collapse
|
9
|
Díaz M, Barrera A, López-Cuenca S, Martínez-Salazar SY, Rabelero M, Ceja I, Fernández VVA, Aguilar J. Size-controlled gold nanoparticles inside polyacrylamide microgels. J Appl Polym Sci 2016. [DOI: 10.1002/app.43560] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. Díaz
- Departamento de Ciencias Tecnológicas; Universidad de Guadalajara; Avenida Universidad 1115, 47820 Ocotlán Jalisco 47820 Mexico
| | - A. Barrera
- Departamento de Ciencias Básicas; Universidad de Guadalajara; Avenida Universidad 1115, 47820 Ocotlán Jalisco 47820 Mexico
| | - S. López-Cuenca
- Instituto Tecnológico Superior de Tequila; Joel Magallanes Rubio 501; Col. Lomas del Paraíso 46400 Tequila Jalisco Mexico
| | - S. Y. Martínez-Salazar
- Departamento de Ciencias Básicas; Universidad de Guadalajara; Avenida Universidad 1115, 47820 Ocotlán Jalisco 47820 Mexico
| | - M. Rabelero
- Departamento de Ingeniería Química; Universidad de Guadalajara; Boulevard M. García Barragán 1451 44430 Guadalajara Jalisco Mexico
| | - I. Ceja
- Departamento de Física; Universidad de Guadalajara; Boulevard M. García Barragán 1451 44430 Guadalajara Jalisco Mexico
| | - V. V. A. Fernández
- Departamento de Ciencias Tecnológicas; Universidad de Guadalajara; Avenida Universidad 1115, 47820 Ocotlán Jalisco 47820 Mexico
| | - J. Aguilar
- Departamento de Ciencias Tecnológicas; Universidad de Guadalajara; Avenida Universidad 1115, 47820 Ocotlán Jalisco 47820 Mexico
| |
Collapse
|
10
|
El-Toni AM, Habila MA, Labis JP, ALOthman ZA, Alhoshan M, Elzatahry AA, Zhang F. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures. NANOSCALE 2016; 8:2510-31. [PMID: 26766598 DOI: 10.1039/c5nr07004j] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
With the evolution of nanoscience and nanotechnology, studies have been focused on manipulating nanoparticle properties through the control of their size, composition, and morphology. As nanomaterial research has progressed, the foremost focus has gradually shifted from synthesis, morphology control, and characterization of properties to the investigation of function and the utility of integrating these materials and chemical sciences with the physical, biological, and medical fields, which therefore necessitates the development of novel materials that are capable of performing multiple tasks and functions. The construction of multifunctional nanomaterials that integrate two or more functions into a single geometry has been achieved through the surface-coating technique, which created a new class of substances designated as core-shell nanoparticles. Core-shell materials have growing and expanding applications due to the multifunctionality that is achieved through the formation of multiple shells as well as the manipulation of core/shell materials. Moreover, core removal from core-shell-based structures offers excellent opportunities to construct multifunctional hollow core architectures that possess huge storage capacities, low densities, and tunable optical properties. Furthermore, the fabrication of nanomaterials that have the combined properties of a core-shell structure with that of a hollow one has resulted in the creation of a new and important class of substances, known as the rattle core-shell nanoparticles, or nanorattles. The design strategies of these new multifunctional nanostructures (core-shell, hollow core, and nanorattle) are discussed in the first part of this review. In the second part, different synthesis and fabrication approaches for multifunctional core-shell, hollow core-shell and rattle core-shell architectures are highlighted. Finally, in the last part of the article, the versatile and diverse applications of these nanoarchitectures in catalysis, energy storage, sensing, and biomedicine are presented.
Collapse
Affiliation(s)
- Ahmed Mohamed El-Toni
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia. and Central Metallurgical Research and Development Institute, CMRDI, Helwan 11421, Cairo, Egypt
| | - Mohamed A Habila
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Joselito Puzon Labis
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia. and Math-Physics Dept., Mindanao State University, Fatima, General Santos City 9500, Philippines
| | - Zeid A ALOthman
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mansour Alhoshan
- Department of Chemical Engineering and King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
11
|
Purbia R, Paria S. Yolk/shell nanoparticles: classifications, synthesis, properties, and applications. NANOSCALE 2015; 7:19789-873. [PMID: 26567966 DOI: 10.1039/c5nr04729c] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Core/shell nanoparticles were first reported in the early 1990s with a simple spherical core and shell structure, but the area is gradually diversifying in multiple directions such as different shapes, multishells, yolk/shell etc., because of the development of different new properties of the materials, which are useful for several advanced applications. Among different sub-areas of core/shell nanoparticles, yolk/shell nanoparticles (YS NPs) have drawn significant attention in recent years because of their unique properties such as low density, large surface area, ease of interior core functionalization, a good molecular loading capacity in the void space, tunable interstitial void space, and a hollow outer shell. The YS NPs have better properties over simple core/shell or hollow NPs in various fields including biomedical, catalysis, sensors, lithium batteries, adsorbents, DSSCs, microwave absorbers etc., mainly because of the presence of free void space, porous hollow shell, and free core surface. This review presents an extensive classification of YS NPs based on their structures and types of materials, along with synthesis strategies, properties, and applications with which one would be able to draw a complete picture of this area.
Collapse
Affiliation(s)
- Rahul Purbia
- Interfaces and Nanomaterials Laboratory, Department of Chemical Engineering, National Institute of Technology, Rourkela-769008, India.
| | | |
Collapse
|
12
|
Contreras-Cáceres R, Schellkopf L, Fernández-López C, Pastoriza-Santos I, Pérez-Juste J, Stamm M. Effect of the cross-linking density on the thermoresponsive behavior of hollow PNIPAM microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1142-1149. [PMID: 25526382 DOI: 10.1021/la504176a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report on the fabrication of thermally responsive hollow pNIPAM particles through the oxidation of the metal core in an Au@pNIPAM system. The selective oxidation of the Au core is achieved by addition of AuCl4(-) to an aqueous dispersion of Au@pNIPAM particles in the presence of cetyltrimethylammonium bromide (CTAB). We fabricate hollow pNIPAM particles with three cross-linking densities (N,N'-methylenebis(acrylamide), BA, at 5%, 10%, and 17.5%). The study of the effect of the amount of BA within the microgel network was performed by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM), showing its key role in determining the final hollow structure and thermal response. While the thermal responsiveness is largely achieved at low cross-linking densities, the hollow structure only remains at larger cross-linking densities. This was further confirmed by cryo-TEM analysis of hollow pNIPAM particles below and above the volume phase transition temperature (VPTT). Thus, it clearly shows (i) the shrinking of particle size with the temperature at low cross-linking density and (ii) the dependence of particle size on the amount of cross-linker for the final hollow pNIPAM structure. Observed differences in the hollow pNIPAM structure are attributed to different elastic contributions (Π(elas)), showing higher elasticity for microgels synthesized at lower amount of BA.
Collapse
Affiliation(s)
- Rafael Contreras-Cáceres
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga , 29071 Málaga, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Chen X, Sun JT, Pan CY, Hong CY. A facile synthesis of thermo-responsive Au–polymer hybrid microgels through temperature-induced co-aggregation and self-crosslinking. Polym Chem 2015. [DOI: 10.1039/c5py00774g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile temperature-induced co-aggregation and self-crosslinking (TICASC) method was developed for preparing thermo-responsive Au–polymer hybrid microgels.
Collapse
Affiliation(s)
- Xiang Chen
- CAS Key Lab of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Jiao-Tong Sun
- CAS Key Lab of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Cai-Yuan Pan
- CAS Key Lab of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Chun-Yan Hong
- CAS Key Lab of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
14
|
Dubbert J, Nothdurft K, Karg M, Richtering W. Core-shell-shell and hollow double-shell microgels with advanced temperature responsiveness. Macromol Rapid Commun 2014; 36:159-64. [PMID: 25354836 DOI: 10.1002/marc.201400495] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/25/2014] [Indexed: 11/08/2022]
Abstract
Unique doubly temperature-responsive hollow microgels are presented. These consist of two concentric thermoresponsive polymer shells made of poly(N-isopropylacrylamide) (PNIPAM) and poly(N-isopropylmethacrylamide) (PNIPMAM), respectively. The hollow particles are derived from silica-PNIPAM-PNIPMAM core-shell-shell (CSS) particles by dissolution of the silica core. Light scattering measurements reveal the twofold volume phase transition behavior that occur in the PNIPAM and PNIPMAM regions of the CSS and the respective hollow particles. In the presence of the silica core, i.e., in case of the CSS particles, the swelling of the inner shell is tremendously restricted by the core. However, after the core is dissolved, the transition of the inner shell from the swollen to the collapsed state is highly pronounced. This versatile approach allows preparing hollow particles with individually tunable properties on the particle inside and outside for various applications as multifunctional smart materials.
Collapse
Affiliation(s)
- Janine Dubbert
- Institute of Physical Chemistry, Landoltweg 2, 52074, Aachen, Germany
| | | | | | | |
Collapse
|