1
|
Cirillo G, Curcio M, Madeo LF, Iemma F, De Filpo G, Hampel S, Nicoletta FP. Carbon Nanotubes Hybrid Hydrogels for Environmental Remediation: Evaluation of Adsorption Efficiency under Electric Field. Molecules 2021; 26:molecules26227001. [PMID: 34834096 PMCID: PMC8625859 DOI: 10.3390/molecules26227001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
The performance of Carbon Nanotubes hybrid hydrogels for environmental remediation was investigated using Methylene Blue (MB), Rhodamine B (RD), and Bengal Rose (BR) as model contaminating dyes. An acrylate hydrogel network with incorporated CNT was synthesized by photo-polymerization without any preliminary derivatization of CNT surface. Thermodynamics, isothermal and kinetic studies showed favorable sorption processes with the application of an external 12 V electric field found to be able to influence the amount of adsorbed dyes: stronger interactions with cationic MB molecules (qexp and qexp12 of 19.72 and 33.45 mg g−1, respectively) and reduced affinity for anionic RD (qexp and qexp12 of 28.93 and 13.06 mg g−1, respectively) and neutral BR (qexp and qexp12 of 36.75 and 15.85 mg g−1, respectively) molecules were recorded. The influence of pH variation on dyes adsorption was finally highlighted by reusability studies, with the negligible variation of adsorption capacity after five repeated sorption cycles claiming for the suitability of the proposed systems as effective sorbent for wastewater treatment.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (F.I.); (F.P.N.)
- Correspondence: ; Tel.: +39-0984493208
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (F.I.); (F.P.N.)
| | - Lorenzo Francesco Madeo
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (L.F.M.); (S.H.)
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (F.I.); (F.P.N.)
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy;
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany; (L.F.M.); (S.H.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.); (F.I.); (F.P.N.)
| |
Collapse
|
2
|
Abstract
Different carbon nanostructures have been explored as functional materials for the development of effective nanomaterials in cancer treatment applications. This review mainly aims to discuss the features, either strength or weakness, of carbon nanohorn (CNH), carbon conical horn-shaped nanostructures of sp2 carbon atoms. The interest for these materials arises from their ability to couple the clinically relevant properties of carbon nanomaterials as drug carriers with the negligible toxicity described in vivo. Here, we offer a comprehensive overview of the recent advances in the use of CNH in cancer treatments, underlining the benefits of each functionalization route and approach, as well as the biological performances of either loaded and unloaded materials, while discussing the importance of delivery devices.
Collapse
|
3
|
Cirillo G, Spizzirri UG, Curcio M, Nicoletta FP, Iemma F. Injectable Hydrogels for Cancer Therapy over the Last Decade. Pharmaceutics 2019; 11:E486. [PMID: 31546921 PMCID: PMC6781516 DOI: 10.3390/pharmaceutics11090486] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 01/07/2023] Open
Abstract
The interest in injectable hydrogels for cancer treatment has been significantly growing over the last decade, due to the availability of a wide range of starting polymer structures with tailored features and high chemical versatility. Many research groups are working on the development of highly engineered injectable delivery vehicle systems suitable for combined chemo-and radio-therapy, as well as thermal and photo-thermal ablation, with the aim of finding out effective solutions to overcome the current obstacles of conventional therapeutic protocols. Within this work, we have reviewed and discussed the most recent injectable hydrogel systems, focusing on the structure and properties of the starting polymers, which are mainly classified into natural or synthetic sources. Moreover, mapping the research landscape of the fabrication strategies, the main outcome of each system is discussed in light of possible clinical applications.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Umile Gianfranco Spizzirri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| |
Collapse
|
4
|
Cirillo G, Vittorio O, Kunhardt D, Valli E, Voli F, Farfalla A, Curcio M, Spizzirri UG, Hampel S. Combining Carbon Nanotubes and Chitosan for the Vectorization of Methotrexate to Lung Cancer Cells. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2889. [PMID: 31500165 PMCID: PMC6766185 DOI: 10.3390/ma12182889] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
A hybrid system composed of multi-walled carbon nanotubes coated with chitosan was proposed as a pH-responsive carrier for the vectorization of methotrexate to lung cancer. The effective coating of the carbon nanostructure by chitosan, quantified (20% by weight) by thermogravimetric analysis, was assessed by combined scanning and transmission electron microscopy, and X-ray photoelectron spectroscopy (N1s signal), respectively. Furthermore, Raman spectroscopy was used to characterize the interaction between polysaccharide and carbon counterparts. Methotrexate was physically loaded onto the nanohybrid and the release profiles showed a pH-responsive behavior with higher and faster release in acidic (pH 5.0) vs. neutral (pH 7.4) environments. Empty nanoparticles were found to be highly biocompatible in either healthy (MRC-5) or cancerous (H1299) cells, with the nanocarrier being effective in reducing the drug toxicity on MRC-5 while enhancing the anticancer activity on H1299.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, NSW 2052, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia.
| | - David Kunhardt
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
| | - Emanuele Valli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia.
| | - Florida Voli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, NSW 2031, Australia.
| | - Annafranca Farfalla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Umile Gianfranco Spizzirri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy.
| | - Silke Hampel
- Leibniz Institute of Solid State and Material Research Dresden, 01069 Dresden, Germany.
| |
Collapse
|
5
|
|
6
|
Lu K, Huang Q, Xia T, Chang X, Wang P, Gao S, Mao L. The potential ecological risk of multiwall carbon nanotubes was modified by the radicals resulted from peroxidase-mediated tetrabromobisphenol A reactions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:264-273. [PMID: 27665121 DOI: 10.1016/j.envpol.2016.09.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/09/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
Extensive studies have been conducted on the environmental degradation of multiwall carbon nanotubes (MWCNTs), but primarily focused on the extent and rate of MWCNTs mineralization. Few studies have explored possible structural changes that may occur to MWCNTs during natural or engineered processes. We systematically examined MWCNTs in oxidative coupling reactions in the presence of a common contaminant tetrabromobisphenol A (TBBPA). MWCNTs was modified by the radicals of TBBPA resulting from peroxidase-mediated coupling reaction. Interactions between TBBPA radicals and MWCNTs were definitely confirmed by analyzing the characteristic mass spectrometry response of bromine in TBBPA and the structures of MWCNTs. After reaction with TBBPA radicals for 60 min, the content of bromine contained in MWCNTs was 6.84(±0.12)%, a quantity equivalent to a 501.65(±2.19) mg loading of TBBPA per gram MWCNTs. Modified MWCNTs had better stability and smaller sizes than that of MWCNTs and TBBPA-adsorbed MWCNTs. Assessment using zebrafish embryos revealed that the modified MWCNTs passed through the chorion and entered the embryo inducing acute toxicity, while the MWCNTs/TBBPA-adsorbed MWCNTs was trapped by chorion. These findings indicated that MWCNTs was modified in peroxidase-mediated coupling reactions, and suggested that such modifications may have an influence on the ecological risks of MWCNTs.
Collapse
Affiliation(s)
- Kun Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Qingguo Huang
- College of Agricultural and Environmental Sciences, Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, 30223, United States
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, United States
| | - Xiaofeng Chang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, PR China
| | - Peng Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, PR China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
7
|
Ali U, Bt. Abd Karim KJ, Buang NA. Modification of pristine multiwalled carbon nanotube by grafting with poly(methyl methacrylate) using benzoyl peroxide initiator. J Appl Polym Sci 2016. [DOI: 10.1002/app.43270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Umar Ali
- Department of Chemistry, Faculty of Science; Universiti Teknologi Malaysia; 81310 UTM Johor Bahru Malaysia
| | - Khairil J. Bt. Abd Karim
- Department of Chemistry, Faculty of Science; Universiti Teknologi Malaysia; 81310 UTM Johor Bahru Malaysia
| | - Nor A. Buang
- Department of Chemistry, Faculty of Science; Universiti Teknologi Malaysia; 81310 UTM Johor Bahru Malaysia
| |
Collapse
|
8
|
Spizzirri UG, Curcio M, Cirillo G, Spataro T, Vittorio O, Picci N, Hampel S, Iemma F, Nicoletta FP. Recent Advances in the Synthesis and Biomedical Applications of Nanocomposite Hydrogels. Pharmaceutics 2015; 7:413-37. [PMID: 26473915 PMCID: PMC4695827 DOI: 10.3390/pharmaceutics7040413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/07/2015] [Accepted: 09/30/2015] [Indexed: 12/05/2022] Open
Abstract
Hydrogels sensitive to electric current are usually made of polyelectrolytes and undergo erosion, swelling, de-swelling or bending in the presence of an applied electric field. The electrical conductivity of many polymeric materials used for the fabrication of biomedical devices is not high enough to achieve an effective modulation of the functional properties, and thus, the incorporation of conducting materials (e.g., carbon nanotubes and nanographene oxide) was proposed as a valuable approach to overcome this limitation. By coupling the biological and chemical features of both natural and synthetic polymers with the favourable properties of carbon nanostructures (e.g., cellular uptake, electromagnetic and magnetic behaviour), it is possible to produce highly versatile and effective nanocomposite materials. In the present review, the recent advances in the synthesis and biomedical applications of electro-responsive nanocomposite hydrogels are discussed.
Collapse
Affiliation(s)
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, Italy.
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, Italy.
| | - Tania Spataro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, Italy.
| | - Orazio Vittorio
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Sydney, 2052, Australia.
- Australian Centre for Nanomedicine, University of New South Wales, Sydney, 2052, Australia.
| | - Nevio Picci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, Italy.
| | - Silke Hampel
- Leibniz Institute for Solid State and Materials Research, PF 270116, D-01171 Dresden, Germany.
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, Italy.
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, I-87036 Rende, Italy.
| |
Collapse
|
9
|
Spizzirri UG, Hampel S, Cirillo G, Mauro MV, Vittorio O, Cavalcanti P, Giraldi C, Curcio M, Picci N, Iemma F. Functional Gelatin-Carbon Nanotubes Nanohybrids With Enhanced Antibacterial Activity. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2014.958833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Curcio M, Spizzirri UG, Cirillo G, Vittorio O, Picci N, Nicoletta FP, Iemma F, Hampel S. On demand delivery of ionic drugs from electro-responsive CNT hybrid films. RSC Adv 2015. [DOI: 10.1039/c5ra05484b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Electro responsive hybrid hydrogel films able to precisely modulate the release of drugs as a function of their net charge.
Collapse
Affiliation(s)
- M. Curcio
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- Rende (CS)
- Italy
| | - U. G. Spizzirri
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- Rende (CS)
- Italy
| | - G. Cirillo
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- Rende (CS)
- Italy
| | - O. Vittorio
- Children's Cancer Institute Australia
- Lowy Cancer Research Centre
- University of New South Wales
- Sydney
- Australia
| | - N. Picci
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- Rende (CS)
- Italy
| | - F. P. Nicoletta
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- Rende (CS)
- Italy
| | - F. Iemma
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- Rende (CS)
- Italy
| | - S. Hampel
- Leibniz Institute for Solid State and Materials Research
- Dresden
- Germany
| |
Collapse
|
11
|
Vittorio O, Brandl M, Cirillo G, Spizzirri UG, Picci N, Kavallaris M, Iemma F, Hampel S. Novel functional cisplatin carrier based on carbon nanotubes–quercetin nanohybrid induces synergistic anticancer activity against neuroblastoma in vitro. RSC Adv 2014. [DOI: 10.1039/c4ra03331k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Ohba T, Chaban VV. A Highly Viscous Imidazolium Ionic Liquid inside Carbon Nanotubes. J Phys Chem B 2014; 118:6234-40. [DOI: 10.1021/jp502798e] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Tomonori Ohba
- Graduate
School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Vitaly V. Chaban
- MEMPHYS
- Center for Biomembrane Physics, Syddansk Universitet, Odense M, 5230, Denmark
| |
Collapse
|
13
|
Cirillo G, Hampel S, Spizzirri UG, Parisi OI, Picci N, Iemma F. Carbon nanotubes hybrid hydrogels in drug delivery: a perspective review. BIOMED RESEARCH INTERNATIONAL 2014; 2014:825017. [PMID: 24587993 PMCID: PMC3918724 DOI: 10.1155/2014/825017] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 11/17/2022]
Abstract
The use of biologics, polymers, silicon materials, carbon materials, and metals has been proposed for the preparation of innovative drug delivery devices. One of the most promising materials in this field are the carbon-nanotubes composites and hybrid materials coupling the advantages of polymers (biocompatibility and biodegradability) with those of carbon nanotubes (cellular uptake, stability, electromagnatic, and magnetic behavior). The applicability of polymer-carbon nanotubes composites in drug delivery, with particular attention to the controlled release by composites hydrogel, is being extensively investigated in the present review.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
- Leibniz Institute for Solid State and Materials Research Dresden, Postfatch 270116, 01171 Dresden, Germany
| | - Silke Hampel
- Leibniz Institute for Solid State and Materials Research Dresden, Postfatch 270116, 01171 Dresden, Germany
| | - Umile Gianfranco Spizzirri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Nevio Picci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| |
Collapse
|
14
|
Spizzirri UG, Hampel S, Cirillo G, Nicoletta FP, Hassan A, Vittorio O, Picci N, Iemma F. Spherical gelatin/CNTs hybrid microgels as electro-responsive drug delivery systems. Int J Pharm 2013; 448:115-22. [DOI: 10.1016/j.ijpharm.2013.03.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 11/26/2022]
|
15
|
Cirillo G, Vittorio O, Hampel S, Iemma F, Parchi P, Cecchini M, Puoci F, Picci N. Quercetin nanocomposite as novel anticancer therapeutic: improved efficiency and reduced toxicity. Eur J Pharm Sci 2013; 49:359-65. [PMID: 23602995 DOI: 10.1016/j.ejps.2013.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/09/2013] [Accepted: 04/09/2013] [Indexed: 12/27/2022]
Abstract
A three-functional nanocomposite was prepared by radical polymerization of methacrylic acid around carbon nanotubes in the presence of Quercetin as biologically active molecule and proposed as new anticancer therapeutic. The so-obtained hybrid material was characterized by FT-IR, Raman, SEM, TEM analyses, while the functionalization degree of 2.33 mg of Quercetin per g of composite was assessed by Folin-Ciocalteu test. Antioxidant test (DPPH and ABTS) showed that the covalent coupling did not interfere with the antioxidant properties of the flavonoid, while the anticancer activity was greatly enhanced with a recorded IC50 value much lower than free Quercetin. Cell viability tests on healthy cells demonstrated no-toxicity of the conjugate.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria, I-87036 Arcavacata di Rende (CS), Italy.
| | | | | | | | | | | | | | | |
Collapse
|