1
|
Hu X, Zhu C, Hu Z, Shen W, Ji Z, Li F, Guo C. Effect of zein-pectin composite particles on the stability and rheological properties of gelatin/hydroxypropyl methylcellulose water-water systems. Int J Biol Macromol 2024; 269:131846. [PMID: 38663702 DOI: 10.1016/j.ijbiomac.2024.131846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
To improve the compatibility of gelatin (GA) and hydroxypropyl methylcellulose (HPMC), we investigated the effects of zein-pectin composite particles (ZCPs) with various zein/pectin ratios (1:0, 1:0.5, 1:1, 1:1.5, and 1:2) on the physical stability, microstructure, and rheological properties of the GA/HPMC water-water systems. With increasing pectin ratio, the particle size of the composite particles increased from 234.53 ± 1.48 nm to 1111.00 ± 26.91 nm, and their zeta potential decreased from 20.60 mV to below -34.77 mV. Macroscopic and microstructure observations indicated that pectin-modified ZCPs could effectively inhibit phase separation behavior between GA and HPMC. Compared to pure HPMC, the GA/HPMC water-water systems possessed a higher viscosity and dynamic modulus at room temperatures but lower gel temperatures (reduction of about 11 %). The viscosity and modulus of the water-water systems increased with increasing pectin ratio in ZCPs. However, the ratio had no impact on the gel-sol (sol-gel) transition temperatures (not statistically significant (P < 0.05)). This study may serve as a reference for advancing the processability of HPMC.
Collapse
Affiliation(s)
- Xinnan Hu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chengkai Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhongze Hu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wangyang Shen
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China
| | - Zhili Ji
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan 430023, China.
| | - Fang Li
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Cheng Guo
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
2
|
Yu X, Yang Y, Liu Q, Jin Z, Jiao A. A hydroxypropyl methylcellulose/hydroxypropyl starch nanocomposite film reinforced with chitosan nanoparticles encapsulating cinnamon essential oil: Preparation and characterization. Int J Biol Macromol 2023; 242:124605. [PMID: 37116838 DOI: 10.1016/j.ijbiomac.2023.124605] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
Active packaging derived from polysaccharides plays an important role in prolonging the shelf life of food. In this study, cinnamon essential oil (CEO)-loaded chitosan nanoparticles (CNs) were prepared and embedded in hydroxypropyl methylcellulose (HPMC)/hydroxypropyl starch (HPS) blends to enhance the physicochemical and biofunctional properties of the formed films. Different concentrations (25, 50, 75, and 100 μL/mL) of CEOs were encapsulated with CNs to form CEO-CNs, as confirmed by Fourier Transform Infrared Spectrometer (FTIR), X-Ray Diffraction (XRD), and scanning electron microscope (SEM) images. The prepared CEO-CNs were incorporated into the HPMC/HPS film-forming matrix to prepare reinforced nanocomposite films. SEM images showed that the CEO-CNs were dispersed in the HPMC/HPS matrix, thus filling the void space in the composite matrix and significantly improving the mechanical and barrier properties of the bio-nanocomposite films. The elongation at break of the reinforced films improved from 8.54 ± 0.53 MPa to 24.81 ± 0.47 MPa, and the water vapor permeability was reduced by nearly 30 %. FTIR and XRD analyses indicated the formation of hydrogen bonds between CEO-CNs and HPMC/HPS polymer molecules. Release studies showed that the nanocomposite film was capable of sustained release of CEO, which imparted antioxidant (radical scavenging activity of 27.66-42.19 %) and antimicrobial properties (inhibition of Escherichia coli and Aspergillus flavus growth). Therefore, these HPMC/HPS nanocomposite films with enhanced properties may have great potential for food preservation.
Collapse
Affiliation(s)
- Xuepeng Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Qing Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
3
|
Fabrication of 3D-printed octreotide acetate-loaded oral solid dosage forms by means of semi-solid extrusion printing. Int J Pharm 2023; 632:122569. [PMID: 36592893 DOI: 10.1016/j.ijpharm.2022.122569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
Semi-solid extrusion (SSE) 3D printing technology was utilized for the encapsulation of octreotide acetate (OCT) into 3D-printed oral dosage forms in ambient conditions. The inks and the OCT-loaded 3D-printed oral dosage forms were characterized by means of rheology, Fourier-transform infrared (FTIR) spectroscopy and Nuclear Magnetic Resonance (NMR). In vitro studies demonstrated that the formulations released OCT in a controlled manner. The application of these formulations to Caco-2 cell monolayers revealed their capability to induce the transient opening of tight junctions in a reversible manner as evidenced by Transepithelial Resistance (TEER) measurements. Cellular assays (CCK-8 assay) demonstrated the viability of intestinal cells in the presence of these formulations. The in vitro transport studies across Caco-2 monolayers demonstrated the ability of these formulations to enhance the OCT uptake across the cell monolayer over time due to opening of the tight junctions.
Collapse
|
4
|
Jia Y, Zhang Z, Li M, Ji N, Qin Y, Wang Y, Shi R, Wang T, Xiong L, Sun Q. The effect of hydroxypropyl starch on the improvement of mechanical and cooking properties of rice noodles. Food Res Int 2022; 162:111922. [DOI: 10.1016/j.foodres.2022.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
|
5
|
Wang Y, Wang J, Sun Q, Xu X, Li M, Xie F. Hydroxypropyl methylcellulose hydrocolloid systems: Effect of hydroxypropy group content on the phase structure, rheological properties and film characteristics. Food Chem 2022; 379:132075. [DOI: 10.1016/j.foodchem.2022.132075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/04/2021] [Accepted: 01/03/2022] [Indexed: 12/18/2022]
|
6
|
Liu XL, Zhu CF, Liu HC, Zhu JM. Quantitative analysis of degree of substitution/molar substitution of etherified polysaccharide derivatives. Des Monomers Polym 2022; 25:75-88. [PMID: 35341117 PMCID: PMC8956314 DOI: 10.1080/15685551.2022.2054118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Due to the unique properties such as nontoxicity, biodegradability, availability from renewable resources, and cost-effectiveness, polysaccharides play a very important part in the science and technology field. The various chemically modified derivatives of these offer a wide range of high value-added in both food and non-food industries. Among the chemical modification, etherified polysaccharide is one of the most widespread derivatives by introducing an ether group which is commonly stable in both acidic and alkaline conditions. Hydroxyalkylation, alkylation, carboxymethylation, cationization, and cyanoethylation are some of the modifications commonly employed to prepare polysaccharides ethers derivatives. There also has been a growing tendency for creating new types of modification by combining the different means of chemical techniques. The correct determination of degree of substitution (DS)/molar substitution (MS) is crucially important. The objective of this article is to summarize developments in synthetic etherified polysaccharides, involving analytical methods for determination of MS/DS, measurement processes, and the associated mechanisms.
Collapse
Affiliation(s)
- Xue-Li Liu
- College of Material and Chemical Engineering, Chuzhou University, Anhui, China
- School of Chemistry & Chemical Engineering, Anhui University, Anhui, China
| | - Chun-Feng Zhu
- Department of Pharmacy, Traditional Chinese Hospital of Lu’an, Anhui, China
| | - Han-Chun Liu
- College of Material and Chemical Engineering, Chuzhou University, Anhui, China
| | - Jia-Ming Zhu
- College of Material and Chemical Engineering, Chuzhou University, Anhui, China
| |
Collapse
|
7
|
Ji Z, Yu L, Duan Q, Miao S, Liu H, Shen W, Jin W. Morphology and Rheology of a Cool-Gel (Protein) Blended with a Thermo-Gel (Hydroxypropyl Methylcellulose). Foods 2022; 11:foods11010128. [PMID: 35010254 PMCID: PMC8750888 DOI: 10.3390/foods11010128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 01/27/2023] Open
Abstract
This study investigates the morphological and rheological properties of blended gelatin (GA; a cooling-induced gel (cool-gel)) and hydroxypropyl methylcellulose (HPMC; a heating-induced gel (thermo-gel)) systems using a fluorescence microscope, small angle X-ray scattering (SAXS), and a rheometer. The results clearly indicate that the two biopolymers are immiscible and have low compatibility. Moreover, the rheological behavior and morphology of the GA/HPMC blends significantly depend on the blending ratio and concentration. Higher polysaccharide contents decrease the gelling temperature and improve the gel viscoelasticity character of GA/HPMC blended gels. The SAXS results reveal that the correlation length (ξ) of the blended gels decreases from 5.16 to 1.89 nm as the HPMC concentration increases from 1 to 6%, which suggests that much denser networks are formed in blended gels with higher HPMC concentrations. Overall, the data reported herein indicate that the gel properties of gelatin can be enhanced by blending with a heating-induced gel.
Collapse
Affiliation(s)
- Zhili Ji
- Cereal Engineering, School of Food Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (W.S.); (W.J.)
- Center for Polymer from Renewable Resources, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (Q.D.); (H.L.)
- Correspondence:
| | - Long Yu
- Center for Polymer from Renewable Resources, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (Q.D.); (H.L.)
- Sino-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, China
| | - Qingfei Duan
- Center for Polymer from Renewable Resources, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (Q.D.); (H.L.)
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland;
| | - Hongsheng Liu
- Center for Polymer from Renewable Resources, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Y.); (Q.D.); (H.L.)
- Sino-Singapore International Joint Research Institute, Guangzhou Knowledge City, Guangzhou 510663, China
| | - Wangyang Shen
- Cereal Engineering, School of Food Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (W.S.); (W.J.)
| | - Weiping Jin
- Cereal Engineering, School of Food Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (W.S.); (W.J.)
| |
Collapse
|
8
|
Rheological behaviors and texture properties of semi-interpenetrating networks of hydroxypropyl methylcellulose and gellan. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Hydroxypropyl methylcellulose and hydroxypropyl starch: Rheological and gelation effects on the phase structure of their mixed hydrocolloid system. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Effect of Curdlan on the Rheological Properties of Hydroxypropyl Methylcellulose. Foods 2020; 10:foods10010034. [PMID: 33374366 PMCID: PMC7824296 DOI: 10.3390/foods10010034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022] Open
Abstract
This work focuses on the effect of curdlan (CL) on dynamic viscoelastic property, thermal reversible property, viscosity, and the fluid types of hydroxypropyl methylcellulose (HPMC) at different temperatures. Compared to the blends at 25 °C, the blends had a smaller linear viscoelastic region (LVR), a higher gel strength, and larger storage modulus (G') and loss modulus (G") values at 82 °C. G', G", gel strength, and viscosity increased with the increase of CL. Repeated temperature sweep led to increased G' and G" of HPMC/CL blends. For HC6 and HC8, the gel formation temperature of the repeated temperature sweep was significantly lower than that of the first sweep. The samples at 82 °C, except for the sample with 8% CL, were all yield-shear thinning fluids, and the samples at 40 °C were shear thinning fluids. The creation of HPMC/CL and its rheological research might provide some methodological references for the study of other thermal-thermal gel blends.
Collapse
|
11
|
Chen Y, Liao L, Liu H, Wang Y, Zhang L, Chen L, Yu L. Effect of annealing on morphologies and performances of hydroxypropyl methylcellulose/hydroxypropyl starch blends. J Appl Polym Sci 2020. [DOI: 10.1002/app.49535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ying Chen
- Centre for Polymers from Renewable Resources SFSE, South China University of Technology Guangzhou China
| | - Lisha Liao
- Centre for Polymers from Renewable Resources SFSE, South China University of Technology Guangzhou China
| | - Hongsheng Liu
- Centre for Polymers from Renewable Resources SFSE, South China University of Technology Guangzhou China
- School of Food Science and Engineering Sino‐Singapore International Joint Research Institute Guangzhou China
| | - Yanfei Wang
- College of Food Science and Engineering Qingdao Agricultural University Qingdao Shandong China
| | - Liang Zhang
- College of Food Science and Engineering Yangzhou University Yangzhou China
| | - Ling Chen
- Centre for Polymers from Renewable Resources SFSE, South China University of Technology Guangzhou China
| | - Long Yu
- Centre for Polymers from Renewable Resources SFSE, South China University of Technology Guangzhou China
- School of Food Science and Engineering Sino‐Singapore International Joint Research Institute Guangzhou China
| |
Collapse
|
12
|
pH controlled gelation behavior and morphology of gelatin/hydroxypropylmethylcellulose blend in aqueous solution. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Liu X, Ji Z, Peng W, Chen M, Yu L, Zhu F. Chemical mapping analysis of compatibility in gelatin and hydroxypropyl methylcellulose blend films. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Souza de Araujo GR, de Oliveira Porfírio L, Santos Silva LA, Gomes Santana D, Ferreira Barbosa P, Pereira Dos Santos C, Narain N, Vitorino Sarmento VH, de Souza Nunes R, Ting E, Moreira Lira AA. In situ microemulsion-gel obtained from bioadhesive hydroxypropyl methylcellulose films for transdermal administration of zidovudine. Colloids Surf B Biointerfaces 2020; 188:110739. [PMID: 31901623 DOI: 10.1016/j.colsurfb.2019.110739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
This study aims to develop in situ microemulsion-gel (ME-Gel) obtained from hydroxypropyl methylcellulose (HPMC) films for transdermal administration of Zidovudine (AZT). Firstly, HPMC films containing propylene glycol (PG) and eucalyptus oil (EO) were obtained and characterized. Later, a pseudo-ternary phase diagram composed of water, EO, tween 80 and PG was obtained and one microemulsion (ME) with a similar proportion of the film components was obtained. ME was transformed in ME-Gel by the incorporation of HPMC. Finally, HPMC films were hydrated with Tween 80 solution to yield in situ ME-Gel and its effect on AZT skin permeation was compared with HPMC film hydrated with water (F5hyd). The results showed that the ME and ME-Gel presented a droplet size of 16.79 and 122.13 μm, respectively, polydispersity index (PDI) < 0.39 and pH between 5.10 and 5.40. The incorporation of HPMC resulted in viscosity about 2 times higher than the use of ME. The presence of AZT did not alter the formulation properties. The in situ ME-Gel promoted a two-fold increase in the permeated amount of AZT compared to F5hyd. The results suggest that it was possible to obtain an ME-Gel in situ from HPMC films and that its effect on transdermal permeation of AZT was significant.
Collapse
Affiliation(s)
| | | | | | | | - Paula Ferreira Barbosa
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Elizabeth Ting
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | |
Collapse
|
15
|
Lopez-Polo J, Silva-Weiss A, Zamorano M, Osorio FA. Humectability and physical properties of hydroxypropyl methylcellulose coatings with liposome-cellulose nanofibers: Food application. Carbohydr Polym 2019; 231:115702. [PMID: 31888827 DOI: 10.1016/j.carbpol.2019.115702] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 11/30/2022]
Abstract
The objective of this study was to investigate the physical, rheological and humectability properties of edible coating forming suspensions (ECS) based on hydroxypropyl methylcellulose (HPMC) containing: liposomes that encapsulate rutin, glycerol and cellulose nanofibers on sliced surfaces of almonds and chocolate. On average, liposomes measured between 110.6 ± 10.0 nm and were characterized as stable and homogeneous suspensions. Adding these liposomes to the edible coatings produced significant changes (p< 0.05) in the density and surface tension, which favor the final appearance of the coating. The presence of liposomes increased the apparent viscosity of the ECS, showing a purely viscous and fluid behavior with a good fit (R2 = 0.9996) with the Power Law model. The presence of liposomes and cellulose nanofibers decreased the value of the cohesive energy of the ECS. The studied ECS partially hydrate the surfaces of almond and chocolate as they showed contact angles under 90°.
Collapse
Affiliation(s)
- Johana Lopez-Polo
- Department of Food Science and Technology, Universidad de Santiago de Chile, USACH, Avenida Ecuador 3769, Santiago, Chile.
| | - Andrea Silva-Weiss
- Department of Food Science and Technology, Universidad de Santiago de Chile, USACH, Avenida Ecuador 3769, Santiago, Chile.
| | - Marcela Zamorano
- Department of Food Science and Technology, Universidad de Santiago de Chile, USACH, Avenida Ecuador 3769, Santiago, Chile.
| | - Fernando A Osorio
- Department of Food Science and Technology, Universidad de Santiago de Chile, USACH, Avenida Ecuador 3769, Santiago, Chile.
| |
Collapse
|
16
|
Fu Z, Zhang L, Ren MH, BeMiller JN. Developments in Hydroxypropylation of Starch: A Review. STARCH-STARKE 2018. [DOI: 10.1002/star.201800167] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen Fu
- Institute of Light Industry and Food Engineering; Guangxi University; Nanning Guangxi 530004 P. R. China
| | - Lu Zhang
- Institute of Light Industry and Food Engineering; Guangxi University; Nanning Guangxi 530004 P. R. China
| | - Min-Hong Ren
- Institute of Light Industry and Food Engineering; Guangxi University; Nanning Guangxi 530004 P. R. China
| | - James N. BeMiller
- Whistler Center for Carbohydrate Research; Department of Food Science; Purdue University; West Lafayette IN 47907-2009 USA
| |
Collapse
|
17
|
Barzic AI, Albu RM, Gradinaru LM, Buruiana LI. New insights on solvent implications in flow behavior and interfacial interactions of hydroxypropylmethyl cellulose with cells/bacteria. E-POLYMERS 2018. [DOI: 10.1515/epoly-2017-0125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe properties of polymers in solutions are affected by the solvent characteristics used in the processing stage. This work contributes to understanding the conformation changes under shear rheology of hydroxypropylmethyl cellulose (HPMC) in different solvents. Flow behavior in a large shear rate domain provides information on establishing the proper conditions in which the polymer solutions can be processed into uniform films. It was found that HPMC/solvent interactions influence the final architecture of macromolecules in the solid phase and implicitly the organization of polar/non-polar groups at the surface. This led to variable wettability and consequently to adhesion or cohesion of HPMC with biological agents. These new findings are important in tuning surface properties as demanded in bioengineering or regenerative medicine, where it is essential to establish adequate spreading conditions at the HPMC interface with cells or bacteria.
Collapse
Affiliation(s)
- Andreea Irina Barzic
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi, Romania
| | - Raluca Marinica Albu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi, Romania
| | | | - Luminita Ioana Buruiana
- Department of Physical Chemistry of Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi 700487, Romania, Tel.: +40232217454, Fax: +40232211299
| |
Collapse
|
18
|
Effect of processing conditions on microstructures and properties of hydroxypropyl methylcellulose/hydroxypropyl starch blends. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Functional properties of cellulose derivatives to tailor a model sponge cake using rheology and cellular structure analysis. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Wang Y, Zhang L, Liu H, Yu L, Simon GP, Zhang N, Chen L. Relationship between morphologies and mechanical properties of hydroxypropyl methylcellulose/hydroxypropyl starch blends. Carbohydr Polym 2016; 153:329-335. [DOI: 10.1016/j.carbpol.2016.07.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/01/2022]
|
21
|
Huang X, Jiang G, He Y, An Y, Zhang S. Improvement of rheological properties of invert drilling fluids by enhancing interactions of water droplets using hydrogen bonding linker. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Qin Y, Liu C, Jiang S, Cao J, Xiong L, Sun Q. Functional Properties of Glutinous Rice Flour by Dry-Heat Treatment. PLoS One 2016; 11:e0160371. [PMID: 27537844 PMCID: PMC4990194 DOI: 10.1371/journal.pone.0160371] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/18/2016] [Indexed: 11/19/2022] Open
Abstract
Glutinous rice flour (GRF) and glutinous rice starch (GRS) were modified by dry-heat treatment and their rheological, thermal properties and freeze-thaw stability were evaluated. Compared with the native GRF and GRS, the water-holding ability of modified GRF and GRS were enhanced. Both the onset and peak temperatures of the modified samples increased while the endothermic enthalpy change decreased significantly (p < 0.05). Meanwhile, dry heating remarkably increased the apparent viscosities of both GRF and GRS. Importantly, compared with GRS samples, the storage modulus (G') and loss modulus (G") values of modified GRF increased more greatly and the tanδ values decreased more remarkably, indicating that the dry-heat treatment showed more impact on the GRF and a higher viscoelasticity compared with GRS. Our results suggest the dry-heat treatment of GRF is a more effective method than that of GRS, which omits the complex and tedious process for purifying GRS, and thereby has more practical applications in the food industry.
Collapse
Affiliation(s)
- Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chengzhen Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Suisui Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jinmiao Cao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
- * E-mail:
| |
Collapse
|
23
|
Pang Z, Deeth H, Bansal N. Effect of polysaccharides with different ionic charge on the rheological, microstructural and textural properties of acid milk gels. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|