Design, synthesis, structure information and biochemical activity of new floro substituted organotin(IV) carboxylates.
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015;
154:99-107. [PMID:
26708070 DOI:
10.1016/j.jphotobiol.2015.10.011]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 12/24/2022]
Abstract
Four new triorganotin(IV) complexes with general formula R3SnL (R=C4H9, C6H5, and L=3-[(fluorophenylamido)]propenoic acid, 3-[(fluorophenylamido)]propanoic acid) were synthesized and characterized by elemental analyses, FT-IR, NMR ((1)H, (13)C and (119)Sn), mass spectrometry and single crystal X-ray structural analysis. The disappearance of the OH peak of the carboxylic acid in the FT-IR and NMR spectra of the compounds conform the formation of the compound and suggests that the complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date shows the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than 250. Crystallographic data for compound 2 showed that tin has distorted tetrahedral geometry with 433.42° angle around the central tin atom. The compounds (1-4) bind to DNA, resulting hypochromism shifts in UV-visible spectroscopy suggesting an intercalative mode of interactions. The compound-DNA interaction results (UV-visible and Viscometery) encourage using the compounds against HCV. The compounds (1-4) were screened for anti-HCV activity using Huh7.5 cell (human hepatoma cell) by the Gaussia Luciferase Assay and found to be biologically active. Based on Gaussia Luciferase Assay, compound 3 (Tributylstannic [3-(2-fluorophenylamido)propionate]) was taken for quantitative analysis by "QRT-PCR" using the serum of HCV patients and was found to have substantial anti-HCV activity. This work, demonstrated that compound 3 may be used as a potential anti-HCV agent in the future.
Collapse