1
|
Liu W, Nie F, Jiang H, Zhao Y, Zhang Y, Zhang Z, Zhang J, Xu J, Guo Y. Preparation of pH-Sensitive Polysaccharide-Small Molecule Nanoparticles and Their Applications for Tumor Chemo- and Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68437-68452. [PMID: 39586061 DOI: 10.1021/acsami.4c16504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Hydrophobic chemotherapy drugs face significant challenges in cancer treatment, including low bioavailability, unavoidable toxic side effects, and the development of drug resistance. To address these issues, a multifunctional nanoplatform was developed for cancer therapy, aimed at achieving effective drug delivery and enhancing antitumor efficacy. Poria cocos polysaccharide (PCP), a natural polymer known for its immunomodulatory properties, was utilized as an immunoreactive vector for drug delivery after being cross-linked with 1,4-phenylenebisboronic acid (BDBA). Subsequently, a small-molecule chemotherapy drug, esculetin (EL), was confirmed through density functional theory (DFT) simulations to be encapsulated within the PCP-BDBA nanoparticles via weak interactions. The results demonstrated that the synthesized nanoparticles were spherical, with an average particle size of 162.0 nm. In addition to exhibiting excellent stability, the nanoparticles also displayed pH-responsive drug release properties. In vivo experiments indicated that EL@PCP-BDBA NPs exhibited antitumor effects. Furthermore, EL@PCP-BDBA NPs showed superior in vitro antitumor activity compared to EL at the cellular level. Additionally, EL@PCP-BDBA NPs were found to increase intracellular reactive oxygen species (ROS) levels, induce cell apoptosis, and suppress cell migration to combat cancer. Meanwhile, EL@PCP-BDBA NPs enhanced immune function in vivo. In summary, this study developed a nano-pharmaceutical that combined chemotherapy and immunotherapy functions, which was considered a promising tool for cancer therapy.
Collapse
Affiliation(s)
- Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Haojing Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yinan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yan Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, People's Republic of China
| | - Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, People's Republic of China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
2
|
Jangid AK, Kim K. Phenylboronic acid-functionalized biomaterials for improved cancer immunotherapy via sialic acid targeting. Adv Colloid Interface Sci 2024; 333:103301. [PMID: 39260104 DOI: 10.1016/j.cis.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Phenylboronic acid (PBA) is recognized as one of the most promising cancer cell binding modules attributed to its potential to form reversible and dynamic boronic ester covalent bonds. Exploring the advanced chemical versatility of PBA is crucial for developing new anticancer therapeutics. The presence of a specific Lewis acidic boron atom-based functional group and a Π-ring-connected ring has garnered increasing interest in the field of cancer immunotherapy. PBA-derivatized functional biomaterials can form reversible bonds with diols containing cell surface markers and proteins. This review primarily focuses on the following topics: (1) the importance and versatility of PBA, (2) different PBA derivatives with pKa values, (3) specific key features of PBA-mediated biomaterials, and (4) cell surface activity for cancer immunotherapy applications. Specific key features of PBA-mediated materials, including sensing, bioadhesion, and gelation, along with important synthesis strategies, are highlighted. The utilization of PBA-mediated biomaterials for cancer immunotherapy, especially the role of PBA-based nanoparticles and PBA-mediated cell-based therapeutics, is also discussed. Finally, a perspective on future research based on PBA-biomaterials for immunotherapy applications is presented.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
3
|
Miglani C, Ralhan J, Banoo M, Nath D, Sil S, Pal SK, Gautam UK, Pal A. Stimuli-Responsive Control over Self-Assembled Nanostructures in Sequence-Specific Functional Block Copolymers. ACS POLYMERS AU 2024; 4:255-265. [PMID: 38882035 PMCID: PMC11177304 DOI: 10.1021/acspolymersau.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/18/2024]
Abstract
The precise sequence of a protein's primary structure is essential in determining its folding pathways. To emulate the complexity of these biomolecules, functional block copolymers consisting of segmented triblocks with distinct functionalities positioned in a sequence-specific manner are designed to control the polymer chain compaction. Triblock polymers P- b -C- b -F and P- b -F- b -C and random diblock copolymer P- b -C- r -F consist of a hydrophilic poly(ethylene oxide) (PEO) block and a hydrophobic block with coumarin (C) and ferrocene (F) moieties that are grafted in a sequence-specific or random manner onto the hydrophilic block. External stimuli such as UVB light, redox, and chemical cues influence the functional hydrophobic block to alter the packing parameters that are monitored with spectroscopic and scattering techniques. Interestingly, the positioning of the stimuli-responsive moiety within the hydrophobic block of P- b -C- b -F, P- b -F- b -C, and P- b -C- r -F affects the extent of the hydrophobic-hydrophilic balance in block copolymers that renders orthogonal control in stimuli-responsive transformation of self-assembled vesicles to micelles.
Collapse
Affiliation(s)
- Chirag Miglani
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Jahanvi Ralhan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Maqsuma Banoo
- Department of Chemical Sciences, IISER Mohali, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Debasish Nath
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Soma Sil
- Department of Chemical Sciences, IISER Mohali, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Santanu K Pal
- Department of Chemical Sciences, IISER Mohali, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, IISER Mohali, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|
4
|
Muhammad US, Erkan S, Kaya S. Analysis of Boronic Acids Containing Amino Ferrocene by DFT Approach and In Silico Studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
5
|
Dhiraj HS, Ishizuka F, Saeed M, Elshaer A, Zetterlund PB, Aldabbagh F. Lactate and glucose responsive boronic acid-substituted amphiphilic block copolymer nanoparticles of high aspect ratio. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Continuous synthesis of stable ferrocene nanoparticles using a self-aligned coaxial turbulent jet mixer. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Yolsal U, Horton TA, Wang M, Shaver MP. Polymer-supported Lewis acids and bases: Synthesis and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Usman M, Yu H, Wang L, Qian J, Li X, Khan A, Naveed KUR, Nazir A, Elshaarani T, Fahad S. Synthesis of poly(2-(methacryloyloxy) ethyl ferrocene carboxylate-co-methacrylic acid)s and their anti-migration and burning rate catalytic properties. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Usman M, Yu H, Wang L, Zhizhko PA, Lemenovskiy DA, Zarubin DN, Khan A, Naveed KUR, Nazir A, Fahad S. Synthesis of ferrocenylated-aminopyridines and ferrocenylated-aminothiazoles and their anti-migration and burning rate catalytic properties. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Khan A, Yu H, Wang Y, Wang L, Ullah RS, Haq F, Elshaarani T, Usman M, Nazir A, Naveed KUR. Synthesis of P(FHEMA-co-MAZO-co-MAA)s copolymers and their redox and photo-responsive properties. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Long Y, Song B, Shi C, Liu W, Gu H. AuNPs composites of gelatin hydrogels crosslinked by ferrocene‐containing polymer as recyclable supported catalysts. J Appl Polym Sci 2019. [DOI: 10.1002/app.48653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yanru Long
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Bin Song
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Chutong Shi
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Wentao Liu
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| |
Collapse
|
12
|
Khan A, Yu H, Wang L, Zhizhko PA, Zarubin DN, Lemenovskiy DA, Haq F, Usman M, Nazir A, Naveed KUR. Synthesis of ferrocene and azobenzene-based copolymers P(FHEMA-co-MAZOHE)s and their redox and photo-responsive properties. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Lu A, Petit E, Li S, Wang Y, Su F, Monge S. Novel thermo-responsive micelles prepared from amphiphilic hydroxypropyl methyl cellulose-block-JEFFAMINE copolymers. Int J Biol Macromol 2019; 135:38-45. [DOI: 10.1016/j.ijbiomac.2019.05.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 11/26/2022]
|
14
|
Synthesis and properties of stimuli-responsive ferrocene-and azobenzene-based copolymers P(FHEMA-co-MAAT)s. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2018.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Kim S, Zhu H, Demirci A, Yamamoto S, Miyashita T, Mitsuishi M. Cyclosiloxane polymer bearing dynamic boronic acid: synthesis and bottom-up nanocoating. Polym Chem 2019. [DOI: 10.1039/c9py00855a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Boronic acid-containing polycyclosiloxane showed unique self-assembly nanofilm formation (6 nm film thickness) on various substrates and provided film-based metal ion sensor capability through dynamic covalent bonding.
Collapse
Affiliation(s)
- Soyeon Kim
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai
- Japan
| | - Huie Zhu
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai
- Japan
| | - Ali Demirci
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai
- Japan
| | - Shunsuke Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai
- Japan
| | - Tokuji Miyashita
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai
- Japan
| | - Masaya Mitsuishi
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai
- Japan
| |
Collapse
|
16
|
Qiu G, Liu X, Wang B, Gu H, Wang W. Ferrocene-containing amphiphilic polynorbornenes as biocompatible drug carriers. Polym Chem 2019. [DOI: 10.1039/c9py00332k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferrocene-containing diblock and random polynorbornene-based copolymers were synthesized by ROMP and used as biocompatible drug carrier micelles.
Collapse
Affiliation(s)
- Guirong Qiu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- China
| | - Xiong Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- China
- National Engineering Laboratory for Clean Technology of Leather Manufacture
| | - Binrong Wang
- College of Food and Bioengineering
- Xihua University
- Chengdu 610039
- China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education
- Sichuan University
- Chengdu 610065
- China
- National Engineering Laboratory for Clean Technology of Leather Manufacture
| | - Weixiang Wang
- College of Food and Bioengineering
- Xihua University
- Chengdu 610039
- China
| |
Collapse
|
17
|
Yoneoka S, Park KC, Nakagawa Y, Ebara M, Tsukahara T. Synthesis and Evaluation of Thermoresponsive Boron-Containing Poly( N-isopropylacrylamide) Diblock Copolymers for Self-Assembling Nanomicellar Boron Carriers. Polymers (Basel) 2018; 11:E42. [PMID: 30960026 PMCID: PMC6401969 DOI: 10.3390/polym11010042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/22/2018] [Accepted: 12/24/2018] [Indexed: 11/17/2022] Open
Abstract
Development of new boron nanocarriers has been a crucial issue to be solved for advancing boron neutron capture therapy (BNCT) as an effective radiation treatment for cancers. The present study aimed to create a novel double-thermoresponsive boron-containing diblock copolymer based on poly(N-isopropylacrylamide) [poly(NIPAAm)], which exhibits two-step phase transitions (morphological transitions) at the temperature region below human body temperature. The boronated diblock copolymer considerably concentrates boron atoms into the water-dispersible (i.e., intravenous-administration possible) nanomicelles self-assembled by the first phase transition, and furthermore the properly controlled size and hydrophobicity of the second phase-transitioned nanoparticles are expected to make a significant contribution to the selective delivery and long-term retention of boron atoms into tumor tissues. Here we present the detailed synthesis of the strategic NIPAAm-based diblock copolymer with 3-acrylamidophenylboronic acid (PBA), i.e., poly(NIPAAm-block-NIPAAm-co-PBA), through a reversible addition-fragmentation chain transfer polymerization. Furthermore, the stepwise phase transition behavior of the obtained boronic-acid diblock copolymers was characterized in detail by temperature-variable ¹H and 11B-nuclear magnetic resonance spectroscopy. The phase-transition-induced molecular structural changes, including the structural compositions and sizes of nanomicelles and nanoparticles, are also discussed here.
Collapse
Affiliation(s)
- Shuichiro Yoneoka
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, 2-12-1-N1-6, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Ki Chul Park
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, 2-12-1-N1-6, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Yasuhiro Nakagawa
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan.
| | - Mitsuhiro Ebara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
- Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
- Graduate School of Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Takehiko Tsukahara
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, 2-12-1-N1-6, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
18
|
Zhang JG, Zhang XY, Yu H, Luo YL, Xu F, Chen YS. Preparation, self-assembly and performance modulation of gold nanoparticles decorated ferrocene-containing hybrid block copolymer multifunctional materials. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Preparation of multilayer films using the negative charge of phenylboronic acid and its response to pH change, fructose, and hydrogen peroxide. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4380-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Gallei M, Rüttiger C. Recent Trends in Metallopolymer Design: Redox-Controlled Surfaces, Porous Membranes, and Switchable Optical Materials Using Ferrocene-Containing Polymers. Chemistry 2018; 24:10006-10021. [PMID: 29532972 DOI: 10.1002/chem.201800412] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/06/2018] [Indexed: 01/24/2023]
Abstract
Metallopolymers with metal functionalities are a unique class of functional materials. Their redox-mediated optoelectronic and catalytic switching capabilities, their outstanding structure formation and separation capabilities have been reported recently. Within this Minireview, the scope and limitations of intriguing ferrocene-containing systems will be discussed. In the first section recent advances in metallopolymer design will be given leading to a plethora of novel metallopolymer architectures. Discussed synthetic pathways comprise controlled and living polymerization protocols as well as surface immobilization strategies. In the following sections, we focus on recent advances and new applications for side-chain and main-chain ferrocene-containing polymers as (i) remote-switchable materials, (ii) smart surfaces, (iii) redox-responsive membranes, and some recent trends in (iv) photonic structures and (v) other optical applications.
Collapse
Affiliation(s)
- Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Christian Rüttiger
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|