1
|
Gong J, Hou L, Ching YC, Ching KY, Hai ND, Chuah CH. A review of recent advances of cellulose-based intelligent-responsive hydrogels as vehicles for controllable drug delivery system. Int J Biol Macromol 2024; 264:130525. [PMID: 38431004 DOI: 10.1016/j.ijbiomac.2024.130525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
To realize the maximum therapeutic activity of medicine and protect the body from the adverse effects of active ingredients, drug delivery systems (DDS) featured with targeted transportation sites and controllable release have captured extensive attention over the past decades. Hydrogels with unique three-dimensional (3D) porous structures present tunable capacity, controllable degradation, various stimuli sensitivity, therapeutic agents encapsulation, and loaded drugs protection properties, which endow hydrogels with bred-in-the-bone advantages as vehicles for drug delivery. In recent years, with the impressive consciousness of the "back-to-nature" concept, biomass materials are becoming the 'rising star' as the hydrogels building blocks for controlled drug release carriers due to their biodegradability, biocompatibility, and non-toxicity properties. In particular, cellulose and its derivatives are promising candidates for fabricating hydrogels as their rich sources and high availability, and various smart cellulose-based hydrogels as targeted carriers under exogenous such as light, electric field, and magnetic field or endogenous such as pH, temperature, ionic strength, and redox gradients. In this review, we summarized the main synthetic strategies of smart cellulose-based hydrogels including physical and chemical cross-linking, and illustrated the detailed intelligent-responsive mechanism of hydrogels in DDS under external stimulus. Additionally, the ongoing development and challenges of cellulose-based hydrogels in the biomedical field are also presented.
Collapse
Affiliation(s)
- Jingwei Gong
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Leilei Hou
- Department of Catalytic Chemistry and Engineering, State key-laboratory of fine chemicals, Dalian University of Technology, Dalian 116034, People's Republic of China
| | - Yern Chee Ching
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kuan Yong Ching
- University of Reading Malaysia, Kota Ilmu, Persiaran Graduan, Educity, 79200 Nusajaya, Johor, Malaysia
| | - Nguyen Dai Hai
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, Department of Biomaterials & Bioengineering, Ho Chi Minh City, Viet Nam
| | - Cheng Hock Chuah
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
2
|
Noh Y, Son E, Cha C. Exploring stimuli-responsive elastin-like polypeptide for biomedicine and beyond: potential application as programmable soft actuators. Front Bioeng Biotechnol 2023; 11:1284226. [PMID: 37965051 PMCID: PMC10642932 DOI: 10.3389/fbioe.2023.1284226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
With the emergence of soft robotics, there is a growing need to develop actuator systems that are lightweight, mechanically compliant, stimuli-responsive, and readily programmable for precise and intelligent operation. Therefore, "smart" polymeric materials that can precisely change their physicomechanical properties in response to various external stimuli (e.g., pH, temperature, electromagnetic force) are increasingly investigated. Many different types of polymers demonstrating stimuli-responsiveness and shape memory effect have been developed over the years, but their focus has been mostly placed on controlling their mechanical properties. In order to impart complexity in actuation systems, there is a concerted effort to implement additional desired functionalities. For this purpose, elastin-like polypeptide (ELP), a class of genetically-engineered thermoresponsive polypeptides that have been mostly utilized for biomedical applications, is being increasingly investigated for stimuli-responsive actuation. Herein, unique characteristics and biomedical applications of ELP, and recent progress on utilizing ELP for programmable actuation are introduced.
Collapse
Affiliation(s)
| | | | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
3
|
Yao Q, Zheng W, Tang X, Chen M, Liao M, Chen G, Huang W, Xia Y, Wei Y, Hu Y, Zhou W. Tannic acid/polyvinyl alcohol/2-hydroxypropyl trimethyl ammonium chloride chitosan double-network hydrogel with adhesive, antibacterial and biocompatible properties. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Synthesis of poly(1,2-butylene oxide-stat-tetrahydrofuran) by controllable polymerization over Sc(OTf)3 for use in high-performance lubricating oil. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Pan J, Wen X, Wang M, Li J, Li X, Feng A, Zhang L, Thang SH. Preparation of Thermo‐ and pH‐Responsive Microgels Based on Complementary Nucleobase Molecular Recognition. Macromol Rapid Commun 2022; 43:e2200239. [DOI: 10.1002/marc.202200239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jiasheng Pan
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Xin Wen
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Mu Wang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Jun Li
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Xiangyu Li
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Anchao Feng
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - Liqun Zhang
- State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
- Beijing Key Laboratory of Preparation and Processing of New Polymer Materials Beijing University of Chemical Technology Beijing 100029 China
| | - San H. Thang
- School of Chemistry Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
6
|
Zhang H, An L, Wang X, Niu C, Hou X. A colorless, transparent and mechanically robust polyurethane elastomer: synthesis, chemical resistance and adhesive properties. NEW J CHEM 2022. [DOI: 10.1039/d1nj05874f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this work, a transparent, mechanically strong and chemically resistant XDI-PUE adhesive was fabricated, which exhibited a remarkable tensile stress of 21.0 MPa with a break strain of 1608%. XDI-PUE also showed good chemical resistance towards toluene and NaOH aqueous solution.
Collapse
Affiliation(s)
- Huijuan Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Li An
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Xue Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Chao Niu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Xinjuan Hou
- CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100090, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Hui X, Wang L, Cao Y, Xu S, He P, Li H. Highly efficient synthesis of novel bio-based pentamethylene dicarbamate via carbonylation of pentanediamine with ethyl carbamate over well-defined titanium oxide catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00073c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly efficient synthesis of bio-based pentamethylene dicarbamate from pentanediamine and ethyl carbamate was successfully achieved over the well-defined TiO2 catalysts, which provides a green and sustainable way for the production of bio-based isocyanates or polyurethane.
Collapse
Affiliation(s)
- Xiang Hui
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liguo Wang
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Yan Cao
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuang Xu
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng He
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huiquan Li
- Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Zheng M, Yuan J. Polymeric nanostructures based on azobenzene and their biomedical applications: synthesis, self-assembly and stimuli-responsiveness. Org Biomol Chem 2021; 20:749-767. [PMID: 34908082 DOI: 10.1039/d1ob01823j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amphiphilic polymers can self-assemble to form nanoparticles with different structures under suitable conditions. Polymer nanoparticles functionalized with aromatic azo groups are endowed with photo-responsive properties. In recent years, a variety of photoresponsive polymers and nanoparticles have been developed based on azobenzene, using different molecular design strategies and synthetic routes. This article reviews the progress of this rapidly developing research field, focusing on the structure, synthesis, assembly and response of photo-responsive polymer assemblies. According to the molecular structure, photo-responsive polymers can be divided into linear polymers containing azobenzene in a side chain, linear polymers containing azobenzene in the main chain, linear polymers containing azobenzene in an end group, branched polymers containing azobenzene and supramolecular polymers containing azobenzene. These systems have broad biomedical application prospects in the field of drug delivery and imaging applications.
Collapse
Affiliation(s)
- Mingxin Zheng
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Gelatin-Graphene Oxide Nanocomposite Hydrogels for Kluyveromyces lactis Encapsulation: Potential Applications in Probiotics and Bioreactor Packings. Biomolecules 2021; 11:biom11070922. [PMID: 34206397 PMCID: PMC8302002 DOI: 10.3390/biom11070922] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Nutraceutical formulations based on probiotic microorganisms have gained significant attention over the past decade due to their beneficial properties on human health. Yeasts offer some advantages over other probiotic organisms, such as immunomodulatory properties, anticancer effects and effective suppression of pathogens. However, one of the main challenges for their oral administration is ensuring that cell viability remains high enough for a sustained therapeutic effect while avoiding possible substrate inhibition issues as they transit through the gastrointestinal (GI) tract. Here, we propose addressing these issues using a probiotic yeast encapsulation strategy, Kluyveromyces lactis, based on gelatin hydrogels doubly cross-linked with graphene oxide (GO) and glutaraldehyde to form highly resistant nanocomposite encapsulates. GO was selected here as a reinforcement agent due to its unique properties, including superior solubility and dispersibility in water and other solvents, high biocompatibility, antimicrobial activity, and response to electrical fields in its reduced form. Finally, GO has been reported to enhance the mechanical properties of several materials, including natural and synthetic polymers and ceramics. The synthesized GO-gelatin nanocomposite hydrogels were characterized in morphological, swelling, mechanical, thermal, and rheological properties and their ability to maintain probiotic cell viability. The obtained nanocomposites exhibited larger pore sizes for successful cell entrapment and proliferation, tunable degradation rates, pH-dependent swelling ratio, and higher mechanical stability and integrity in simulated GI media and during bioreactor operation. These results encourage us to consider the application of the obtained nanocomposites to not only formulate high-performance nutraceuticals but to extend it to tissue engineering, bioadhesives, smart coatings, controlled release systems, and bioproduction of highly added value metabolites.
Collapse
|
10
|
Xiang X, Li H, Zhu Y, Xia S, He Q. The composite hydrogel with “
2D
flexible crosslinking point” of
reduced graphene oxide
for strain sensor. J Appl Polym Sci 2021. [DOI: 10.1002/app.50801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xu Xiang
- School of Materials Science and Engineering Chongqing Jiaotong University Chongqing China
| | - Huilan Li
- School of Materials Science and Engineering Chongqing Jiaotong University Chongqing China
| | - Ying Zhu
- School of Materials Science and Engineering Chongqing Jiaotong University Chongqing China
| | - Shuang Xia
- School of Materials Science and Engineering Chongqing Jiaotong University Chongqing China
| | - Qing He
- School of Materials Science and Engineering Chongqing Jiaotong University Chongqing China
| |
Collapse
|
11
|
Niu C, Zhang H, Yang B, Sun H. A tough, anti-freezing and conductive nanocomposite interpenetrated organohydrogel mediated by hydrogen bonding. NEW J CHEM 2021. [DOI: 10.1039/d1nj01774h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Conductive hydrogels have received extensive attention in the field of stretchable electric materials due to their good flexibility and conductivity.
Collapse
Affiliation(s)
- Chao Niu
- College of Chemistry and Materials Engineering
- Beijing Technology and Business University
- Beijing 100048
- People's Republic of China
| | - Huijuan Zhang
- College of Chemistry and Materials Engineering
- Beijing Technology and Business University
- Beijing 100048
- People's Republic of China
| | - Biao Yang
- College of Chemistry and Materials Engineering
- Beijing Technology and Business University
- Beijing 100048
- People's Republic of China
| | - Hui Sun
- College of Chemistry and Materials Engineering
- Beijing Technology and Business University
- Beijing 100048
- People's Republic of China
| |
Collapse
|
12
|
Poly(Vinyl Alcohol) Recent Contributions to Engineering and Medicine. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4040175] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Poly(vinyl alcohol) (PVA) is a thermoplastic synthetic polymer, which, unlike many synthetic polymers, is not obtained by polymerization, but by hydrolysis of poly(vinyl acetate) (PVAc). Due to the presence of hydroxylic groups, hydrophilic polymers such as PVA and its composites made mainly with biopolymers are used for producing hydrogels that possess interesting morphological and physico-mechanical features. PVA hydrogels and other PVA composites are studied in light of their numerous application for electrical film membranes for chemical separation, element and dye removal, adsorption of metal ions, fuel cells, and packaging. Aside from applications in the engineering field, PVA, like other synthetic polymers, has applications in medicine and biological areas and has become one of the principal objectives of the researchers in the polymer domain. The review presents a few recent applications of PVA composites and contributions related to tissue engineering (repair and regeneration), drug carriers, and wound healing.
Collapse
|