1
|
Coppens S, Deconinck N, Sullivan P, Smolnikov A, Clayton JS, Griffin KR, Jones KJ, Vilain CN, Kadhim H, Bryen SJ, Faiz F, Waddell LB, Evesson FJ, Bakshi M, Pinner JR, Charlton A, Brammah S, Graf NS, Krivanek M, Tay CG, Foulds NC, Illingworth MA, Thomas NH, Ellard S, Mazanti I, Park S, French CE, Brewster J, Belteki G, Hoodbhoy S, Allinson K, Krishnakumar D, Baynam G, Wood BM, Ward M, Vijayakumar K, Syed A, Murugan A, Majumdar A, Scurr IJ, Splitt MP, Moldovan C, de Silva DC, Senanayake K, Gardeitchik T, Arens Y, Cooper ST, Laing NG, Raymond FL, Jungbluth H, Kamsteeg E, Manzur A, Corley SM, Ravenscroft G, Wilkins MR, Cowley MJ, Pinese M, Phadke R, Davis MR, Muntoni F, Oates EC. Congenital Titinopathy: Comprehensive Characterization of the Most Severe End of the Disease Spectrum. Ann Neurol 2025; 97:611-628. [PMID: 39853809 PMCID: PMC11889535 DOI: 10.1002/ana.27087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 01/26/2025]
Abstract
Congenital titinopathy has recently emerged as one of the most common congenital muscle disorders. OBJECTIVE To better understand the presentation and clinical needs of the under-characterized extreme end of the congenital titinopathy severity spectrum. METHODS We comprehensively analyzed the clinical, imaging, pathology, autopsy, and genetic findings in 15 severely affected individuals from 11 families. RESULTS Prenatal features included hypokinesia or akinesia and growth restriction. Six pregnancies were terminated. Nine infants were born at or near term with severe-to-profound weakness and required resuscitation. Seven died following withdrawal of life support. Two surviving children require ongoing respiratory support. Most cohort members had at least 1 disease-causing variant predicted to result in some near-normal-length titin expression. The exceptions, from 2 unrelated families, had homozygous truncating variants predicted to induce complete nonsense mediated decay. However, subsequent analyses suggested that the causative variant in each family had an additional previously unrecognized impact on splicing likely to result in some near-normal-length titin expression. This impact was confirmed by minigene assay for 1 variant. INTERPRETATION This study confirms the clinical variability of congenital titinopathy. Severely affected individuals succumb prenatally/during infancy, whereas others survive into adulthood. It is likely that this variability is because of differences in the amount and/or length of expressed titin. If confirmed, analysis of titin expression could facilitate clinical prediction and increasing expression might be an effective treatment strategy. Our findings also further-support the hypothesis that some near-normal-length titin expression is essential to early prenatal survival. Sometimes expression of normal/near-normal-length titin is due to disease-causing variants having an additional impact on splicing. ANN NEUROL 2025;97:611-628.
Collapse
Affiliation(s)
- Sandra Coppens
- Hopital Erasme, ULB Center of Human GeneticsUniversité Libre de BruxellesBrusselsBelgium
| | - Nicolas Deconinck
- Department of Paediatric Neurology, Neuromuscular Reference CenterHôpital Universitaire des Enfants Reine Fabiola, Université Libre de BruxellesBrusselsBelgium
| | - Patricia Sullivan
- Children's Cancer Institute, Lowy Cancer CentreUniversity of New South WalesSydneyNew South WalesAustralia
| | - Andrei Smolnikov
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Joshua S. Clayton
- Harry Perkins Institute of Medical Research, QEII Medical CentreNedlandsWestern AustraliaAustralia
- Centre for Medical ResearchThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Kaitlyn R. Griffin
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Kristi J. Jones
- Kids Neuroscience Centre, Kids ResearchThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneyWestmeadNew South WalesAustralia
| | - Catheline N. Vilain
- Hopital Erasme, ULB Center of Human GeneticsUniversité Libre de BruxellesBrusselsBelgium
| | - Hazim Kadhim
- Neuropathology Unit (Anatomic Pathology Service) and Reference Center for Neuromuscular PathologyCHU Brugmann‐HUDERF, Université Libre de BruxellesBrusselsBelgium
| | - Samantha J. Bryen
- Kids Neuroscience Centre, Kids ResearchThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneyWestmeadNew South WalesAustralia
| | - Fathimath Faiz
- Department of Diagnostic Genomics, PathWest Laboratory MedicineQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Leigh B. Waddell
- Kids Neuroscience Centre, Kids ResearchThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneyWestmeadNew South WalesAustralia
| | - Frances J. Evesson
- Kids Neuroscience Centre, Kids ResearchThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneyWestmeadNew South WalesAustralia
- Functional NeuromicsChildren's Medical Research InstituteWestmeadNew South WalesAustralia
| | - Madhura Bakshi
- Department of Clinical GeneticsLiverpool HospitalLiverpoolNew South WalesAustralia
| | - Jason R. Pinner
- Department of Medical GenomicsRoyal Prince Alfred Hospital, The University of SydneyCamperdownNew South WalesAustralia
| | - Amanda Charlton
- Department of HistopathologyThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
| | - Susan Brammah
- Electron Microscope Unit, Department of Anatomical PathologyConcord Repatriation General HospitalConcordNew South WalesAustralia
| | - Nicole S. Graf
- Department of HistopathologyThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
| | - Michael Krivanek
- Department of HistopathologyThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
| | - Chee Geap Tay
- Division of Paediatric Neurology, Department of Paediatrics, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Nicola C. Foulds
- Wessex Clinical Genetics ServiceUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Marjorie A. Illingworth
- Department of Paediatric NeurologyUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Neil H. Thomas
- Department of Paediatric NeurologyUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Sian Ellard
- College of Medicine and Health, University of Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation TrustExeterUK
| | - Ingrid Mazanti
- Department of Cellular PathologyUniversity Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Soo‐Mi Park
- Department of Clinical GeneticsCambridge University Hospital NHS Foundation TrustCambridgeUK
| | - Courtney E. French
- Department of Medical GeneticsCambridge Institute for Medical Research, University of CambridgeCambridgeUK
| | - Jennifer Brewster
- Department of Fetomaternal MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Gusztav Belteki
- Neonatal Intensive Care UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Shazia Hoodbhoy
- Neonatal Intensive Care UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Kieren Allinson
- Department of HistopathologyCambridge University Hospitals Foundation TrustCambridgeUK
| | - Deepa Krishnakumar
- Department of Paediatric NeurologyCambridge University Hospitals Foundation TrustCambridgeUK
| | - Gareth Baynam
- Genetic Services of Western AustraliaKing Edward Memorial HospitalPerthWestern AustraliaAustralia
| | | | - Michelle Ward
- Genetic Services of Western AustraliaKing Edward Memorial HospitalPerthWestern AustraliaAustralia
| | - Kayal Vijayakumar
- Department of Paediatric NeurologyUniversity Hospitals Bristol NHS Foundation TrustBristolUK
| | - Amber Syed
- Department of Paediatric NeurologyUniversity Hospitals Bristol NHS Foundation TrustBristolUK
| | - Archana Murugan
- Department of Paediatric NeurologyUniversity Hospitals Bristol NHS Foundation TrustBristolUK
| | - Anirban Majumdar
- Department of Paediatric NeurologyUniversity Hospitals Bristol NHS Foundation TrustBristolUK
| | - Ingrid J. Scurr
- Department of Clinical GeneticsUniversity Hospitals Bristol NHS Foundation TrustBristolUK
| | - Miranda P. Splitt
- Northern Genetics ServiceInstitute of Genetic MedicineNewcastle upon TyneUK
| | - Corina Moldovan
- Department of PathologyNewcastle Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Deepthi C. de Silva
- Department of Physiology, Faculty of MedicineUniversity of KelaniyaRagamaSri Lanka
| | - Kumudu Senanayake
- Department of HistopathologyCastle Street Hospital for WomenColomboSri Lanka
| | - Thatjana Gardeitchik
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
| | - Yvonne Arens
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtthe Netherlands
| | - Sandra T. Cooper
- Kids Neuroscience Centre, Kids ResearchThe Children's Hospital at WestmeadWestmeadNew South WalesAustralia
- Faculty of Medicine and HealthThe University of SydneyWestmeadNew South WalesAustralia
- Functional NeuromicsChildren's Medical Research InstituteWestmeadNew South WalesAustralia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, QEII Medical CentreNedlandsWestern AustraliaAustralia
- Centre for Medical ResearchThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - F. Lucy Raymond
- Department of Medical GeneticsCambridge Institute for Medical Research, University of CambridgeCambridgeUK
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular ServiceEvelina's Children Hospital, Guy's and St. Thomas' Hospital NHS Foundation TrustLondonUK
- Randall Division for Cell and Molecular Biophysics, Muscle Signalling SectionKing's College LondonLondonUK
- Department of Basic and Clinical NeuroscienceIoPPN, King's College LondonLondonUK
| | - Erik‐Jan Kamsteeg
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
| | - Adnan Manzur
- Great Ormond Street Hospital for ChildrenNHS Foundation Trust, Dubowitz Neuromuscular CentreLondonUK
| | - Susan M. Corley
- Systems Biology Initiative, School of Biotechnology and Biomolecular ScienceUniversity of New South WalesSydneyNew South WalesAustralia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, QEII Medical CentreNedlandsWestern AustraliaAustralia
- Centre for Medical ResearchThe University of Western AustraliaPerthWestern AustraliaAustralia
| | - Marc R. Wilkins
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Mark J. Cowley
- Children's Cancer Institute, Lowy Cancer CentreUniversity of New South WalesSydneyNew South WalesAustralia
| | - Mark Pinese
- Children's Cancer Institute, Lowy Cancer CentreUniversity of New South WalesSydneyNew South WalesAustralia
| | - Rahul Phadke
- Great Ormond Street Hospital for ChildrenNHS Foundation Trust, Dubowitz Neuromuscular CentreLondonUK
- Division of NeuropathologyUCL Institute of Neurology, The National Hospital for Neurology and NeurosurgeryLondonUK
| | - Mark R. Davis
- Department of Diagnostic Genomics, PathWest Laboratory MedicineQEII Medical CentreNedlandsWestern AustraliaAustralia
| | - Francesco Muntoni
- Great Ormond Street Hospital for ChildrenNHS Foundation Trust, Dubowitz Neuromuscular CentreLondonUK
| | - Emily C. Oates
- School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyNew South WalesAustralia
- Department of NeurologySydney Children's HospitalSydneyNew South WalesAustralia
| |
Collapse
|
2
|
Darras BT, Volpe JJ. Levels Above Lower Motor Neuron to Neuromuscular Junction. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:1039-1073.e12. [DOI: 10.1016/b978-0-443-10513-5.00036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Abstract
Spinal muscular atrophy (SMA) is caused by biallelic mutations in the SMN1 (survival motor neuron 1) gene on chromosome 5q13.2, which leads to a progressive degeneration of alpha motor neurons in the spinal cord and in motor nerve nuclei in the caudal brainstem. It is characterized by progressive proximally accentuated muscle weakness with loss of already acquired motor skills, areflexia and, depending on the phenotype, varying degrees of weakness of the respiratory and bulbar muscles. Over the past decade, disease-modifying therapies have become available based on splicing modulation of the SMN2 with SMN1 gene replacement, which if initiated significantly modifies the natural course of the disease. Newborn screening for SMA has been implemented in an increasing number of centers; however, available evidence for these new treatments is often limited to a small spectrum of patients concerning age and disease stage.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| | - Jerry R Mendell
- Department of Neurology and Pediatrics, Center for Gene Therapy, Abigail Wexner Research Institute, The Ohio State University, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
4
|
Abstract
Motor neuron disorders are highly debilitating and mostly fatal conditions for which only limited therapeutic options are available. To overcome this limitation and develop more effective therapeutic strategies, it is critical to discover the pathogenic mechanisms that trigger and sustain motor neuron degeneration with the greatest accuracy and detail. In the case of Amyotrophic Lateral Sclerosis (ALS), several genes have been associated with familial forms of the disease, whilst the vast majority of cases develop sporadically and no defined cause can be held responsible. On the contrary, the huge majority of Spinal Muscular Atrophy (SMA) occurrences are caused by loss-of-function mutations in a single gene, SMN1. Although the typical hallmark of both diseases is the loss of motor neurons, there is increasing awareness that pathological lesions are also present in the neighbouring glia, whose dysfunction clearly contributes to generating a toxic environment in the central nervous system. Here, ALS and SMA are sequentially presented, each disease section having a brief introduction, followed by a focussed discussion on the role of the astrocytes in the disease pathogenesis. Such a dissertation is substantiated by the findings that built awareness on the glial involvement and how the glial-neuronal interplay is perturbed, along with the appraisal of this new cellular site for possible therapeutic intervention.
Collapse
|
5
|
Darras BT, Volpe JJ. Levels Above Lower Motor Neuron to Neuromuscular Junction. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:887-921.e11. [DOI: 10.1016/b978-0-323-42876-7.00032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Abstract
Paediatric motor neuron diseases encompass a group of neurodegenerative diseases characterised by the onset of muscle weakness and atrophy before the age of 18 years, attributable to motor neuron loss across various neuronal networks in the brain and spinal cord. While the genetic underpinnings are diverse, advances in next generation sequencing have transformed diagnostic paradigms. This has reinforced the clinical phenotyping and molecular genetic expertise required to navigate the complexities of such diagnoses. In turn, improved genetic technology and subsequent gene identification have enabled further insights into the mechanisms of motor neuron degeneration and how these diseases form part of a neurodegenerative disorder spectrum. Common pathophysiologies include abnormalities in axonal architecture and function, RNA processing, and protein quality control. This review incorporates an overview of the clinical manifestations, genetics, and pathophysiology of inherited paediatric motor neuron disorders beyond classic SMN1-related spinal muscular atrophy and describes recent advances in next generation sequencing and its clinical application. Specific disease-modifying treatment is becoming a clinical reality in some disorders of the motor neuron highlighting the importance of a timely and specific diagnosis.
Collapse
|
7
|
Wijngaarde CA, Blank AC, Stam M, Wadman RI, van den Berg LH, van der Pol WL. Cardiac pathology in spinal muscular atrophy: a systematic review. Orphanet J Rare Dis 2017; 12:67. [PMID: 28399889 PMCID: PMC5387385 DOI: 10.1186/s13023-017-0613-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/14/2017] [Indexed: 01/09/2023] Open
Abstract
Background Hereditary proximal spinal muscular atrophy (SMA) is a severe neuromuscular disease of childhood caused by homozygous loss of function of the survival motor neuron (SMN) 1 gene. The presence of a second, nearly identical SMN gene (SMN2) in the human genome ensures production of residual levels of the ubiquitously expressed SMN protein. Alpha-motor neurons in the ventral horns of the spinal cord are most vulnerable to reduced SMN concentrations but the development or function of other tissues may also be affected, and cardiovascular abnormalities have frequently been reported both in patients and SMA mouse models. Methods We systematically reviewed reported cardiac pathology in relation to SMN deficiency. To investigate the relevance of the possible association in more detail, we used clinical classification systems to characterize structural cardiac defects and arrhythmias. Conclusions Seventy-two studies with a total of 264 SMA patients with reported cardiac pathology were identified, along with 14 publications on SMA mouse models with abnormalities of the heart. Structural cardiac pathology, mainly septal defects and abnormalities of the cardiac outflow tract, was reported predominantly in the most severely affected patients (i.e. SMA type 1). Cardiac rhythm disorders were most frequently reported in patients with milder SMA types (e.g. SMA type 3). All included studies lacked control groups and a standardized approach for cardiac evaluation. The convergence to specific abnormalities of cardiac structure and function may indicate vulnerability of specific cell types or developmental processes relevant for cardiogenesis. Future studies would benefit from a controlled and standardized approach for cardiac evaluation in patients with SMA. Electronic supplementary material The online version of this article (doi:10.1186/s13023-017-0613-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C A Wijngaarde
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
| | - A C Blank
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M Stam
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - R I Wadman
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - L H van den Berg
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands
| | - W L van der Pol
- Department of Neurology and Neurosurgery, F02.230, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Grotto S, Cuisset JM, Marret S, Drunat S, Faure P, Audebert-Bellanger S, Desguerre I, Flurin V, Grebille AG, Guerrot AM, Journel H, Morin G, Plessis G, Renolleau S, Roume J, Simon-Bouy B, Touraine R, Willems M, Frébourg T, Verspyck E, Saugier-Veber P. Type 0 Spinal Muscular Atrophy: Further Delineation of Prenatal and Postnatal Features in 16 Patients. J Neuromuscul Dis 2016; 3:487-495. [DOI: 10.3233/jnd-160177] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sarah Grotto
- Department of Genetics, Normandy Center for Medical Genomics and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Jean-Marie Cuisset
- Department of Pediatric Neurology, Roger Salengro Hospital, Lille Regional University Hospital, Lille, France
| | - Stéphane Marret
- Department of Pediatric Intensive Care, Rouen University Hospital, Rouen, France
- Inserm ERI 28, Institute for Research and Innovation in Biomedicine, Rouen University, France
| | - Séverine Drunat
- Department of Genetics, Robert Debre University Hospital, APHP, Paris, France
| | - Patricia Faure
- Inserm U1079, Institute for Research and Innovation in Biomedicine, Rouen University, Rouen, France
| | | | - Isabelle Desguerre
- Department of Pediatric Neurology, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Vincent Flurin
- Department of Pediatric Intensive Care, Le Mans Hospital, Le Mans, France
| | - Anne-Gaëlle Grebille
- Department of Obstetrics and Gynecology, Saint-Brieuc Hospital, Saint-Brieuc, France
| | - Anne-Marie Guerrot
- Department of Genetics, Normandy Center for Medical Genomics and Personalized Medicine, Rouen University Hospital, Rouen, France
| | - Hubert Journel
- Department of Genetics, Vannes Bretagne-Atlantique Hospital, Vannes, France
| | - Gilles Morin
- Department of Genetics, Amiens University Hospital, Amiens, France
| | | | - Sylvain Renolleau
- Department of Pediatric Intensive Care, Armand-Trousseau Children’s Hospital, APHP, Paris, France
| | - Joëlle Roume
- Department of Genetics, Poissy-Saint-Germain-en-Laye Hospital, Poissy, France
| | | | - Renaud Touraine
- Department of Genetics, Saint-Etienne University Hospital, Saint-Priest-en-Jarez, France
| | - Marjolaine Willems
- Department of Genetics, Necker-Enfants Malades Hospital, APHP, Paris, France
| | - Thierry Frébourg
- Department of Genetics, Normandy Center for Medical Genomics and Personalized Medicine, Rouen University Hospital, Rouen, France
- Inserm U1079, Institute for Research and Innovation in Biomedicine, Rouen University, Rouen, France
| | - Eric Verspyck
- Department of Obstetrics and Gynecology, Rouen University Hospital, Rouen, France
| | - Pascale Saugier-Veber
- Department of Genetics, Normandy Center for Medical Genomics and Personalized Medicine, Rouen University Hospital, Rouen, France
- Inserm U1079, Institute for Research and Innovation in Biomedicine, Rouen University, Rouen, France
| |
Collapse
|
9
|
Hunter G, Powis RA, Jones RA, Groen EJN, Shorrock HK, Lane FM, Zheng Y, Sherman DL, Brophy PJ, Gillingwater TH. Restoration of SMN in Schwann cells reverses myelination defects and improves neuromuscular function in spinal muscular atrophy. Hum Mol Genet 2016; 25:2853-2861. [PMID: 27170316 PMCID: PMC5181642 DOI: 10.1093/hmg/ddw141] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 04/27/2016] [Accepted: 04/29/2016] [Indexed: 12/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein, primarily affecting lower motor neurons. Recent evidence from SMA and related conditions suggests that glial cells can influence disease severity. Here, we investigated the role of glial cells in the peripheral nervous system by creating SMA mice selectively overexpressing SMN in myelinating Schwann cells (Smn−/−;SMN2tg/0;SMN1SC). Restoration of SMN protein levels restricted solely to Schwann cells reversed myelination defects, significantly improved neuromuscular function and ameliorated neuromuscular junction pathology in SMA mice. However, restoration of SMN in Schwann cells had no impact on motor neuron soma loss from the spinal cord or ongoing systemic and peripheral pathology. This study provides evidence for a defined, intrinsic contribution of glial cells to SMA disease pathogenesis and suggests that therapies designed to include Schwann cells in their target tissues are likely to be required in order to rescue myelination defects and associated disease symptoms.
Collapse
Affiliation(s)
- Gillian Hunter
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK,
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| | - Rachael A Powis
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK,
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| | - Ross A Jones
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK,
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| | - Ewout J N Groen
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK,
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| | - Hannah K Shorrock
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK,
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| | - Fiona M Lane
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK,
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| | - Yinan Zheng
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK,
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| | - Diane L Sherman
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Peter J Brophy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK,
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK and
| |
Collapse
|
10
|
Knierim E, Hirata H, Wolf NI, Morales-Gonzalez S, Schottmann G, Tanaka Y, Rudnik-Schöneborn S, Orgeur M, Zerres K, Vogt S, van Riesen A, Gill E, Seifert F, Zwirner A, Kirschner J, Goebel HH, Hübner C, Stricker S, Meierhofer D, Stenzel W, Schuelke M. Mutations in Subunits of the Activating Signal Cointegrator 1 Complex Are Associated with Prenatal Spinal Muscular Atrophy and Congenital Bone Fractures. Am J Hum Genet 2016; 98:473-489. [PMID: 26924529 DOI: 10.1016/j.ajhg.2016.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/05/2016] [Indexed: 12/31/2022] Open
Abstract
Transcriptional signal cointegrators associate with transcription factors or nuclear receptors and coregulate tissue-specific gene transcription. We report on recessive loss-of-function mutations in two genes (TRIP4 and ASCC1) that encode subunits of the nuclear activating signal cointegrator 1 (ASC-1) complex. We used autozygosity mapping and whole-exome sequencing to search for pathogenic mutations in four families. Affected individuals presented with prenatal-onset spinal muscular atrophy (SMA), multiple congenital contractures (arthrogryposis multiplex congenita), respiratory distress, and congenital bone fractures. We identified homozygous and compound-heterozygous nonsense and frameshift TRIP4 and ASCC1 mutations that led to a truncation or the entire absence of the respective proteins and cosegregated with the disease phenotype. Trip4 and Ascc1 have identical expression patterns in 17.5-day-old mouse embryos with high expression levels in the spinal cord, brain, paraspinal ganglia, thyroid, and submandibular glands. Antisense morpholino-mediated knockdown of either trip4 or ascc1 in zebrafish disrupted the highly patterned and coordinated process of α-motoneuron outgrowth and formation of myotomes and neuromuscular junctions and led to a swimming defect in the larvae. Immunoprecipitation of the ASC-1 complex consistently copurified cysteine and glycine rich protein 1 (CSRP1), a transcriptional cofactor, which is known to be involved in spinal cord regeneration upon injury in adult zebrafish. ASCC1 mutant fibroblasts downregulated genes associated with neurogenesis, neuronal migration, and pathfinding (SERPINF1, DAB1, SEMA3D, SEMA3A), as well as with bone development (TNFRSF11B, RASSF2, STC1). Our findings indicate that the dysfunction of a transcriptional coactivator complex can result in a clinical syndrome affecting the neuromuscular system.
Collapse
Affiliation(s)
- Ellen Knierim
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan; Center for Frontier Research, National Institute of Genetics, Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Mishima 411-8540, Japan.
| | - Nicole I Wolf
- Department of Child Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, 1007 MB Amsterdam, the Netherlands
| | - Susanne Morales-Gonzalez
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Gudrun Schottmann
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Yu Tanaka
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Sabine Rudnik-Schöneborn
- Institute of Human Genetics and University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany; Division of Human Genetics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Mickael Orgeur
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Free University Berlin, Institute for Chemistry and Biochemistry, 14195 Berlin, Germany
| | - Klaus Zerres
- Institute of Human Genetics and University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| | - Stefanie Vogt
- Medizinisches Versorgungszentrum Dr. Eberhard & Partner, 44137 Dortmund, Germany
| | - Anne van Riesen
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Esther Gill
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Franziska Seifert
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Angelika Zwirner
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Hans Hilmar Goebel
- Department of Neuropathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Christoph Hübner
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Sigmar Stricker
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Free University Berlin, Institute for Chemistry and Biochemistry, 14195 Berlin, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany; NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany.
| |
Collapse
|
11
|
Patitucci TN, Ebert AD. SMN deficiency does not induce oxidative stress in SMA iPSC-derived astrocytes or motor neurons. Hum Mol Genet 2015; 25:514-23. [PMID: 26643950 DOI: 10.1093/hmg/ddv489] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a genetic disorder characterized by loss of motor neurons in the spinal cord leading to muscle atrophy and death. Although motor neurons (MNs) are the most obviously affected cells in SMA, recent evidence suggest dysfunction in multiple cell types. Astrocytes are a crucial component of the motor circuit and are intimately involved with MN health and maintenance. We have previously shown that SMA astrocytes are altered both morphologically and functionally early in disease progression, though it is unclear what causes astrocytes to become reactive. Oxidative stress is a common feature among neurodegenerative diseases. Oxidative stress can both induce apoptosis in neurons and can cause astrocytes to become reactive, which are features observed in the SMA induced pluripotent stem cell (iPSC) cultures. Therefore, we asked if oxidative stress contributes to SMA astrocyte pathology. We examined mitochondrial bioenergetics, transcript and protein levels of oxidative and anti-oxidant factors, and reactive oxygen species (ROS) production and found little evidence of oxidative stress. We did observe a significant increase in endogenous catalase expression in SMA iPSCs. While catalase knockdown in SMA iPSCs increased ROS production above basal levels, levels of ROS remained lower than in controls, further arguing against robust oxidative stress in this system. Viral delivery of survival motor neuron (SMN) reversed astrocyte activation and restored catalase levels to normal, without changing mitochondrial respiration or expression of oxidative stress markers. Taken together, these data indicate that SMN deficiency induces astrocyte reactivity, but does not do so through an oxidative stress-mediated process.
Collapse
Affiliation(s)
- Teresa N Patitucci
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Jędrzejowska M, Jakubowska-Pietkiewicz E, Kostera-Pruszczyk A. X-linked spinal muscular atrophy (SMAX2) caused by de novo c.1731C>T substitution in the UBA1 gene. Neuromuscul Disord 2015; 25:661-6. [PMID: 26028276 DOI: 10.1016/j.nmd.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 11/16/2022]
Abstract
Infantile X-linked spinal muscular atrophy (SMAX2) is a rare form of spinal muscular atrophy manifesting as severe hypotonia, areflexia, arthrogryposis, facial weakness and cryptorchidism, and frequently accompanied by bone fractures. We present a male patient with SMAX2 who presented with typical symptoms at birth, preceded by reduced fetal movements in the second and third trimesters of pregnancy. Clinical examination revealed a myopathic face with a characteristic tent-shaped open mouth, tongue fibrillations, profound muscle weakness, areflexia, multiple contractures, mild skeletal abnormalities and cryptorchidism. In the first days of the patient's life, fractures of the right femur and right humerus were found; however, calcium-phosphate metabolism and densitometric examination were normal. Molecular analysis revealed a de novo c.1731C>T substitution in the UBA1 gene, which was localized in exon 15, the specific hot spot for mutation.
Collapse
Affiliation(s)
- Maria Jędrzejowska
- Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | | | |
Collapse
|
13
|
Coque E, Raoul C, Bowerman M. ROCK inhibition as a therapy for spinal muscular atrophy: understanding the repercussions on multiple cellular targets. Front Neurosci 2014; 8:271. [PMID: 25221469 PMCID: PMC4148024 DOI: 10.3389/fnins.2014.00271] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/11/2014] [Indexed: 12/28/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the Survival Motor Neuron 1 (SMN1) gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK), which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myoblasts, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice.
Collapse
Affiliation(s)
- Emmanuelle Coque
- The Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Institut National de la Santé et de la Recherche Médicale UMR1051 Montpellier, France ; Université de Montpellier 1 and 2 Montpellier, France
| | - Cédric Raoul
- The Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Institut National de la Santé et de la Recherche Médicale UMR1051 Montpellier, France ; Université de Montpellier 1 and 2 Montpellier, France
| | - Mélissa Bowerman
- The Institute for Neurosciences of Montpellier, Saint Eloi Hospital, Institut National de la Santé et de la Recherche Médicale UMR1051 Montpellier, France ; Université de Montpellier 1 and 2 Montpellier, France
| |
Collapse
|
14
|
Fayzullina S, Martin LJ. Skeletal muscle DNA damage precedes spinal motor neuron DNA damage in a mouse model of Spinal Muscular Atrophy (SMA). PLoS One 2014; 9:e93329. [PMID: 24667816 PMCID: PMC3965546 DOI: 10.1371/journal.pone.0093329] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/03/2014] [Indexed: 12/27/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a hereditary childhood disease that causes paralysis by progressive degeneration of skeletal muscles and spinal motor neurons. SMA is associated with reduced levels of full-length Survival of Motor Neuron (SMN) protein, due to mutations in the Survival of Motor Neuron 1 gene. The mechanisms by which lack of SMN causes SMA pathology are not known, making it very difficult to develop effective therapies. We investigated whether DNA damage is a perinatal pathological event in SMA, and whether DNA damage and cell death first occur in skeletal muscle or spinal cord of SMA mice. We used a mouse model of severe SMA to ascertain the extent of cell death and DNA damage throughout the body of prenatal and newborn mice. SMA mice at birth (postnatal day 0) exhibited internucleosomal fragmentation in genomic DNA from hindlimb skeletal muscle, but not in genomic DNA from spinal cord. SMA mice at postnatal day 5, compared with littermate controls, exhibited increased apoptotic cell death profiles in skeletal muscle, by hematoxylin and eosin, terminal deoxynucleotidyl transferase dUTP nick end labeling, and electron microscopy. SMA mice had no increased cell death, no loss of choline acetyl transferase (ChAT)-positive motor neurons, and no overt pathology in the ventral horn of the spinal cord. At embryonic days 13 and 15.5, SMA mice did not exhibit statistically significant increases in cell death profiles in spinal cord or skeletal muscle. Motor neuron numbers in the ventral horn, as identified by ChAT immunoreactivity, were comparable in SMA mice and control littermates at embryonic day 15.5 and postnatal day 5. These observations demonstrate that in SMA, disease in skeletal muscle emerges before pathology in spinal cord, including loss of motor neurons. Overall, this work identifies DNA damage and cell death in skeletal muscle as therapeutic targets for SMA.
Collapse
Affiliation(s)
- Saniya Fayzullina
- Division of Neuropathology, Department of Pathology, and the Pathobiology Graduate Program, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Lee J. Martin
- Division of Neuropathology, Department of Pathology, and the Pathobiology Graduate Program, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
15
|
Notch signaling pathway is activated in motoneurons of spinal muscular atrophy. Int J Mol Sci 2013; 14:11424-37. [PMID: 23759991 PMCID: PMC3709740 DOI: 10.3390/ijms140611424] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/02/2013] [Accepted: 05/17/2013] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease produced by low levels of Survival Motor Neuron (SMN) protein that affects alpha motoneurons in the spinal cord. Notch signaling is a cell-cell communication system well known as a master regulator of neural development, but also with important roles in the adult central nervous system. Aberrant Notch function is associated with several developmental neurological disorders; however, the potential implication of the Notch pathway in SMA pathogenesis has not been studied yet. We report here that SMN deficiency, induced in the astroglioma cell line U87MG after lentiviral transduction with a shSMN construct, was associated with an increase in the expression of the main components of Notch signaling pathway, namely its ligands, Jagged1 and Delta1, the Notch receptor and its active intracellular form (NICD). In the SMNΔ7 mouse model of SMA we also found increased astrocyte processes positive for Jagged1 and Delta1 in intimate contact with lumbar spinal cord motoneurons. In these motoneurons an increased Notch signaling was found, as denoted by increased NICD levels and reduced expression of the proneural gene neurogenin 3, whose transcription is negatively regulated by Notch. Together, these findings may be relevant to understand some pathologic attributes of SMA motoneurons.
Collapse
|
16
|
Decreased stathmin expression ameliorates neuromuscular defects but fails to prolong survival in a mouse model of spinal muscular atrophy. Neurobiol Dis 2013; 52:94-103. [DOI: 10.1016/j.nbd.2012.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/08/2012] [Accepted: 11/22/2012] [Indexed: 02/02/2023] Open
|
17
|
Parra J, Alias L, Also-Rallo E, Martínez-Hernández R, Senosiain R, Medina C, Alejos O, Rams N, Amenedo M, Ormo F, Jesús Barceló M, Calaf J, Baiget M, Bernal S, Tizzano EF. Evaluation of fetal nuchal translucency in 98 pregnancies at risk for severe spinal muscular atrophy: possible relevance of the SMN2 copy number. J Matern Fetal Neonatal Med 2011; 25:1246-9. [PMID: 22082206 DOI: 10.3109/14767058.2011.636101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To study fetal nuchal translucency (NT) thickness as a possible early marker in fetuses at risk for severe spinal muscular atrophy (SMA). To investigate the significance of the survival motor neuron (SMN) 2 gene copy number in affected fetuses. METHODS We performed 2D-ultrasound in 98 pregnancies at risk for SMA, all of which underwent prenatal molecular testing of the SMN1 gene. Crown-rump length (CRL) and NT measurements were obtained in all cases before chorionic villus sampling. Fetuses were diagnosed as healthy, carriers or affected according to the SMN1 molecular testing results. SMN2 copies were also tested in all affected fetuses. RESULTS Nineteen fetuses were predicted to be affected due to the absence of the SMN1 gene, 18 of which had two SMN2 copies. Mean CRL and NT values did not differ between healthy, carrier and affected fetuses. In the remaining affected case who had only one SMN2 copy, the ultrasound examination showed a NT value of 4.98 mm and findings compatible with hypoplastic left heart. CONCLUSIONS Most affected SMA fetuses have normal NT values. Our findings support the idea that SMN2 copy number in SMA fetuses is relevant for the development of congenital heart defects and increased NT values.
Collapse
Affiliation(s)
- Juan Parra
- Department of Obstetrics and Gynecology, Hospital Sant Pau, Universitat Autonoma de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Grice SJ, Sleigh JN, Liu JL, Sattelle DB. Invertebrate models of spinal muscular atrophy: insights into mechanisms and potential therapeutics. Bioessays 2011; 33:956-65. [PMID: 22009672 DOI: 10.1002/bies.201100082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Invertebrate genetic models with their tractable neuromuscular systems are effective vehicles for the study of human nerve and muscle disorders. This is exemplified by insights made into spinal muscular atrophy (SMA) using the fruit fly Drosophila melanogaster and the nematode worm Caenorhabditis elegans. For speed and economy, these invertebrates offer convenient, whole-organism platforms for genetic screening as well as RNA interference (RNAi) and chemical library screens, permitting the rapid testing of hypotheses related to disease mechanisms and the exploration of new therapeutic routes and drug candidates. Here, we discuss recent developments encompassing synaptic physiology, RNA processing, and screening of compound and genome-scale RNAi libraries, showcasing the importance of invertebrate SMA models.
Collapse
Affiliation(s)
- Stuart J Grice
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
19
|
|
20
|
Grice SJ, Liu JL. Survival motor neuron protein regulates stem cell division, proliferation, and differentiation in Drosophila. PLoS Genet 2011; 7:e1002030. [PMID: 21490958 PMCID: PMC3072375 DOI: 10.1371/journal.pgen.1002030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/04/2011] [Indexed: 12/04/2022] Open
Abstract
Spinal muscular atrophy is a severe neurogenic disease that is caused by mutations in the human survival motor neuron 1 (SMN1) gene. SMN protein is required for the assembly of small nuclear ribonucleoproteins and a dramatic reduction of the protein leads to cell death. It is currently unknown how the reduction of this ubiquitously essential protein can lead to tissue-specific abnormalities. In addition, it is still not known whether the disease is caused by developmental or degenerative defects. Using the Drosophila system, we show that SMN is enriched in postembryonic neuroblasts and forms a concentration gradient in the differentiating progeny. In addition to the developing Drosophila larval CNS, Drosophila larval and adult testes have a striking SMN gradient. When SMN is reduced in postembryonic neuroblasts using MARCM clonal analysis, cell proliferation and clone formation defects occur. These SMN mutant neuroblasts fail to correctly localise Miranda and have reduced levels of snRNAs. When SMN is removed, germline stem cells are lost more frequently. We also show that changes in SMN levels can disrupt the correct timing of cell differentiation. We conclude that highly regulated SMN levels are essential to drive timely cell proliferation and cell differentiation.
Collapse
Affiliation(s)
- Stuart J. Grice
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ji-Long Liu
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Ultrasound evaluation of fetal movements in pregnancies at risk for severe spinal muscular atrophy. Neuromuscul Disord 2011; 21:97-101. [DOI: 10.1016/j.nmd.2010.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/06/2010] [Accepted: 09/21/2010] [Indexed: 11/20/2022]
|
22
|
Papadimitriou D, Le Verche V, Jacquier A, Ikiz B, Przedborski S, Re DB. Inflammation in ALS and SMA: sorting out the good from the evil. Neurobiol Dis 2009; 37:493-502. [PMID: 19833209 DOI: 10.1016/j.nbd.2009.10.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/28/2009] [Accepted: 10/02/2009] [Indexed: 01/02/2023] Open
Abstract
Indices of neuroinflammation are found in a variety of diseases of the CNS including amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Over the years, neuroinflammation, in degenerative disorders of the CNS, has evolved from being regarded as an innocent bystander accomplishing its housekeeping function secondary to neurodegeneration to being considered as a bona fide contributor to the disease process and, in some situations, as a putative initiator of the disease. Herein, we will review neuroinflammation in both ALS and SMA not only from the angle of neuropathology but also from the angle of its potential role in the pathogenesis and treatment of these two dreadful paralytic disorders.
Collapse
|
23
|
Khatri IA, Chaudhry US, Seikaly MG, Browne RH, Iannaccone ST. Low bone mineral density in spinal muscular atrophy. J Clin Neuromuscul Dis 2008; 10:11-17. [PMID: 18772695 DOI: 10.1097/cnd.0b013e318183e0fa] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND PURPOSE Pathological fractures are common in pediatric neuromuscular disorders. Dual-energy x-ray absorptiometry has become the most accepted technique for the measurement of bone mineral density (BMD) in adults and children. Limited data are available on BMD in pediatric neuromuscular diseases except Duchenne muscular dystrophy. METHODS We retrospectively analyzed the results of all dual-energy x-ray absorptiometry scans done in a period of 23 months at a tertiary care pediatric neuromuscular center. BMD was performed on spine region L1-4. Osteopenia was classified as mild if the Z scores were between 0 and -1.5, moderate if Z scores were between -1.5 and -2.5, and severe if Z scores were > -2.5 standard deviation scores. RESULTS Eighty-four dual-energy x-ray absorptiometry scans were performed on 79 patients between the ages of 4 months and 18 years with the mean age of 8 years. Z scores were used to compare their BMDs. BMD was lowest in patients with spinal muscular atrophy (SMA) with Z score of -2.25 +/- 0.31 standard deviation scores. The Z score for patients with Duchenne muscular dystrophy was -1.72 +/- 0.1. The BMD in nonambulatory patients with SMA was significantly decreased compared with ambulatory patients with SMA (P < 0.05). CONCLUSIONS We conclude that osteopenia is common in children with neuromuscular disorders. Patients with SMA have the lowest BMD.
Collapse
Affiliation(s)
- Ismail A Khatri
- Shifa College of Medicine and Shifa International Hospitals, Islamabad, Pakistan.
| | | | | | | | | |
Collapse
|
24
|
The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch Biochem Biophys 2008; 473:117-23. [PMID: 18334226 DOI: 10.1016/j.abb.2008.02.028] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 02/18/2008] [Indexed: 02/04/2023]
Abstract
Bone's response to increased or reduced loading/disuse is a feature of many clinical circumstances, and our daily life, as habitual activities change. However, there are several misconceptions regarding what constitutes loading or disuse and why the skeleton gains or loses bone. The main purpose of this article is to discuss the fundamentals of the need for bone to experience the effects of loading and disuse, why bone loss due to disuse occurs, and how it is the target of skeletal physiology which drives pathological bone loss in conditions that may not be seen as being primarily due to disuse. Fundamentally, if we accept that hypertrophy of bone in response to increased loading is a desirable occurrence, then disuse is not a pathological process, but simply the corollary of adaptation to increased loads. If adaptive processes occur to increase bone mass in response to increased load, then the loss of bone in disuse is the only way that adaptation can fully tune the skeleton to prevailing functional demands when loading is reduced. The mechanisms by which loading and disuse cause bone formation or resorption are the same, although the direction of any changes is different. The osteocyte and osteoblast are the key cells involved in sensing and communicating the need for changes in mass or architecture as a result of changes in experienced loading. However, as those cells are affected by numerous other influences, the responses of bone to loading or disuse are not simple, and alter under different circumstances. Understanding the principles of disuse and loading and the mechanisms underlying them therefore represents an important feature of bone physiology and the search for targets for anabolic therapies for skeletal pathology.
Collapse
|
25
|
Guillot N, Cuisset JM, Cuvellier JC, Hurtevent JF, Joriot S, Vallee L. Unusual clinical features in infantile Spinal Muscular Atrophies. Brain Dev 2008; 30:169-78. [PMID: 17804187 DOI: 10.1016/j.braindev.2007.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/03/2007] [Accepted: 07/16/2007] [Indexed: 11/25/2022]
Abstract
UNLABELLED Spinal Muscular Atrophies (SMA) are a group of degenerative diseases primarily affecting the anterior horn cells of the spinal cord and resulting in muscle weakness and atrophy. Diagnostic criteria were proposed by the International SMA Consortium (ISMAC) to differentiate"classical" proximal SMA caused by homozygous deletion or conversion of the SMN1 gene (5q13) from atypical SMA unlinked to chromosome 5q (non-5q-SMA entities). The aim of our study was to emphasize the unusual clinical features encountered in infantile SMA. PATIENTS AND METHODS We retrospectively analyzed 63 children with SMA hospitalized between 1985 and 2006. RESULTS Forty-eight children suffered from classical SMA and 15 from atypical SMA, including 4 distal SMA, 2 scapuloperoneal SMA, one pontocerebellar hypoplasia type I, 7 neurogenic arthrogryposis multiplex congenita (2 of them associated with a central nervous system (CNS) involvement) and one undetermined case. CONCLUSION This study confirmed the clinical variety of proximal SMA and put in perspective some exclusion criteria (CNS involvement, phrenic or facial palsy). Some symptoms allowed us to anticipate the normality of the SMN1 gene: improvement of motor condition, distal predominance and, more relatively, assymetry of motor weakness. Diagnosis difficulties were especially encountered in case of predominant distal deficit, arthrogryposis multiplex congenita and associated clinical abnormalities. Detailed phenotypical description and syndromic regrouping of cases of atypical SMA lead to a better understanding of underlying physiopathological processes and to the identification of other genes involved in infantile SMA.
Collapse
Affiliation(s)
- Nathalie Guillot
- Pediatric Neurology Department, Lille University Hospital, France
| | | | | | | | | | | |
Collapse
|
26
|
Menke LA, Poll-The BT, Clur SA, Bilardo CM, van der Wal AC, Lemmink HH, Cobben JM. Congenital heart defects in spinal muscular atrophy type I: A clinical report of two siblings and a review of the literature. Am J Med Genet A 2008; 146A:740-4. [DOI: 10.1002/ajmg.a.32233] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Ince PG, Wharton SB. Chapter 5 Cytopathology of the motor neuron. HANDBOOK OF CLINICAL NEUROLOGY 2007; 82:89-119. [PMID: 18808890 DOI: 10.1016/s0072-9752(07)80008-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
28
|
Vaidla E, Talvik I, Kulla A, Sibul H, Maasalu K, Metsvaht T, Piirsoo A, Talvik T. Neonatal spinal muscular atrophy type 1 with bone fractures and heart defect. J Child Neurol 2007; 22:67-70. [PMID: 17608308 DOI: 10.1177/0883073807299954] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The authors present the case of an infant girl with severe generalized weakness, multiple bone fractures, and heart defect. She needed mechanical ventilation from birth. Radiographs showed mid-diaphyseal fractures of both humeri and of the right femur as well as generalized osteopenia. Electroneuromyography showed spontaneous fibrillations at rest with no active movements. Motor response to a stimulus could not be registered. A systolic heart murmur was detected, and echocardiography showed a large atrial septal defect and an additional membrane in the left atrium. DNA analysis confirmed the diagnosis of spinal muscular atrophy on the third day of life. Histology of the muscle showed both hypertrophic and atrophic fibers. Degenerating swollen neurons were found in the ventral horns of the spinal cord and also in the mesencephalic red nucleus, which has not been described before. Humeral bone showed only partly formed cortical bone. The spectrum of spinal muscular atrophy is very diverse, and atypical clinical findings do not always rule out 5q spinal muscular atrophy. The SMN1 gene should still be investigated.
Collapse
Affiliation(s)
- Eve Vaidla
- Department of Pediatrics, Tartu University, 6 Lunini Street, Tartu 51014, Estonia
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yamada N, Nagai T, Shikura K, Nonaka I. Benign infantile neurogenic muscle atrophy predominantly involving the upper extremities. Brain Dev 2006; 28:339-41. [PMID: 16376048 DOI: 10.1016/j.braindev.2005.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 09/28/2005] [Accepted: 10/14/2005] [Indexed: 11/21/2022]
Abstract
An eight year-old girl was first noted to be hypotonic at 4 months of age. She had a delay in achieving developmental milestones and showed apparent weakness predominantly affecting muscles of the upper extremities. In the left biceps brachii muscle biopsy at the age of 5 months, there were groups of atrophic fibers and marked fiber type grouping, but intramuscular nerves were well myelinated and there were few type 2C fibers. She improved with age and learned to walk at 1 year and 4 months and had minimal weakness of the forearm muscles and mild atrophy of the muscles of the right upper extremity. She recently developed a mild scoliosis. Since the EMG was not neurogenic and no mutations were found in the survival motor neuron (SMN) gene, we believe that she does not have a degenerative neurogenic disorder but rather has an abnormal innervation of the skeletal muscles due either to anterior horn cell dysgenesis or anomalous peripheral nerve branching.
Collapse
Affiliation(s)
- Naoto Yamada
- Department of Pediatrics, Ryokuseikai-Seiikuen Hospital for Severe Motor and Intellectual Disabilities, 2-35-1 Ogawanishi-machi, Kodaira, Tokyo 187-8585, Japan.
| | | | | | | |
Collapse
|
30
|
Abstract
Pompe disease (Glycogen storage disease type II, GSDII, or acid maltase deficiency) is an autosomal recessive disorder characterized by deficiency of acid alpha-glucosidase resulting in intra-lysosomal accumulation of glycogen and leading to progressive muscle dysfunction. The natural history of infantile-onset Pompe disease is characterized by hypertrophic cardiomyopathy and profound generalized weakness presenting in the first few months of life, with rapid progression and death usually occurring by one year of age. Late-onset Pompe disease is characterized by onset of symptoms after one year of age, less severe or absence of cardiac involvement and slower progression, with symptoms primarily related to progressive dysfunction of skeletal muscles and respiratory muscle involvement. Recent clinical trials of enzyme replacement therapy have begun to allow greater opportunity for potential improvement in motor status, function, and survival than ever before, with hopes of moving toward maximizing physical function for individuals with Pompe disease. Children are living longer with some achieving independent sitting, creeping, and walking-milestones typically never achieved in the untreated natural history of the disorder. With increased survival, clinical management based on an understanding of the pathology and pathokinesiology of motor function gains importance. This article reviews current knowledge regarding the motor system in Pompe disease and provides an overview of physical therapy management of Pompe disease, including management strategies for individuals on enzyme replacement therapy.
Collapse
Affiliation(s)
- Laura Elizabeth Case
- Division of Physical Therapy, Department of Community and Family Medicine, School of Medicine, Duke University Medical Center, Durham, NC 27707, USA.
| | | |
Collapse
|
31
|
Kizilates SU, Talim B, Sel K, Köse G, Caglar M. Severe lethal spinal muscular atrophy variant with arthrogryposis. Pediatr Neurol 2005; 32:201-4. [PMID: 15730903 DOI: 10.1016/j.pediatrneurol.2004.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 10/21/2004] [Indexed: 11/20/2022]
Abstract
Spinal muscular atrophies are a clinically and genetically heterogeneous group of disorders. Atypical forms of the disease have also been described, including those with associated sensory deficits, hearing loss, cerebellar hypoplasia, congenital heart defects, arthrogryposis, and bone fractures at birth. The patient described here is a male infant, born to a 30-year-old mother at 34 weeks of gestation complicated with polyhydramnios. The first son of consanguineous parents had died with the same clinical features. The patient required ventilatory support because of respiratory failure after the birth and died on day 13. His physical examination revealed profound generalized hypotonia, absence of deep tendon and neonatal reflexes, dysmorphic facies, arthrogryposis, clinodactyly, and left femur fracture. A muscle biopsy revealed variation in fiber size with occasional hypertrophic fibers. The postmortem examination revealed loss and degeneration of anterior horn cells. We propose that the patient, who presented with severe hypotonia, femur fracture, arthrogryposis, dysmorphic features, history of early death of his brother with the same clinical features and parental consanguinity, had probable X-linked spinal muscular atrophy. However, autosomal-recessive inheritance can not be completely excluded.
Collapse
|