1
|
Rizzi L, Grinberg LT. Exploring the significance of caspase-cleaved tau in tauopathies and as a complementary pathology to phospho-tau in Alzheimer's disease: implications for biomarker development and therapeutic targeting. Acta Neuropathol Commun 2024; 12:36. [PMID: 38419122 PMCID: PMC10900669 DOI: 10.1186/s40478-024-01744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Tauopathies are neurodegenerative diseases that typically require postmortem examination for a definitive diagnosis. Detecting neurotoxic tau fragments in cerebrospinal fluid (CSF) and serum provides an opportunity for in vivo diagnosis and disease monitoring. Current assays primarily focus on total tau or phospho-tau, overlooking other post-translational modifications (PTMs). Caspase-cleaved tau is a significant component of AD neuropathological lesions, and experimental studies confirm the high neurotoxicity of these tau species. Recent evidence indicates that certain caspase-cleaved tau species, such as D13 and D402, are abundant in AD brain neurons and only show a modest degree of co-occurrence with phospho-tau, meaning caspase-truncated tau pathology is partially distinct and complementary to phospho-tau pathology. Furthermore, these caspase-cleaved tau species are nearly absent in 4-repeat tauopathies. In this review, we will discuss the significance of caspase-cleaved tau in the development of tauopathies, specifically emphasizing its role in AD. In addition, we will explore the potential of caspase-cleaved tau as a biomarker and the advantages for drug development targeting caspase-6. Developing specific and sensitive assays for caspase-cleaved tau in biofluids holds promise for improving the diagnosis and monitoring of tauopathies, providing valuable insights into disease progression and treatment efficacy.
Collapse
Affiliation(s)
- Liara Rizzi
- Memory and Aging Center, Department of Neurology, Sandler Neurosciences Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
- Department of Neurology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, Sandler Neurosciences Center, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, SP, Brazil.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Advanced Overview of Biomarkers and Techniques for Early Diagnosis of Alzheimer's Disease. Cell Mol Neurobiol 2023:10.1007/s10571-023-01330-y. [PMID: 36847930 DOI: 10.1007/s10571-023-01330-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The development of early non-invasive diagnosis methods and identification of novel biomarkers are necessary for managing Alzheimer's disease (AD) and facilitating effective prognosis and treatment. AD has multi-factorial nature and involves complex molecular mechanism, which causes neuronal degeneration. The primary challenges in early AD detection include patient heterogeneity and lack of precise diagnosis at the preclinical stage. Several cerebrospinal fluid (CSF) and blood biomarkers have been proposed to show excellent diagnosis ability by identifying tau pathology and cerebral amyloid beta (Aβ) for AD. Intense research endeavors are being made to develop ultrasensitive detection techniques and find potent biomarkers for early AD diagnosis. To mitigate AD worldwide, understanding various CSF biomarkers, blood biomarkers, and techniques that can be used for early diagnosis is imperative. This review attempts to provide information regarding AD pathophysiology, genetic and non-genetic factors associated with AD, several potential blood and CSF biomarkers, like neurofilament light, neurogranin, Aβ, and tau, along with biomarkers under development for AD detection. Besides, numerous techniques, such as neuroimaging, spectroscopic techniques, biosensors, and neuroproteomics, which are being explored to aid early AD detection, have been discussed. The insights thus gained would help in finding potential biomarkers and suitable techniques for the accurate diagnosis of early AD before cognitive dysfunction.
Collapse
|
3
|
Amro Z, Yool AJ, Collins-Praino LE. The potential role of glial cells in driving the prion-like transcellular propagation of tau in tauopathies. Brain Behav Immun Health 2021; 14:100242. [PMID: 34589757 PMCID: PMC8474563 DOI: 10.1016/j.bbih.2021.100242] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Dementia is one of the leading causes of death worldwide, with tauopathies, a class of diseases defined by pathology associated with the microtubule-enriched protein, tau, as the major contributor. Although tauopathies, such as Alzheimer's disease and Frontotemporal dementia, are common amongst the ageing population, current effective treatment options are scarce, primarily due to the incomplete understanding of disease pathogenesis. The mechanisms via which aggregated forms of tau are able to propagate from one anatomical area to another to cause disease spread and progression is yet unknown. The prion-like hypothesis of tau propagation proposes that tau can propagate along neighbouring anatomical areas in a similar manner to prion proteins in prion diseases, such as Creutzfeldt-Jacob disease. This hypothesis has been supported by a plethora of studies that note the ability of tau to be actively secreted by neurons, propagated and internalised by neighbouring neuronal cells, causing disease spread. Surfacing research suggests a role of reactive astrocytes and microglia in early pre-clinical stages of tauopathy through their inflammatory actions. Furthermore, both glial types are able to internalise and secrete tau from the extracellular space, suggesting a potential role in tau propagation; although understanding the physiological mechanisms by which this can occur remains poorly understood. This review will discuss the current literature around the prion-like propagation of tau, with particular emphasis on glial-mediated neuroinflammation and the contribution it may play in this propagation process.
Collapse
Affiliation(s)
- Zein Amro
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia
| | | |
Collapse
|
4
|
Alquezar C, Arya S, Kao AW. Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Front Neurol 2021; 11:595532. [PMID: 33488497 PMCID: PMC7817643 DOI: 10.3389/fneur.2020.595532] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) on tau have long been recognized as affecting protein function and contributing to neurodegeneration. The explosion of information on potential and observed PTMs on tau provides an opportunity to better understand these modifications in the context of tau homeostasis, which becomes perturbed with aging and disease. Prevailing views regard tau as a protein that undergoes abnormal phosphorylation prior to its accumulation into the toxic aggregates implicated in Alzheimer's disease (AD) and other tauopathies. However, the phosphorylation of tau may, in fact, represent part of the normal but interrupted function and catabolism of the protein. In addition to phosphorylation, tau undergoes another forms of post-translational modification including (but not limited to), acetylation, ubiquitination, glycation, glycosylation, SUMOylation, methylation, oxidation, and nitration. A holistic appreciation of how these PTMs regulate tau during health and are potentially hijacked in disease remains elusive. Recent studies have reinforced the idea that PTMs play a critical role in tau localization, protein-protein interactions, maintenance of levels, and modifying aggregate structure. These studies also provide tantalizing clues into the possibility that neurons actively choose how tau is post-translationally modified, in potentially competitive and combinatorial ways, to achieve broad, cellular programs commensurate with the distinctive environmental conditions found during development, aging, stress, and disease. Here, we review tau PTMs and describe what is currently known about their functional impacts. In addition, we classify these PTMs from the perspectives of protein localization, electrostatics, and stability, which all contribute to normal tau function and homeostasis. Finally, we assess the potential impact of tau PTMs on tau solubility and aggregation. Tau occupies an undoubtedly important position in the biology of neurodegenerative diseases. This review aims to provide an integrated perspective of how post-translational modifications actively, purposefully, and dynamically remodel tau function, clearance, and aggregation. In doing so, we hope to enable a more comprehensive understanding of tau PTMs that will positively impact future studies.
Collapse
Affiliation(s)
| | | | - Aimee W. Kao
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
5
|
Oakley SS, Maina MB, Marshall KE, Al-Hilaly YK, Harrington CR, Wischik CM, Serpell LC. Tau Filament Self-Assembly and Structure: Tau as a Therapeutic Target. Front Neurol 2020; 11:590754. [PMID: 33281730 PMCID: PMC7688747 DOI: 10.3389/fneur.2020.590754] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tau plays an important pathological role in a group of neurodegenerative diseases called tauopathies, including Alzheimer's disease, Pick's disease, chronic traumatic encephalopathy and corticobasal degeneration. In each disease, tau self-assembles abnormally to form filaments that deposit in the brain. Tau is a natively unfolded protein that can adopt distinct structures in different pathological disorders. Cryo-electron microscopy has recently provided a series of structures for the core of the filaments purified from brain tissue from patients with different tauopathies and revealed that they share a common core region, while differing in their specific conformation. This structurally resolvable part of the core is contained within a proteolytically stable core region from the repeat domain initially isolated from AD tau filaments. Tau has recently become an important target for therapy. Recent work has suggested that the prevention of tau self-assembly may be effective in slowing the progression of Alzheimer's disease and other tauopathies. Here we review the work that explores the importance of tau filament structures and tau self-assembly mechanisms, as well as examining model systems that permit the exploration of the mode of action of potential inhibitors.
Collapse
Affiliation(s)
- Sebastian S. Oakley
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mahmoud B. Maina
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- College of Medical Sciences, Yobe State University, Damaturu, Nigeria
| | - Karen E. Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Youssra K. Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Charlie R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Claude M. Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Louise C. Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
6
|
Jiang S, Bhaskar K. Degradation and Transmission of Tau by Autophagic-Endolysosomal Networks and Potential Therapeutic Targets for Tauopathy. Front Mol Neurosci 2020; 13:586731. [PMID: 33177989 PMCID: PMC7596180 DOI: 10.3389/fnmol.2020.586731] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/24/2020] [Indexed: 01/21/2023] Open
Abstract
Tauopathies are a class of neurodegenerative diseases, including Alzheimer’s disease (AD), Frontotemporal Dementia (FTD), Progressive Supranuclear Palsy (PSP), Corticobasal Degeneration (CBD), and many others where microtubule-associated protein tau (MAPT or tau) is hyperphosphorylated and aggregated to form insoluble paired helical filaments (PHFs) and ultimately neurofibrillary tangles (NFTs). Autophagic-endolysosomal networks (AELN) play important roles in tau clearance. Excessive soluble neurotoxic forms of tau and tau hyperphosphorylated at specific sites are cleared through the ubiquitin-proteasome system (UPS), Chaperon-mediated Autophagy (CMA), and endosomal microautophagy (e-MI). On the other hand, intra-neuronal insoluble tau aggregates are often degraded within lysosomes by macroautophagy. AELN defects have been observed in AD, FTD, CBD, and PSP, and lysosomal dysfunction was shown to promote the cleavage and neurotoxicity of tau. Moreover, several AD risk genes (e.g., PICALM, GRN, and BIN1) have been associated with dysregulation of AELN in the late-onset sporadic AD. Conversely, tau dissociation from microtubules interferes with retrograde transport of autophagosomes to lysosomes, and that tau fragments can also lead to lysosomal dysfunction. Recent studies suggest that tau is not merely an intra-neuronal protein, but it can be released to brain parenchyma via extracellular vesicles, like exosomes and ectosomes, and thus spread between neurons. Extracellular tau can also be taken up by microglial cells and astrocytes, either being degraded through AELN or propagated via exosomes. This article reviews the complex roles of AELN in the degradation and transmission of tau, potential diagnostic/therapeutic targets and strategies based on AELN-mediated tau clearance and propagation, and the current state of drug development targeting AELN and tau against tauopathies.
Collapse
Affiliation(s)
- Shanya Jiang
- Department of Molecular Genetics and Microbiology, The University of New Mexico, Albuquerque, NM, United States
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, The University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
7
|
Arena JD, Smith DH, Lee EB, Gibbons GS, Irwin DJ, Robinson JL, Lee VMY, Trojanowski JQ, Stewart W, Johnson VE. Tau immunophenotypes in chronic traumatic encephalopathy recapitulate those of ageing and Alzheimer's disease. Brain 2020; 143:1572-1587. [PMID: 32390044 PMCID: PMC7241956 DOI: 10.1093/brain/awaa071] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a risk factor for neurodegenerative disease, including chronic traumatic encephalopathy (CTE). Preliminary consensus criteria define the pathognomonic lesion of CTE as patchy tau pathology within neurons and astrocytes at the depths of cortical sulci. However, the specific tau isoform composition and post-translational modifications in CTE remain largely unexplored. Using immunohistochemistry, we performed tau phenotyping of CTE neuropathologies and compared this to a range of tau pathologies, including Alzheimer's disease, primary age-related tauopathy, ageing-related tau astrogliopathy and multiple subtypes of frontotemporal lobar degeneration with tau inclusions. Cases satisfying preliminary consensus diagnostic criteria for CTE neuropathological change (CTE-NC) were identified (athletes, n = 10; long-term survivors of moderate or severe TBI, n = 4) from the Glasgow TBI Archive and Penn Neurodegenerative Disease Brain Bank. In addition, material from a range of autopsy-proven ageing-associated and primary tauopathies in which there was no known history of exposure to TBI was selected as non-injured controls (n = 32). Each case was then stained with a panel of tau antibodies specific for phospho-epitopes (PHF1, CP13, AT100, pS262), microtubule-binding repeat domains (3R, 4R), truncation (Tau-C3) or conformation (GT-7, GT-38) and the extent and distribution of staining assessed. Cell types were confirmed with double immunofluorescent labelling. Results demonstrate that astroglial tau pathology in CTE is composed of 4R-immunoreactive thorn-shaped astrocytes, echoing the morphology and immunophenotype of astrocytes encountered in ageing-related tau astrogliopathy. In contrast, neurofibrillary tangles of CTE contain both 3R and 4R tau, with post-translational modifications and conformations consistent with Alzheimer's disease and primary age-related tauopathy. Our observations establish that the astroglial and neurofibrillary tau pathologies of CTE are phenotypically distinct from each other and recapitulate the tau immunophenotypes encountered in ageing and Alzheimer's disease. As such, the immunohistochemical distinction of CTE neuropathology from other mixed 3R/4R tauopathies of Alzheimer's disease and ageing may rest solely on the pattern and distribution of pathology.
Collapse
Affiliation(s)
- John D Arena
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas H Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Translational Neuropathology Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - David J Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John L Robinson
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Virginia M -Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - William Stewart
- Department of Neuropathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Victoria E Johnson
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Roberts M, Sevastou I, Imaizumi Y, Mistry K, Talma S, Dey M, Gartlon J, Ochiai H, Zhou Z, Akasofu S, Tokuhara N, Ogo M, Aoyama M, Aoyagi H, Strand K, Sajedi E, Agarwala KL, Spidel J, Albone E, Horie K, Staddon JM, de Silva R. Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer's disease. Acta Neuropathol Commun 2020; 8:13. [PMID: 32019610 PMCID: PMC7001291 DOI: 10.1186/s40478-020-0884-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
Tau deposition in the brain is a pathological hallmark of many neurodegenerative disorders, including Alzheimer's disease (AD). During the course of these tauopathies, tau spreads throughout the brain via synaptically-connected pathways. Such propagation of pathology is thought to be mediated by tau species ("seeds") containing the microtubule binding region (MTBR) composed of either three repeat (3R) or four repeat (4R) isoforms. The tau MTBR also forms the core of the neuropathological filaments identified in AD brain and other tauopathies. Multiple approaches are being taken to limit tau pathology, including immunotherapy with anti-tau antibodies. Given its key structural role within fibrils, specifically targetting the MTBR with a therapeutic antibody to inhibit tau seeding and aggregation may be a promising strategy to provide disease-modifying treatment for AD and other tauopathies. Therefore, a monoclonal antibody generating campaign was initiated with focus on the MTBR. Herein we describe the pre-clinical generation and characterisation of E2814, a humanised, high affinity, IgG1 antibody recognising the tau MTBR. E2814 and its murine precursor, 7G6, as revealed by epitope mapping, are antibodies bi-epitopic for 4R and mono-epitopic for 3R tau isoforms because they bind to sequence motif HVPGG. Functionally, both antibodies inhibited tau aggregation in vitro. They also immunodepleted a variety of MTBR-containing tau protein species. In an in vivo model of tau seeding and transmission, attenuation of deposition of sarkosyl-insoluble tau in brain could also be observed in response to antibody treatment. In AD brain, E2814 bound different types of tau filaments as shown by immunogold labelling and recognised pathological tau structures by immunohistochemical staining. Tau fragments containing HVPGG epitopes were also found to be elevated in AD brain compared to PSP or control. Taken together, the data reported here have led to E2814 being proposed for clinical development.
Collapse
Affiliation(s)
- Malcolm Roberts
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK.
| | - Ioanna Sevastou
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | | | - Kavita Mistry
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Sonia Talma
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Madhurima Dey
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Jane Gartlon
- Hatfield Research Laboratories, Eisai Limited, Hatfield, UK
| | - Hiroshi Ochiai
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Zhi Zhou
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Shigeru Akasofu
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Naoki Tokuhara
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Makoto Ogo
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Muneo Aoyama
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Hirofumi Aoyagi
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | - Kate Strand
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | - Ezat Sajedi
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK
| | | | | | | | - Kanta Horie
- Tsukuba Research Laboratories, Eisai Co., Tsukuba-shi, Ibaraki, Japan
| | | | - Rohan de Silva
- Reta Lila Weston Institute & Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, UK.
| |
Collapse
|
9
|
Gibbons GS, Banks RA, Kim B, Changolkar L, Riddle DM, Leight SN, Irwin DJ, Trojanowski JQ, Lee VMY. Detection of Alzheimer Disease (AD)-Specific Tau Pathology in AD and NonAD Tauopathies by Immunohistochemistry With Novel Conformation-Selective Tau Antibodies. J Neuropathol Exp Neurol 2019; 77:216-228. [PMID: 29415231 DOI: 10.1093/jnen/nly010] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aggregation of tau into fibrillar structures within the CNS is a pathological hallmark of a clinically heterogeneous set of neurodegenerative diseases termed tauopathies. Unique misfolded conformations of tau, referred to as strains, are hypothesized to underlie the distinct neuroanatomical and cellular distribution of pathological tau aggregates. Here, we report the identification of novel tau monoclonal antibodies (mAbs) that selectively bind to an Alzheimer disease (AD)-specific conformation of pathological tau. Immunohistochemical analysis of tissue from various AD and nonAD tauopathies demonstrate selective binding of mAbs GT-7 and GT-38 to AD tau pathologies and absence of immunoreactivity for tau aggregates that are diagnostic of corticobasal degenerations (CBD), progressive supranuclear palsy (PSP), and Pick's disease (PiD). In cases with co-occurring AD tauopathy, GT-7 and GT-38 distinguish comorbid AD tau from pathological tau in frontotemporal lobar degeneration characterized by tau inclusions (FTLD-Tau), as confirmed by the presence of both 3 versus 4 microtubule-binding repeat isoforms (3R and 4R tau isoforms, respectively), in AD neurofibrillary tangles but not in the tau aggregates of CBD, PSP, or PiD. These findings support the concept of an AD-specific tau strain. The mAbs described here enable the selective detection of AD tau pathology in nonAD tauopathies.
Collapse
Affiliation(s)
- Garrett S Gibbons
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Rachel A Banks
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Bumjin Kim
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Lakshmi Changolkar
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Dawn M Riddle
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Susan N Leight
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - David J Irwin
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Sandusky-Beltran LA, Kovalenko A, Ma C, Calahatian JIT, Placides DS, Watler MD, Hunt JB, Darling AL, Baker JD, Blair LJ, Martin MD, Fontaine SN, Dickey CA, Lussier AL, Weeber EJ, Selenica MLB, Nash KR, Gordon MN, Morgan D, Lee DC. Spermidine/spermine-N 1-acetyltransferase ablation impacts tauopathy-induced polyamine stress response. Alzheimers Res Ther 2019; 11:58. [PMID: 31253191 PMCID: PMC6599347 DOI: 10.1186/s13195-019-0507-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/21/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tau stabilizes microtubules; however, in Alzheimer's disease (AD) and tauopathies, tau becomes hyperphosphorylated, aggregates, and results in neuronal death. Our group recently uncovered a unique interaction between polyamine metabolism and tau fate. Polyamines exert an array of physiological effects that support neuronal function and cognitive processing. Specific stimuli can elicit a polyamine stress response (PSR), resulting in altered central polyamine homeostasis. Evidence suggests that elevations in polyamines following a short-term stressor are beneficial; however, persistent stress and subsequent PSR activation may lead to maladaptive polyamine dysregulation, which is observed in AD, and may contribute to neuropathology and disease progression. METHODS Male and female mice harboring tau P301L mutation (rTg4510) were examined for a tau-induced central polyamine stress response (tau-PSR). The direct effect of tau-PSR byproducts on tau fibrillization and oligomerization were measured using a thioflavin T assay and a N2a split superfolder GFP-Tau (N2a-ssGT) cell line, respectively. To therapeutically target the tau-PSR, we bilaterally injected caspase 3-cleaved tau truncated at aspartate 421 (AAV9 Tau ΔD421) into the hippocampus and cortex of spermidine/spermine-N1-acetyltransferase (SSAT), a key regulator of the tau-PSR, knock out (SSAT-/-), and wild type littermates, and the effects on tau neuropathology, polyamine dysregulation, and behavior were measured. Lastly, cellular models were employed to further examine how SSAT repression impacted tau biology. RESULTS Tau induced a unique tau-PSR signature in rTg4510 mice, notably in the accumulation of acetylated spermidine. In vitro, higher-order polyamines prevented tau fibrillization but acetylated spermidine failed to mimic this effect and even promoted fibrillization and oligomerization. AAV9 Tau ΔD421 also elicited a unique tau-PSR in vivo, and targeted disruption of SSAT prevented the accumulation of acetylated polyamines and impacted several tau phospho-epitopes. Interestingly, SSAT knockout mice presented with altered behavior in the rotarod task, the elevated plus maze, and marble burying task, thus highlighting the impact of polyamine homeostasis within the brain. CONCLUSION These data represent a novel paradigm linking tau pathology and polyamine dysfunction and that targeting specific arms within the polyamine pathway may serve as new targets to mitigate certain components of the tau phenotype.
Collapse
Affiliation(s)
- Leslie A. Sandusky-Beltran
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
- 0000 0004 1936 8753grid.137628.9Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, 1 Park Avenue, New York, NY 10016 USA
| | - Andrii Kovalenko
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - Chao Ma
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
| | - John Ivan T. Calahatian
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - Devon S. Placides
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - Mallory D. Watler
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - Jerry B. Hunt
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - April L. Darling
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - Jeremy D. Baker
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - Laura J. Blair
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - Mackenzie D. Martin
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - Sarah N. Fontaine
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - Chad A. Dickey
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Medicine, University of South Florida, Tampa, FL 33613 USA
| | - April L. Lussier
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
| | - Edwin J. Weeber
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
| | - Maj-Linda B. Selenica
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| | - Kevin R. Nash
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
| | - Marcia N. Gordon
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
- 0000 0001 2150 1785grid.17088.36Department of Translational Science & Molecular Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503 USA
| | - Dave Morgan
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33613 USA
- 0000 0001 2150 1785grid.17088.36Department of Translational Science & Molecular Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503 USA
| | - Daniel C. Lee
- 0000 0001 2353 285Xgrid.170693.aByrd Alzheimer’s Institute, Department of Pharmaceutical Sciences, University of South Florida, 4001 E. Fletcher Ave, Tampa, FL 33613 USA
| |
Collapse
|
11
|
Lionnet A, Wade MA, Corbillé AG, Prigent A, Paillusson S, Tasselli M, Gonzales J, Durieu E, Rolli-Derkinderen M, Coron E, Duchalais E, Neunlist M, Perkinton MS, Hanger DP, Noble W, Derkinderen P. Characterisation of tau in the human and rodent enteric nervous system under physiological conditions and in tauopathy. Acta Neuropathol Commun 2018; 6:65. [PMID: 30037345 PMCID: PMC6055332 DOI: 10.1186/s40478-018-0568-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022] Open
Abstract
Tau is normally a highly soluble phosphoprotein found predominantly in neurons. Six different isoforms of tau are expressed in the adult human CNS. Under pathological conditions, phosphorylated tau aggregates are a defining feature of neurodegenerative disorders called tauopathies. Recent findings have suggested a potential role of the gut-brain axis in CNS homeostasis, and therefore we set out to examine the isoform profile and phosphorylation state of tau in the enteric nervous system (ENS) under physiological conditions and in tauopathies. Surgical specimens of human colon from controls, Parkinson's disease (PD) and progressive supranuclear palsy (PSP) patients were analyzed by Western Blot and immunohistochemistry using a panel of anti-tau antibodies. We found that adult human ENS primarily expresses two tau isoforms, localized in the cell bodies and neuronal processes. We did not observe any difference in the enteric tau isoform profile and phosphorylation state between PSP, PD and control subjects. The htau mouse model of tauopathy also expressed two main isoforms of human tau in the ENS, and there were no apparent differences in ENS tau localization or phosphorylation between wild-type and htau mice. Tau in both human and mouse ENS was found to be phosphorylated but poorly susceptible to dephosphorylation with lambda phosphatase. To investigate ENS tau phosphorylation further, primary cultures from rat enteric neurons, which express four isoforms of tau, were pharmacologically manipulated to show that ENS tau phosphorylation state can be regulated, at least in vitro. Our study is the first to characterize tau in the rodent and human ENS. As a whole, our findings provide a basis to unravel the functions of tau in the ENS and to further investigate the possibility of pathological changes in enteric neuropathies and tauopathies.
Collapse
|
12
|
Shoeibi A, Olfati N, Litvan I. Preclinical, phase I, and phase II investigational clinical trials for treatment of progressive supranuclear palsy. Expert Opin Investig Drugs 2018; 27:349-361. [PMID: 29602288 DOI: 10.1080/13543784.2018.1460356] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Our understanding of the pathological basis of progressive supranuclear palsy (PSP), as the most common atypical parkinsonian syndrome, has greatly increased in recent years and a number of disease-modifying therapies are under evaluation as a result of these advances. AREAS COVERED In this review, we discuss disease-modifying therapeutic options which are currently under evaluation or have been evaluated in preclinical or clinical trials based on their targeted pathophysiologic process. The pathophysiologic mechanisms are broadly divided into three main categories: genetic mechanisms, abnormal post-translational modifications of tau protein, and transcellular tau spread. EXPERT OPINION Once the best therapeutic approaches are identified, it is likely that some combination of interventions will need to be evaluated, but this will take time. It is critical to treat patients at early stages, and development of the Movement Disorder Society PSP diagnostic criteria is an important step in this direction. In addition, development of biological biomarkers such as tau PET and further refinement of tau ligands may help both diagnose early and measure disease progression. In the meantime, a comprehensive, personalized interdisciplinary approach to this disease is absolutely necessary.
Collapse
Affiliation(s)
- Ali Shoeibi
- a Department of Neurology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Nahid Olfati
- a Department of Neurology, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Irene Litvan
- b UC San Diego Department of Neurosciences , Parkinson and Other Movement Disorder Center , La Jolla , CA , USA
| |
Collapse
|
13
|
AD-Related N-Terminal Truncated Tau Is Sufficient to Recapitulate In Vivo the Early Perturbations of Human Neuropathology: Implications for Immunotherapy. Mol Neurobiol 2018; 55:8124-8153. [PMID: 29508283 DOI: 10.1007/s12035-018-0974-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/19/2018] [Indexed: 01/08/2023]
Abstract
The NH2tau 26-44 aa (i.e., NH2htau) is the minimal biologically active moiety of longer 20-22-kDa NH2-truncated form of human tau-a neurotoxic fragment mapping between 26 and 230 amino acids of full-length protein (htau40)-which is detectable in presynaptic terminals and peripheral CSF from patients suffering from AD and other non-AD neurodegenerative diseases. Nevertheless, whether its exogenous administration in healthy nontransgenic mice is able to elicit a neuropathological phenotype resembling human tauopathies has not been yet investigated. We explored the in vivo effects evoked by subchronic intracerebroventricular (i.c.v.) infusion of NH2htau or its reverse counterpart into two lines of young (2-month-old) wild-type mice (C57BL/6 and B6SJL). Six days after its accumulation into hippocampal parenchyma, significant impairment in memory/learning performance was detected in NH2htau-treated group in association with reduced synaptic connectivity and neuroinflammatory response. Compromised short-term plasticity in paired-pulse facilitation paradigm (PPF) was detected in the CA3/CA1 synapses from NH2htau-impaired animals along with downregulation in calcineurin (CaN)-stimulated pCREB/c-Fos pathway(s). Importantly, these behavioral, synaptotoxic, and neuropathological effects were independent from the genetic background, occurred prior to frank neuronal loss, and were specific because no alterations were detected in the control group infused with its reverse counterpart. Finally, a 2.0-kDa peptide which biochemically and immunologically resembles the injected NH2htau was endogenously detected in vivo, being present in hippocampal synaptosomal preparations from AD subjects. Given that the identification of the neurotoxic tau species is mandatory to develop a more effective tau-based immunological approach, our evidence can have important translational implications for cure of human tauopathies.
Collapse
|
14
|
Kulbe JR, Hall ED. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Prog Neurobiol 2017; 158:15-44. [PMID: 28851546 PMCID: PMC5671903 DOI: 10.1016/j.pneurobio.2017.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression.
Collapse
Affiliation(s)
- Jacqueline R Kulbe
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, United States; Department of Neuroscience, University of Kentucky College of Medicine, United States
| | - Edward D Hall
- Spinal Cord & Brain Injury Research Center, University of Kentucky College of Medicine, United States; Department of Neuroscience, University of Kentucky College of Medicine, United States.
| |
Collapse
|
15
|
Theofilas P, Ehrenberg AJ, Nguy A, Thackrey JM, Dunlop S, Mejia MB, Alho AT, Paraizo Leite RE, Rodriguez RD, Suemoto CK, Nascimento CF, Chin M, Medina-Cleghorn D, Cuervo AM, Arkin M, Seeley WW, Miller BL, Nitrini R, Pasqualucci CA, Filho WJ, Rueb U, Neuhaus J, Heinsen H, Grinberg LT. Probing the correlation of neuronal loss, neurofibrillary tangles, and cell death markers across the Alzheimer's disease Braak stages: a quantitative study in humans. Neurobiol Aging 2017; 61:1-12. [PMID: 29031088 DOI: 10.1016/j.neurobiolaging.2017.09.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
Clarifying the mechanisms connecting neurofibrillary tangle (NFT) neurotoxicity to neuronal dysfunction in humans is likely to be pivotal for developing effective treatments for Alzheimer's disease (AD). To model the temporal progression of AD in humans, we used a collection of brains with controls and individuals from each Braak stage to quantitatively investigate the correlation between intraneuronal caspase activation or macroautophagy markers, NFT burden, and neuronal loss, in the dorsal raphe nucleus and locus coeruleus, the earliest vulnerable areas to NFT accumulation. We fit linear regressions with each count as outcomes, with Braak score and age as the predictors. In progressive Braak stages, intraneuronal active caspase-6 positivity increases both alone and overlapping with NFTs. Likewise, the proportion of NFT-bearing neurons showing autophagosomes increases. Overall, caspases may be involved in upstream cascades in AD and are associated with higher NFTs. Macroautophagy changes correlate with increasing NFT burden from early AD stages.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander J Ehrenberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Austin Nguy
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Julia M Thackrey
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sara Dunlop
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria B Mejia
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ana T Alho
- Hospital Albert Einstein, São Paulo, Brazil; Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | - Claudia K Suemoto
- Division of Geriatrics, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Camila F Nascimento
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Marcus Chin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Medina-Cleghorn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Ana Maria Cuervo
- Departments of Developmental and Molecular Biology, Anatomy and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michelle Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ricardo Nitrini
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Wilson Jacob Filho
- Division of Geriatrics, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Udo Rueb
- Dr. Senckenbergisches Chronomedizinisches Institut, Department of Anatomy, J. W. Goethe University Frankfurt am Main, Frankfurt, Germany
| | - John Neuhaus
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Helmut Heinsen
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil; Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil.
| |
Collapse
|
16
|
Canu N, Amadoro G, Triaca V, Latina V, Sposato V, Corsetti V, Severini C, Ciotti MT, Calissano P. The Intersection of NGF/TrkA Signaling and Amyloid Precursor Protein Processing in Alzheimer's Disease Neuropathology. Int J Mol Sci 2017. [PMID: 28632177 PMCID: PMC5486140 DOI: 10.3390/ijms18061319] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Dysfunction of nerve growth factor (NGF) and its high-affinity Tropomyosin receptor kinase A (TrkA) receptor has been suggested to contribute to the selective degeneration of basal forebrain cholinergic neurons (BFCN) associated with the progressive cognitive decline in Alzheimer's disease (AD). The aim of this review is to describe our progress in elucidating the molecular mechanisms underlying the dynamic interplay between NGF/TrkA signaling and amyloid precursor protein (APP) metabolism within the context of AD neuropathology. This is mainly based on the finding that TrkA receptor binding to APP depends on a minimal stretch of ~20 amino acids located in the juxtamembrane/extracellular domain of APP that carries the α- and β-secretase cleavage sites. Here, we provide evidence that: (i) NGF could be one of the “routing” proteins responsible for modulating the metabolism of APP from amyloidogenic towards non-amyloidogenic processing via binding to the TrkA receptor; (ii) the loss of NGF/TrkA signaling could be linked to sporadic AD contributing to the classical hallmarks of the neuropathology, such as synaptic loss, β-amyloid peptide (Aβ) deposition and tau abnormalities. These findings will hopefully help to design therapeutic strategies for AD treatment aimed at preserving cholinergic function and anti-amyloidogenic activity of the physiological NGF/TrkA pathway in the septo-hippocampal system.
Collapse
Affiliation(s)
- Nadia Canu
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00137 Rome, Italy.
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology, National Research Council (CNR) Rome, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Viviana Triaca
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Valentina Latina
- Institute of Translational Pharmacology, National Research Council (CNR) Rome, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Valentina Sposato
- European Brain Research Institute Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Veronica Corsetti
- European Brain Research Institute Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Cinzia Severini
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Maria Teresa Ciotti
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Pietro Calissano
- European Brain Research Institute Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| |
Collapse
|
17
|
Guo T, Noble W, Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol 2017; 133:665-704. [PMID: 28386764 PMCID: PMC5390006 DOI: 10.1007/s00401-017-1707-9] [Citation(s) in RCA: 587] [Impact Index Per Article: 83.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/26/2017] [Accepted: 03/26/2017] [Indexed: 01/18/2023]
Abstract
Tau is well established as a microtubule-associated protein in neurons. However, under pathological conditions, aberrant assembly of tau into insoluble aggregates is accompanied by synaptic dysfunction and neural cell death in a range of neurodegenerative disorders, collectively referred to as tauopathies. Recent advances in our understanding of the multiple functions and different locations of tau inside and outside neurons have revealed novel insights into its importance in a diverse range of molecular pathways including cell signalling, synaptic plasticity, and regulation of genomic stability. The present review describes the physiological and pathophysiological properties of tau and how these relate to its distribution and functions in neurons. We highlight the post-translational modifications of tau, which are pivotal in defining and modulating tau localisation and its roles in health and disease. We include discussion of other pathologically relevant changes in tau, including mutation and aggregation, and how these aspects impinge on the propensity of tau to propagate, and potentially drive neuronal loss, in diseased brain. Finally, we describe the cascade of pathological events that may be driven by tau dysfunction, including impaired axonal transport, alterations in synapse and mitochondrial function, activation of the unfolded protein response and defective protein degradation. It is important to fully understand the range of neuronal functions attributed to tau, since this will provide vital information on its involvement in the development and pathogenesis of disease. Such knowledge will enable determination of which critical molecular pathways should be targeted by potential therapeutic agents developed for the treatment of tauopathies.
Collapse
Affiliation(s)
- Tong Guo
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK
| | - Diane P Hanger
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9NU, UK.
| |
Collapse
|
18
|
Exposure of the Amino Terminus of Tau Is a Pathological Event in Multiple Tauopathies. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1222-1229. [PMID: 28413156 DOI: 10.1016/j.ajpath.2017.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 12/14/2022]
Abstract
Pathological changes to the tau protein, including conformational changes and aggregation, are major hallmarks of a group of neurodegenerative disorders known as tauopathies. Among the conformational changes are alterations involving the extreme amino terminus of the protein, known as the phosphatase-activating domain (PAD). Aberrant PAD exposure induces a signaling cascade that leads to disruption of axonal transport, a critical function for neuronal survival. Conformational display of PAD is an early marker of pathological tau in Alzheimer disease (AD), but its role in other tauopathies has yet to be firmly established. We used a relatively novel N-terminal, conformation-sensitive antibody, TNT2, to determine whether misfolding in the amino terminus (ie, PAD exposure) occurs in non-AD tauopathies. We found that TNT2 specifically labeled pathological tau in post-mortem human brain tissue from Pick disease, progressive supranuclear palsy, corticobasal degeneration, and chronic traumatic encephalopathy, but did not label nonpathological, parenchymal tau. Tau13, another N-terminal antibody, was not sensitive to pathological N-terminal conformations. Tau13 did not readily distinguish between normal (ie, parenchymal tau) and pathological tau species and showed a range of effectiveness at identifying tau pathologies in the non-AD tauopathies. These findings demonstrate that the conformational display of the PAD in tau represents a common pathological event in many tauopathies.
Collapse
|
19
|
Kanaan NM, Cox K, Alvarez VE, Stein TD, Poncil S, McKee AC. Characterization of Early Pathological Tau Conformations and Phosphorylation in Chronic Traumatic Encephalopathy. J Neuropathol Exp Neurol 2016; 75:19-34. [PMID: 26671985 DOI: 10.1093/jnen/nlv001] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy that develops after repetitive head injury. Several lines of evidence in other tauopathies suggest that tau oligomer formation induces neurotoxicity and that tau oligomer-mediated neurotoxicity involves induction of axonal dysfunction through exposure of an N-terminal motif in tau, the phosphatase-activating domain (PAD). Additionally, phosphorylation at serine 422 in tau occurs early and correlates with cognitive decline in patients with Alzheimer disease (AD). We performed immunohistochemistry and immunofluorescence on fixed brain sections and biochemical analysis of fresh brain extracts to characterize the presence of PAD-exposed tau (TNT1 antibody), tau oligomers (TOC1 antibody), tau phosphorylated at S422 (pS422 antibody), and tau truncated at D421 (TauC3 antibody) in the brains of 9-11 cases with CTE and cases of nondemented aged controls and AD (Braak VI) (n = 6, each). All 3 early tau markers (ie, TNT1, TOC1, and pS422) were present in CTE and displayed extensive colocalization in perivascular tau lesions that are considered diagnostic for CTE. Notably, the TauC3 epitope, which is abundant in AD, was relatively sparse in CTE. Together, these results provide the first description of PAD exposure, TOC1 reactive oligomers, phosphorylation of S422, and TauC3 truncation in the tau pathology of CTE.
Collapse
|
20
|
Mufson EJ, Perez SE, Nadeem M, Mahady L, Kanaan NM, Abrahamson EE, Ikonomovic MD, Crawford F, Alvarez V, Stein T, McKee AC. Progression of tau pathology within cholinergic nucleus basalis neurons in chronic traumatic encephalopathy: A chronic effects of neurotrauma consortium study. Brain Inj 2016; 30:1399-1413. [PMID: 27834536 PMCID: PMC5348250 DOI: 10.1080/02699052.2016.1219058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To test the hypothesis that the nucleus basalis of Meynert (nbM), a cholinergic basal forebrain (CBF) cortical projection system, develops neurofibrillary tangles (NFTs) during the progressive pathological stages of chronic traumatic encephalopathy (CTE) in the brain of athletes. METHOD To characterize NFT pathology, tau-antibodies marking early, intermediate and late stages of NFT development in CBF tissue obtained at autopsy from eighteen former athletes and veterans with a history of repetitive mild traumatic brain injury (TBI) were used. RESULTS Analysis revealed that cholinergic nbM neurons develop intracellular tau-immunoreactive changes progressively across the pathological stages of CTE. In particular, there was an increase in pre-tangle (phosphorylated pS422) and oligomeric (TOC1 and TNT1) forms of tau in stage IV compared to stage II CTE cases. The nbM neurons also displayed pathologic TDP-43 inclusions and diffuse extracellular and vascular amyloid-β (Aβ) deposits in CTE. A higher percentage of pS422/p75NTR, pS422 and TNT1 labelled neurons were significantly correlated with age at symptom onset, interval between symptom onset and death and age at death. CONCLUSION The development of NFTs within the cholinergic nbM neurons could contribute to an axonal disconnection in CTE. Further studies are needed to determine the mechanism driving NFT formation in the nbM neurons and its relation to chronic cognitive dysfunction in CTE.
Collapse
Affiliation(s)
| | - Sylvia E. Perez
- Dept. Neurobiology, Barrow Neurological Institute, Phoenix, AZ
| | - Muhammad Nadeem
- Dept. Neurobiology, Barrow Neurological Institute, Phoenix, AZ
| | - Laura Mahady
- Dept. Neurobiology, Barrow Neurological Institute, Phoenix, AZ
| | - Nicholas M. Kanaan
- Dept. Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Eric E. Abrahamson
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | - Milos D. Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA
| | | | - Victor Alvarez
- VA Boston HealthCare System; Alzheimer Disease Center and CTE Program and Depts. Neurology and Pathology, Boston Univ. Sch. Med., Boston, MA
| | - Thor Stein
- VA Boston HealthCare System; Alzheimer Disease Center and CTE Program and Depts. Neurology and Pathology, Boston Univ. Sch. Med., Boston, MA
| | - Ann C. McKee
- VA Boston HealthCare System; Alzheimer Disease Center and CTE Program and Depts. Neurology and Pathology, Boston Univ. Sch. Med., Boston, MA
| |
Collapse
|
21
|
Irwin DJ, Brettschneider J, McMillan CT, Cooper F, Olm C, Arnold SE, Van Deerlin VM, Seeley WW, Miller BL, Lee EB, Lee VMY, Grossman M, Trojanowski JQ. Deep clinical and neuropathological phenotyping of Pick disease. Ann Neurol 2015; 79:272-87. [PMID: 26583316 DOI: 10.1002/ana.24559] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/02/2015] [Accepted: 11/15/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To characterize sequential patterns of regional neuropathology and clinical symptoms in a well-characterized cohort of 21 patients with autopsy-confirmed Pick disease. METHODS Detailed neuropathological examination using 70μm and traditional 6μm sections was performed using thioflavin-S staining and immunohistochemistry for phosphorylated tau, 3R and 4R tau isoforms, ubiquitin, and C-terminally truncated tau. Patterns of regional tau deposition were correlated with clinical data. In a subset of cases (n = 5), converging evidence was obtained using antemortem neuroimaging measures of gray and white matter integrity. RESULTS Four sequential patterns of pathological tau deposition were identified starting in frontotemporal limbic/paralimbic and neocortical regions (phase I). Sequential involvement was seen in subcortical structures, including basal ganglia, locus coeruleus, and raphe nuclei (phase II), followed by primary motor cortex and precerebellar nuclei (phase III) and finally visual cortex in the most severe (phase IV) cases. Behavioral variant frontotemporal dementia was the predominant clinical phenotype (18 of 21), but all patients eventually developed a social comportment disorder. Pathological tau phases reflected the evolution of clinical symptoms and degeneration on serial antemortem neuroimaging, directly correlated with disease duration and inversely correlated with brain weight at autopsy. The majority of neuronal and glial tau inclusions were 3R tau-positive and 4R tau-negative in sporadic cases. There was a relative abundance of mature tau pathology markers in frontotemporal limbic/paralimbic regions compared to neocortical regions. INTERPRETATION Pick disease tau neuropathology may originate in limbic/paralimbic cortices. The patterns of tau pathology observed here provide novel insights into the natural history and biology of tau-mediated neurodegeneration.
Collapse
Affiliation(s)
- David J Irwin
- University of Pennsylvania Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA.,Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Corey T McMillan
- University of Pennsylvania Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Felicia Cooper
- University of Pennsylvania Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA.,Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christopher Olm
- University of Pennsylvania Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Steven E Arnold
- Brain-Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA.,Translational Neuropathology Research Laboratory, University of Pennsylvania, Philadelphia, PA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Murray Grossman
- University of Pennsylvania Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Milenkovic I, Petrov T, Kovacs GG. Patterns of hippocampal tau pathology differentiate neurodegenerative dementias. Dement Geriatr Cogn Disord 2015; 38:375-88. [PMID: 25195847 DOI: 10.1159/000365548] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Deposits of phosphorylated tau protein and convergence of pathology in the hippocampus are the hallmarks of neurodegenerative tauopathies. Thus we aimed to evaluate whether regional and cellular vulnerability patterns in the hippocampus distinguish tauopathies or are influenced by their concomitant presence. METHODS We created a heat map of phospho-tau (AT8) immunoreactivity patterns in 24 hippocampal subregions/layers in individuals with Alzheimer's disease (AD)-related neurofibrillary degeneration (n = 40), Pick's disease (n = 8), progressive supranuclear palsy (n = 7), corticobasal degeneration (n = 6), argyrophilic grain disease (AGD, n = 18), globular glial tauopathy (n = 5), and tau-astrogliopathy of the elderly (n = 10). AT8 immunoreactivity patterns were compared by mathematical analysis. RESULTS Our study reveals disease-specific hot spots and regional selective vulnerability for these disorders. The pattern of hippocampal AD-related tau pathology is strongly influenced by concomitant AGD. Mathematical analysis reveals that hippocampal involvement in primary tauopathies is distinguishable from early-stage AD-related neurofibrillary degeneration. CONCLUSION Our data demonstrate disease-specific AT8 immunoreactivity patterns and hot spots in the hippocampus even in tauopathies, which primarily do not affect the hippocampus. These hot spots can be shifted to other regions by the co-occurrence of tauopathies like AGD. Our observations support the notion that globular glial tauopathies and tau-astrogliopathy of the elderly are distinct entities.
Collapse
Affiliation(s)
- Ivan Milenkovic
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
23
|
Irwin DJ. Tauopathies as clinicopathological entities. Parkinsonism Relat Disord 2015; 22 Suppl 1:S29-33. [PMID: 26382841 DOI: 10.1016/j.parkreldis.2015.09.020] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/06/2015] [Indexed: 12/16/2022]
Abstract
Tauopathies are a class of neurodegenerative disorders characterized by neuronal and/or glial inclusions composed of the microtubule-binding protein, tau. Several lines of evidence suggest tau aggregation is central to the neurodegenerative process in tauopathies. First, recent animal and cell model studies find abnormally-modified tau alone may be transmitted between adjacent neurons and spread to anatomically connected brain regions to recapitulate human disease. Further, staging efforts in human autopsy cases suggest a sequential distribution of tau aggregation in the central nervous system that could reflect this observed cell-to-cell transmission of pathogenic tau species in animal models. Finally, pathogenic mutations in the MAPT gene encoding tau protein cause hereditary forms of tauopathy. Clinically, tauopathies can present with a range of phenotypes that include both movement- and cognitive/behavioral-disorders (i.e. frontotemporal dementia spectrum disorders) or non-specific amnestic symptoms in advanced age. A major limitation is that current clinical diagnostic criteria for these disorders do not reliably differentiate underlying tauopathy from other neurodegenerative diseases, such as TDP-43 proteinopathies. Thus, current research efforts are focused on improving the ante mortem diagnosis of tauopathies, including pre-clinical stages of disease, as many therapeutic strategies for emerging disease-modifying therapies focus on preventing abnormal folding and spread of tau pathology.
Collapse
Affiliation(s)
- David J Irwin
- Department of Neurology, Frontotemporal Degeneration Center (FTDC), University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104, United States.
| |
Collapse
|
24
|
Irwin DJ, Cairns NJ, Grossman M, McMillan CT, Lee EB, Van Deerlin VM, Lee VMY, Trojanowski JQ. Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol 2015; 129:469-91. [PMID: 25549971 PMCID: PMC4369168 DOI: 10.1007/s00401-014-1380-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) comprises two main classes of neurodegenerative diseases characterized by neuronal/glial proteinaceous inclusions (i.e., proteinopathies) including tauopathies (i.e., FTLD-Tau) and TDP-43 proteinopathies (i.e., FTLD-TDP) while other very rare forms of FTLD are known such as FTLD with FUS pathology (FTLD-FUS). This review focuses mainly on FTLD-Tau and FLTD-TDP, which may present as several clinical syndromes: a behavioral/dysexecutive syndrome (behavioral variant frontotemporal dementia); language disorders (primary progressive aphasia variants); and motor disorders (amyotrophic lateral sclerosis, corticobasal syndrome, progressive supranuclear palsy syndrome). There is considerable heterogeneity in clinical presentations of underlying neuropathology and current clinical criteria do not reliably predict underlying proteinopathies ante-mortem. In contrast, molecular etiologies of hereditary FTLD are consistently associated with specific proteinopathies. These include MAPT mutations with FTLD-Tau and GRN, C9orf72, VCP and TARDBP with FTLD-TDP. The last decade has seen a rapid expansion in our knowledge of the molecular pathologies associated with this clinically and neuropathologically heterogeneous group of FTLD diseases. Moreover, in view of current limitations to reliably diagnose specific FTLD neuropathologies prior to autopsy, we summarize the current state of the science in FTLD biomarker research including neuroimaging, biofluid and genetic analyses. We propose that combining several of these biomarker modalities will improve diagnostic specificity in FTLD through a personalized medicine approach. The goals of these efforts are to enhance power for clinical trials focused on slowing or preventing progression of spread of tau, TDP-43 and other FTLD-associated pathologies and work toward the goal of defining clinical endophenotypes of FTD.
Collapse
Affiliation(s)
- David J Irwin
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nigel J. Cairns
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Corey T. McMillan
- Penn Frontotemporal Degeneration Center, Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward B. Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivianna M. Van Deerlin
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Q. Trojanowski
- Center for Neurodegenerative Disease Research Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Corsetti V, Florenzano F, Atlante A, Bobba A, Ciotti MT, Natale F, Della Valle F, Borreca A, Manca A, Meli G, Ferraina C, Feligioni M, D'Aguanno S, Bussani R, Ammassari-Teule M, Nicolin V, Calissano P, Amadoro G. NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer's disease. Hum Mol Genet 2015; 24:3058-81. [PMID: 25687137 DOI: 10.1093/hmg/ddv059] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/10/2015] [Indexed: 01/26/2023] Open
Abstract
Disarrangement in functions and quality control of mitochondria at synapses are early events in Alzheimer's disease (AD) pathobiology. We reported that a 20-22 kDa NH2-tau fragment mapping between 26 and 230 amino acids of the longest human tau isoform (aka NH2htau): (i) is detectable in cellular and animal AD models, as well in synaptic mitochondria and cerebrospinal fluids (CSF) from human AD subjects; (ii) is neurotoxic in primary hippocampal neurons; (iii) compromises the mitochondrial biology both directly, by inhibiting the ANT-1-dependent ADP/ATP exchange, and indirectly, by impairing their selective autophagic clearance (mitophagy). Here, we show that the extensive Parkin-dependent turnover of mitochondria occurring in NH2htau-expressing post-mitotic neurons plays a pro-death role and that UCHL-1, the cytosolic Ubiquitin-C-terminal hydrolase L1 which directs the physiological remodeling of synapses by controlling ubiquitin homeostasis, critically contributes to mitochondrial and synaptic failure in this in vitro AD model. Pharmacological or genetic suppression of improper mitophagy, either by inhibition of mitochondrial targeting to autophagosomes or by shRNA-mediated silencing of Parkin or UCHL-1 gene expression, restores synaptic and mitochondrial content providing partial but significant protection against the NH2htau-induced neuronal death. Moreover, in mitochondria from human AD synapses, the endogenous NH2htau is stably associated with Parkin and with UCHL-1. Taken together, our studies show a causative link between the excessive mitochondrial turnover and the NH2htau-induced in vitro neuronal death, suggesting that pathogenetic tau truncation may contribute to synaptic deterioration in AD by aberrant recruitment of Parkin and UCHL-1 to mitochondria making them more prone to detrimental autophagic clearance.
Collapse
Affiliation(s)
- V Corsetti
- Institute of Translational Pharmacology (IFT) - National Research Council (CNR), Via Fosso del Cavaliere 100-00133, Rome, Italy
| | - F Florenzano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Atlante
- Institute of Biomembranes and Bioenergetics (IBBE)-CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - A Bobba
- Institute of Biomembranes and Bioenergetics (IBBE)-CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - M T Ciotti
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - F Natale
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - F Della Valle
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Borreca
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Manca
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - G Meli
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - C Ferraina
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - M Feligioni
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - S D'Aguanno
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - R Bussani
- UCO Pathological Anatomy and Histopathology Unit, Cattinara Hospital Strada di Fiume 447, 34149 Trieste, Italy and
| | - M Ammassari-Teule
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - V Nicolin
- Department of Medical, Surgical and Health Science, University of Trieste, Strada di Fiume 449, 34149 Trieste, Italy
| | - P Calissano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - G Amadoro
- Institute of Translational Pharmacology (IFT) - National Research Council (CNR), Via Fosso del Cavaliere 100-00133, Rome, Italy European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| |
Collapse
|
26
|
Glial and neuronal tau pathology in tauopathies: characterization of disease-specific phenotypes and tau pathology progression. J Neuropathol Exp Neurol 2014; 73:81-97. [PMID: 24335532 DOI: 10.1097/nen.0000000000000030] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tauopathies are degenerative diseases characterized by the accumulation of phosphorylated tau in neurons and glial cells. With some exceptions, tau deposits in neurons are mainly manifested as pretangles and tangles unrelated to the tauopathy. It is thought that abnormal tau deposition in neurons occurs following specific steps, but little is known about the progression of tau pathology in glial cells in tauopathies. We compared tau pathology in different astrocyte phenotypes and oligodendroglial inclusions with that in neurons in a large series of tauopathies, including progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, Pick disease, frontotemporal lobar degenerations (FTLD) associated with mutations in the tau gene, globular glial tauopathy (GGT), and tauopathy in the elderly. Our findings indicate that disease-specific astroglial phenotypes depend on i) the primary amino acid sequence of tau (mutated tau, 3Rtau, and 4Rtau); ii) phospho-specific sites of tau phosphorylation, tau conformation, tau truncation, and ubiquitination in that order (which parallel tau modifications related to pretangle and tangle stages in neurons); and iii) modifications of the astroglial cytoskeleton. In contrast to astrocytes, coiled bodies in oligodendrocytes have similar characteristics whatever the tauopathy, except glial globular inclusions in GGT, and coiled bodies and globular oligodendroglial inclusions in FTLD-tau/K317M. These observations indicate that tau pathology in glial cells largely parallels, but is not identical to, that in neurons in many tauopathies.
Collapse
|
27
|
Iqbal K, Gong CX, Liu F. Microtubule-associated protein tau as a therapeutic target in Alzheimer's disease. Expert Opin Ther Targets 2014; 18:307-18. [PMID: 24387228 DOI: 10.1517/14728222.2014.870156] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a major public health problem in modern society and as yet, other than a few symptomatic drugs, there is no disease-modifying treatment for this disease available. AREAS COVERED Neurofibrillary pathology, which is made up from abnormally hyperphosphorylated microtubule-associated protein tau, is both a hallmark and key lesion of AD and related tauopathies. The density of neurofibrillary pathology in the cerebral cortex correlates with the degree of dementia. Both experimental and transgenic animal studies have consistently shown that abnormal hyperphosphorylation of tau causes cognitive impairment. Abnormal hyperphosphorylation of tau converts it from a microtubule assembly-promoting to a microtubule-disrupting protein and promotes its self-assembly into paired helical filaments. To date, the bulk of studies have shown that abnormal hyperphosphorylation is the key gain of toxic function step though some cell culture and transgenic mouse studies have also reported that aggregated tau can lead to neurodegeneration. In this article, we have reviewed data from our lab and that from PubMed search on the molecular mechanism of tau pathology and the potential of tau as a therapeutic target for AD and related disorders. EXPERT OPINION In our opinion, inhibition of abnormal hyperphosphorylation of tau is the most rational therapeutic target. Therapeutic approaches include restoration of the activity of protein phosphatase-2A, which is the major regulator of tau phosphorylation and the activity of which is compromised in AD brain, inhibition of one or more tau protein kinases which include GSK-3β, cyclin-dependent protein kinase-5, dual-specificity tyrosine phosphorylated-regulated kinase 1A, Ca(2+)/calmodulin-activated protein kinase II and casein kinase I, enhancement of O-GlcNAcylation of tau, and tau immunization.
Collapse
Affiliation(s)
- Khalid Iqbal
- New York State Institute for Basic Research in Developmental Disabilities, Department of Neurochemistry, Inge Grundke-Iqbal Research Floor , 1050 Forest Hill Road, Staten Island, NY 10314 , USA +1 718 494 5259 ;
| | | | | |
Collapse
|
28
|
Schwalbe M, Biernat J, Bibow S, Ozenne V, Jensen MR, Kadavath H, Blackledge M, Mandelkow E, Zweckstetter M. Phosphorylation of human Tau protein by microtubule affinity-regulating kinase 2. Biochemistry 2013; 52:9068-79. [PMID: 24251416 DOI: 10.1021/bi401266n] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tau protein plays an important role in neuronal physiology and Alzheimer's neurodegeneration. Its abilities to aggregate abnormally, to bind to microtubules (MTs), and to promote MT assembly are all influenced by phosphorylation. Phosphorylation of serine residues in the KXGS motifs of Tau's repeat domain, crucial for MT interactions and aggregation, is facilitated most efficiently by microtubule-associated protein/microtubule affinity-regulating kinases (MARKs). Here we applied high-resolution nuclear magnetic resonance analysis to study the kinetics of phosphorylation of Tau by MARK2 and its impact on the structure and microtubule binding of Tau. We demonstrate that MARK2 binds to the N-terminal tail of Tau and selectively phosphorylates three major and five minor serine residues in the repeat domain and C-terminal tail. Structural changes induced by phosphorylation of Tau by MARK2 are highly localized in the proximity of the phosphorylation site and do not affect the global conformation, in contrast to phosphorylation in the proline-rich region. Furthermore, single-residue analysis of binding of Tau to MTs provides support for a model in which Tau's hot spots of MT interaction bind independently of each other and are differentially affected by phosphorylation.
Collapse
Affiliation(s)
- Martin Schwalbe
- German Center for Neurodegenerative Diseases (DZNE) , 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jadhav S, Zilka N, Novak M. Protein truncation as a common denominator of human neurodegenerative foldopathies. Mol Neurobiol 2013; 48:516-32. [PMID: 23516100 DOI: 10.1007/s12035-013-8440-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/05/2013] [Indexed: 12/13/2022]
Abstract
Neurodegenerative foldopathies are characterized by aberrant folding of diseased modified proteins, which are major constituents of the intracellular and extracellular lesions. These lesions correlate with the cognitive and/or motor impairment seen in these diseases. The majority of the disease modified proteins in neurodegenerative foldopathies belongs to the group of proteins termed as intrinsically disordered proteins (IDPs). Several independent studies have showed that abnormal protein processing constitutes the key pathological feature of these disorders. The current review focuses on protein truncation as a common denominator of neurodegenerative foldopathies, which is considered to be the major driving force behind the pathological metamorphosis of brain IDPs. The aim of the review is to emphasize the key role of the protein truncation in the pathogenic pathways of neurodegenerative diseases. A deeper understanding of the complex downstream processing of the IDPs, resulting in the generation of pathologically modified proteins might be a prerequisite for the successful therapeutic strategies of several fatal neurodegenerative diseases.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska cesta 9, 845 10, Bratislava, Slovak Republic
| | | | | |
Collapse
|
30
|
López‐González I, Carmona M, Blanco R, Luna‐Muñoz J, Martínez‐Mandonado A, Mena R, Ferrer I. Characterization of thorn-shaped astrocytes in white matter of temporal lobe in Alzheimer's disease brains. Brain Pathol 2013; 23:144-53. [PMID: 22882361 PMCID: PMC8028879 DOI: 10.1111/j.1750-3639.2012.00627.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 07/30/2012] [Indexed: 12/11/2022] Open
Abstract
Thorn-shaped astrocytes (TsA) are mainly localized in the periventricular white matter of the temporal lobe in a subgroup of aged individuals usually in the context of Alzheimer's disease (AD). Immunohistochemistry of TsA shows 4Rtau deposition, tau phosphorylation at different sites recognized with phosphospecific anti-tau antibodies Thr181, Ser202, Ser214, Thr231, Ser396, Ser422, and clones AT8 and PHF-1, and conformational changes revealed with Alz50 and MC-1 antibodies; TsA are also immunostained with antibodies to active tau kinases MAPK/ERK-P, SAPK/JNK-P, p38-P and GSK-3β. These findings are common to neurofibrillary tangles in AD. However, TsA are not stained with 3Rtau antibodies, and they are seldom stained or not at all with phosphospecific tauSer262 and with Tau-C3 antibody, which recognizes the latter tau truncation at aspartic acid 421. Previous studies have shown that tau phosphorylation at Ser262 reduces tau binding to microtubules and increases caspase-3 activity, whereas tau truncation at aspartic acid 421 is associated with tau ubiquitination, and toxic effects of tau. In this line, ubiquitin is not accumulated in TsA, and in situ end-labeling of nuclear DNA fragmentation shows absence of degeneration in TsA. These observations support the concept that tau lesions in neurons differ from those seen in TsA in AD.
Collapse
Affiliation(s)
- Irene López‐González
- CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Institut de Neuropatologia, IDIBELL‐Hospital Universitari de BellvitgeUniversitat de BarcelonaHospitalet de LlobregatSpain
| | - Margarita Carmona
- CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Institut de Neuropatologia, IDIBELL‐Hospital Universitari de BellvitgeUniversitat de BarcelonaHospitalet de LlobregatSpain
| | - Rosa Blanco
- CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Institut de Neuropatologia, IDIBELL‐Hospital Universitari de BellvitgeUniversitat de BarcelonaHospitalet de LlobregatSpain
| | - José Luna‐Muñoz
- Department of Physiology, Biophysics and NeurosciencesCINVESTAV‐IPNMexicoMexico
| | | | - Raúl Mena
- Department of Physiology, Biophysics and NeurosciencesCINVESTAV‐IPNMexicoMexico
| | - Isidre Ferrer
- CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Institut de Neuropatologia, IDIBELL‐Hospital Universitari de BellvitgeUniversitat de BarcelonaHospitalet de LlobregatSpain
| |
Collapse
|
31
|
Caspase-mediated truncation of tau potentiates aggregation. Int J Alzheimers Dis 2012; 2012:731063. [PMID: 22988541 PMCID: PMC3440879 DOI: 10.1155/2012/731063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
Caspase-mediated truncation of tau is associated with aggregation. We examined the impact of manipulation of caspase activity on intracellular aggregation of a mutant form of tau (3PO) that forms spontaneous aggregates. Treatment with the caspase inhibitor Z-VAD-fmk reduced both N and C-terminal tau truncation but did not significantly reduce aggregation. Treatment with staurosporine, which activated caspases, increased C-terminal but not N-terminal truncation and enhanced aggregation. These findings suggest that caspase activation is one potential route, rather than an obligatory initiation step, in aggregation, and that N- and C-terminal truncation contribute differentially to aggregation.
Collapse
|
32
|
Maulik M, Ghoshal B, Kim J, Wang Y, Yang J, Westaway D, Kar S. Mutant human APP exacerbates pathology in a mouse model of NPC and its reversal by a β-cyclodextrin. Hum Mol Genet 2012; 21:4857-75. [PMID: 22869680 DOI: 10.1093/hmg/dds322] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Niemann-Pick type C (NPC) disease, an autosomal recessive disorder caused primarily by loss-of-function mutations in NPC1 gene, is characterized neuropathologically by intracellular cholesterol accumulation, gliosis and neuronal loss in selected brain regions. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer's disease (AD), including the presence of tau-positive neurofibrillary tangles (NFTs) and β-amyloid (Aβ)-related peptides in vulnerable brain regions. Since enhanced cholesterol level, which acts as a risk factor for AD, can increase Aβ production by regulating amyloid precursor protein (APP) metabolism, it is possible that APP overexpression can influence cholesterol-regulated NPC pathology. We have addressed this issue in a novel bigenic mice (ANPC) generated by crossing heterozygous Npc1-deficient mice with mutant human APP transgenic mice. These mice exhibited decreased lifespan, early object memory and motor impairments, and exacerbated glial pathology compared with other littermates. Neurodegeneration observed in the cerebellum of ANPC mice was found to be accelerated along with a selective increase in the phosphorylation/cleavage of tau protein. Additionally, enhanced levels/activity of cytosolic cathepsin D together with cytochrome c and Bcl-2-associated X protein suggest a role for the lysosomal enzyme in the caspase-induced degeneration of neurons in ANPC mice. The reversal of cholesterol accretion by 2-hydroxypropyl-β-cyclodextrin (2-HPC) treatment increased longevity and attenuated behavioral/pathological abnormalities in ANPC mice. Collectively, our results reveal that overexpression of APP in Npc1-deficient mice can negatively influence longevity and a wide spectrum of behavioral/neuropathological abnormalities, thus raising the possibility that APP and NPC1 may interact functionally to regulate the development of AD and NPC pathologies.
Collapse
Affiliation(s)
- Mahua Maulik
- Department of Medicine (Neurology), Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Pathological truncations of human brain proteins represent the common feature of many neurodegenerative disorders including AD (Alzheimer's disease), Parkinson's disease and Huntington's disease. Protein truncations significantly change the structure and function of these proteins and thus can engender their pathological metamorphosis. We have shown previously that truncated forms of tau protein are contained in the core of the paired helical filaments that represent the main constituent of neurofibrillary pathology. Recently, we have identified truncated tau species of a different molecular signature. We have found that tau truncation is not produced by a random process, but rather by highly specific proteolytic cleavage and/or non-enzymatic fragmentation. In order to characterize the pathophysiology of AD-specific truncated tau species, we have used a transgenic rat model for AD expressing human truncated tau. Expression of the tau protein induces the formation of novel truncated tau species that originate from both transgenic human tau and endogenous rat tau proteins. Moreover, these truncated tau proteins are found exclusively in the misfolded fraction of tau, suggesting that they actively participate in the tau misfolding process. These findings corroborate further the idea that the appearance of truncated tau species starts a self-perpetuating cycle of further tau protein truncation leading to and accelerating tau misfolding and formation of neurofibrillary pathology.
Collapse
|
34
|
Selective tau tyrosine nitration in non-AD tauopathies. Acta Neuropathol 2012; 123:119-32. [PMID: 22057784 DOI: 10.1007/s00401-011-0898-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 12/29/2022]
Abstract
Previously, we reported the characterization of two novel antibodies that react with tau nitrated at tyrosine 197 (Tau-nY197) and tyrosine 394 (Tau-nY394) in Alzheimer's disease (AD). In this report, we examined whether tau nitration at these sites also occurs in corticobasal degeneration (CBD), progressive supranuclear palsy (PSP) and Pick's disease (PiD), three neurodegenerative tauopathies that contain abundant tau deposits within glial and neuronal cell types but lack amyloid deposition. The reactivity of these antibodies was also compared to two previously characterized antibodies Tau-nY18 and Tau-nY29, specific for tau nitrated at tyrosine 18 and tyrosine 29, respectively. In the present experiments, Tau-nY18 did not label the classical pathological lesions of CBD or PSP but did label the neuronal lesions associated with PiD to a limited extent. In contrast, Tau-nY29 revealed some, but not all classes of tau inclusions associated with both CBD and PSP but did label numerous Pick body inclusions in PiD. Tau-nY197 was restricted to the neuropil threads in both CBD and PSP; however, similar to Tau-nY29, extensive Pick body pathology was clearly labeled. Tau-nY394 did not detect any of the lesions associated with these disorders. In contrast, extensive neuronal and glial tau pathology within these diseases was labeled by Tau-Y197, a monoclonal antibody that reacts within the Y-197-containing proline-rich region of the molecule. Based on our Western and IHC experiments, it appears that nitration of tau at tyrosine 29 is a pathological modification that might be associated with neurodegeneration. Collectively, our data suggest that site-specific tau tyrosine nitration events occur in a disease and lesion-specific manner, indicating that nitration appears to be a highly controlled modification in AD and non-AD tauopathies.
Collapse
|
35
|
Voss K, Koren J, Dickey CA. The earliest tau dysfunction in Alzheimer's disease? Tau phosphorylated at s422 as a toxic seed. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2148-51. [PMID: 21964186 DOI: 10.1016/j.ajpath.2011.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/22/2011] [Indexed: 11/17/2022]
Affiliation(s)
- Kellen Voss
- USF Health Byrd Alzheimer's Institute, Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | | | | |
Collapse
|
36
|
Vana L, Kanaan NM, Ugwu IC, Wuu J, Mufson EJ, Binder LI. Progression of tau pathology in cholinergic Basal forebrain neurons in mild cognitive impairment and Alzheimer's disease. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2533-50. [PMID: 21945902 PMCID: PMC3204017 DOI: 10.1016/j.ajpath.2011.07.044] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 12/13/2022]
Abstract
Tau is a microtubule-associated protein that forms neurofibrillary tangles (NFTs) in the selective vulnerable long projection neurons of the cholinergic basal forebrain (CBF) in Alzheimer's disease (AD). Although CBF neurodegeneration correlates with cognitive decline during AD progression, little is known about the temporal changes of tau accumulation in this region. We investigated tau posttranslational modifications during NFT evolution within the CBF neurons of the nucleus basalis (NB) using tissue from subjects with no cognitive impairment, mild cognitive impairment, and AD. The pS422 antibody was used as an early tau pathology marker that labels tau phosphorylated at Ser422; the TauC3 antibody was used to detect later stage tau pathology. Stereologic evaluation of NB tissue immunostained for pS422 and TauC3 revealed an increase in neurons expressing these tau epitopes during disease progression. We also investigated the occurrence of pretangle tau events within cholinergic NB neurons by dual staining for the cholinergic cell marker, p75(NTR), which displays a phenotypic down-regulation within CBF perikarya in AD. As pS422+ neurons increased in number, p75(NTR)+ neurons decreased, and these changes correlated with both AD neuropathology and cognitive decline. Also, NFTs developed slower in the CBF compared with previously examined cortical regions. Taken together, these results suggest that changes in cognition are associated with pretangle events within NB cholinergic neurons before frank NFT deposition.
Collapse
Affiliation(s)
- Laurel Vana
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Corticobasal degeneration (CBD) is a rare, progressive neurodegenerative disorder with onset in the 5(th) to 7(th) decade of life. It is associated with heterogeneous motor, sensory, behavioral and cognitive symptoms, which make its diagnosis difficult in a living patient. The etiology of CBD is unknown; however, neuropathological and genetic evidence supports a pathogenetic role for microtubule-associated protein tau. CBD pathology is characterized by circumscribed cortical atrophy with spongiosis and ballooned neurons; the distribution of these changes dictates the patient's clinical presentation. Neuronal and glial tau pathology is extensive in gray and white matter of the cortex, basal ganglia, diencephalon and rostral brainstem. Abnormal tau accumulation within astrocytes forms pathognomonic astrocytic plaques. The classic clinical presentation, termed corticobasal syndrome (CBS), comprises asymmetric progressive rigidity and apraxia with limb dystonia and myoclonus. CBS also occurs in conjunction with other diseases, including Alzheimer disease and progressive supranuclear palsy. Moreover, the pathology of CBD is associated with clinical presentations other than CBS, including Richardson syndrome, behavioral variant frontotemporal dementia, primary progressive aphasia and posterior cortical syndrome. Progress in biomarker development to differentiate CBD from other disorders has been slow, but is essential in improving diagnosis and in development of disease-modifying therapies.
Collapse
|
38
|
Ho L, Pasinetti GM. Polyphenolic compounds for treating neurodegenerative disorders involving protein misfolding. Expert Rev Proteomics 2010; 7:579-89. [PMID: 20653511 DOI: 10.1586/epr.10.69] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A diverse group of neurodegenerative diseases are characterized by progressive, age-dependent intracellular formation of misfolded protein aggregates. These include Alzheimer's disease, Huntington's disease, Parkinson's disease and a number of tau-mediated disorders. There is no effective treatment for any of these disorders; currently approved interventions are designed to treat disease symptoms and generally lead to modest modulation of clinical symptoms. None are known to mitigate underlying neuropathologic mechanisms and, thus, it is not unexpected that existing treatments appear ineffective in modulating disease progression. We note that these neurodegenerative disorders all share a common mechanistic theme in that depositions of misfolded protein in the brain is a key molecular feature underlying disease onset and/or progression. While previous studies have identified a number of drugs and nutraceuticals capable of interfering with the formation and/or stability of misfolded protein aggregates, none have been demonstrated to be effective in vivo for treating any of the neurodegenerative disorders. We hereby review accumulating evidence that a select nutraceutical grape-seed polyphenolic extract (GSPE) is effective in vitro and in vivo in mitigating certain misfolded protein-mediated neuropathologic and clinical phenotypes. We will also review evidence implicating bioavailability of GSPE components in the brain and the tolerability as well as safety of GSPE in animal models and in humans. Collectively, available information supports continued development of the GSPE for treating a variety of neurodegenerative disorders involving misfolded protein-mediated neuropathologic mechanisms.
Collapse
Affiliation(s)
- Lap Ho
- Center of Excellence for Novel Approaches to Neurodiagnostics and Neurotherapeutics, Brain Institute, Center of Excellence for Research in Complementary and Alternative Medicine in Alzheimer's Disease, Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
39
|
Pasinetti GM, Ksiezak-Reding H, Santa-Maria I, Wang J, Ho L. Development of a grape seed polyphenolic extract with anti-oligomeric activity as a novel treatment in progressive supranuclear palsy and other tauopathies. J Neurochem 2010; 114:1557-68. [PMID: 20569300 PMCID: PMC2945400 DOI: 10.1111/j.1471-4159.2010.06875.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A diverse group of neurodegenerative diseases - including progressive supranuclear palsy (PSP), corticobasal degeneration and Alzheimer's disease among others, collectively referred to as tauopathies - are characterized by progressive, age-dependent intracellular formations of misfolded protein aggregates that play key roles in the initiation and progression of neuropathogenesis. Recent studies from our laboratory reveal that grape seed-derived polyphenolic extracts (GSPE) potently prevent tau fibrillization into neurotoxic aggregates and therapeutically promote the dissociation of preformed tau aggregates [J. Alzheimer's Dis. (2009) vol. 16, pp. 433]. Based on our extensive bioavailability, bioactivity and functional preclinical studies, combined with the safety of GSPE in laboratory animals and in humans, we initiated a series of studies exploring the role of GSPE (Meganatural-Az(®) GSPE) as a potential novel botanical drug for the treatment of certain forms of tauopathies including PSP, a neurodegenerative disorder involving the accumulation and deposition of misfolded tau proteins in the brain characterized, in part, by abnormal intracellular tau inclusions in specific anatomical areas involving astrocytes, oligodendrocytes and neurons [J. Neuropathol. Exp. Neurol. (2002) vol. 61, pp. 33]. In this mini-review article, we discuss the biochemical characterization of GSPE in our laboratory and its potential preventative and therapeutic role in model systems of abnormal tau processing pertinent to PSP and related tauopathies.
Collapse
Affiliation(s)
- Giulio Maria Pasinetti
- Center of Excellence for Novel Approaches to Neurodiagnostics and Neurotherapeutics, Brain Institute, Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| | | | | | | | | |
Collapse
|
40
|
Motoi Y, Sahara N, Kambe T, Hattori N. Tau and neurodegenerative disorders. Biomol Concepts 2010; 1:131-45. [DOI: 10.1515/bmc.2010.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractThe mechanisms that render tau a toxic agent are still unclear, although increasing evidence supports the assertion that alterations of tau can directly cause neuronal degeneration. In addition, it is unclear whether neurodegeneration in various tauopathies occurs via a common mechanism or that specific differences exist. The aim of this review is to provide an overview of tauopathies from bench to bedside. The review begins with clinicopathological findings of familial and sporadic tauopathies. It includes a discussion of the similarities and differences between these two conditions. The second part concentrates on biochemical alterations of tau such as phosphorylation, truncation and acetylation. Although pathological phosphorylation of tau has been studied for many years, recently researchers have focused on the physiological role of tau during development. Finally, the review contains a summary of the significance of tauopathy model mice for research on neurofibrillary tangles, axonopathies, and synaptic alteration.
Collapse
Affiliation(s)
- Yumiko Motoi
- 1Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo Bunkyo-ku Tokyo 113-8421, Tokyo, Japan
| | - Naruhiko Sahara
- 2Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Taiki Kambe
- 1Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo Bunkyo-ku Tokyo 113-8421, Tokyo, Japan
| | - Nobutaka Hattori
- 1Department of Neurology, Juntendo University School of Medicine, 2-1-1, Hongo Bunkyo-ku Tokyo 113-8421, Tokyo, Japan
| |
Collapse
|
41
|
Abstract
Deposition of highly phosphorylated tau in the brain is the most significant neuropathological and biochemical characteristic of the group of neurodegenerative disorders termed the tauopathies. The discovery of tau fragments in these diseases suggests that tau cleavage and tau phosphorylation, both of which induce conformational changes in tau, could each have roles in disease pathogenesis. The identities of the proteases responsible for degrading tau, resulting in the appearance of truncated tau species in physiological and pathological conditions, are not known. Several fragments of tau are reported to have pro-aggregation properties, but the lack of disease-relevant cell models of tau aggregation has hampered investigation of the effects of tau aggregation on normal cellular functioning. In the present paper, we describe our findings of N-terminally truncated tau in the brain in a subgroup of the tauopathies in which tau isoforms containing four microtubule-binding domains predominate. We also discuss the evidence for the involvement of proteases in the generation of tau pathology in neurodegenerative disease, since these enzymes warrant further investigation as potential therapeutic targets in the tauopathies.
Collapse
|
42
|
Gozes I. Tau pathology: predictive diagnostics, targeted preventive and personalized medicine and application of advanced research in medical practice. EPMA J 2010. [PMID: 23199066 PMCID: PMC3405325 DOI: 10.1007/s13167-010-0029-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microtubules are key cytoskeletal elements found in all eukaryotic cells. The microtubule shaft is composed of the heterodimer protein, tubulin and decorated with multiple microtubule associated protein, regulating microtubule function. Tau (tubulin associated unit) or MAPT (microtubule associated protein tau), among the first microtubule associated proteins to be identified, was implicated in microtubule initiation as well as assembly, with increased expression in neurons and specific association with axonal microtubules. Alzheimer’s disease (AD) is the most prevalent tauopathy, exhibiting tau-neurofibrillary tangles associated with cognitive dysfunction. AD is also characterized by β-amyloid plaques. An abundance of tau inclusions, in the absence of β-amyloid deposits, can be found in Pick’s disease, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and other diseases, collectively described as tauopathies. The increase in tau pathology in AD correlates with the associated cognitive decline. The current manuscript touches on the variability as well as common denominators of the various tau pathologies coupled to new approaches/current innovation in treatment of tauopathies in favor of advanced technologies in predictive diagnostics, targeted preventive and personalized medicine (PPPM).
Collapse
Affiliation(s)
- Illana Gozes
- Department of Human Molecular Genetics and Biochemistry The Lily and Avraham Gildor Chair for the Investigation of Growth Factors and The Adams Super Center for Brain Studies Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978 Israel
| |
Collapse
|
43
|
Kim W, Lee S, Hall GF. Secretion of human tau fragments resembling CSF-tau in Alzheimer's disease is modulated by the presence of the exon 2 insert. FEBS Lett 2010; 584:3085-8. [PMID: 20553717 DOI: 10.1016/j.febslet.2010.05.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/10/2010] [Accepted: 05/19/2010] [Indexed: 01/26/2023]
Abstract
Abnormal tau cleavage is prominent in the neurofibrillary degeneration characteristic of Alzheimer's disease (AD) and related tauopathies. We recently showed that cleaved human tau is secreted by specific mechanisms when overexpressed. Here we examined the effect of expressing N-terminal and full length tau constructs in transiently and stably transfected neuronal lines. We show that secreted tau exhibits a cleavage pattern similar to CSF-tau from human AD patients and that tau secretion is specifically inhibited by the presence of the exon 2 insert. These results suggest that tau secretion may play a hitherto unsuspected role in AD and related tauopathies.
Collapse
Affiliation(s)
- Wonhee Kim
- Center for Cellular Neuroscience and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | | | | |
Collapse
|
44
|
Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathol 2010; 119:389-408. [PMID: 20198481 DOI: 10.1007/s00401-010-0658-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/12/2010] [Accepted: 02/13/2010] [Indexed: 12/11/2022]
Abstract
Neuropathological diagnosis of neurodegenerative dementias evolved by adapting the results of neuroanatomy, biochemistry, and cellular and molecular biology. Milestone findings of intra- and extracellular argyrophilic structures, visualizing protein deposition, initiated a protein-based classification. Widespread application of immunohistochemical and biochemical investigations revealed that (1) there are modifications of proteins intrinsic to disease (species that are phosphorylated, nitrated, oligomers, proteinase-resistant, with or without amyloid characteristics; cleavage products), (2) disease forms characterized by the accumulation of a single protein only are rather the exception than the rule, and (3) some modifications of proteins elude present neuropathological diagnostic procedures. In this review, we summarize how neuropathology, together with biochemistry, contributes to disease typing, by demonstrating a spectrum of disorders characterized by the deposition of various modifications of various proteins in various locations. Neuropathology may help to elucidate how brain pathologies alter the detectability of proteins in body fluids by upregulation of physiological forms or entrapment of different proteins. Modifications of at least the five most relevant proteins (amyloid-beta, prion protein, tau, alpha-synuclein, and TDP-43), aided by analysis of further "attracted" proteins, are pivotal to be evaluated simultaneously with different methods. This should complement the detection of biomarkers associated with pathogenetic processes, and also neuroimaging and genetic analysis, in order to obtain a highly personalized diagnostic profile. Defining clusters of patients based on the patterns of protein deposition and immunohistochemically or biochemically detectable modifications of proteins ("codes") may have higher prognostic predictive value, may be useful for monitoring therapy, and may open new avenues for research on pathogenesis.
Collapse
|
45
|
Meraz-Ríos MA, Lira-De León KI, Campos-Peña V, De Anda-Hernández MA, Mena-López R. Tau oligomers and aggregation in Alzheimer's disease. J Neurochem 2009; 112:1353-67. [PMID: 19943854 DOI: 10.1111/j.1471-4159.2009.06511.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We are analyzing the physiological function of Tau protein and its abnormal pathological behavior when this protein is self-assemble into pathological filaments. These aggregates of Tau protein are the main components in many diseases such as Alzheimer's disease (AD). Recent studies suggest that Tau acquires complex oligomeric conformations which may be toxic. In this review, we emphasized the possible phenomena implicated in the formation of these oligomers. Studies with chemical inductors indicates that the microtubule-binding domain is the most important region involved in Tau aggregation and showed the requirement of a pre-arrange Tau in abnormal conformation to promote self-assembly. Transgenic animal models and AD neuropathology studies showed that post-translational modifications are also implicated in Tau aggregation and neural cell death during AD development. Therefore, we analyzed some events that could be present during Tau aggregation. Finally, we included a brief discussion of the possible relation between glucose metabolism dysfunction in AD, and data of Tau aggregation by using aggregation inhibitors. In conclusion, the process Tau aggregation deserves further investigations to design possible therapeutic targets to inhibit the toxicity of these aggregates and it is possible that could be extended to other diseases with similar etiology.
Collapse
Affiliation(s)
- Marco A Meraz-Ríos
- Department of Molecular Biomedicine, Center of Research and Advanced Studies CINVESTAV-IPN, México DF, Mexico.
| | | | | | | | | |
Collapse
|
46
|
Zhang W, Zheng R, Wang Z, Yuan Y. The overlap of corticobasal degeneration and Alzheimer changes: an autopsy case. Neuropathology 2009; 29:720-6. [PMID: 19323789 DOI: 10.1111/j.1440-1789.2009.01012.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aspects of various neurodegenerative diseases can be observed overlapping with each other during autopsy. Corticobasal degeneration (CBD) is a rare neurodegenerative disease, whereas Alzheimer disease (AD) is the most common cause of dementia. In this article, we present the combination of CBD and AD in an autopsy case. The patient, an 82-year-old right-handed woman developed asymmetrical parkinsonism, visuospatial dysfunction and memory loss, as well as subsequent non-influent aphasia over the past 10 years. The autopsy revealed characteristic CBD-related pathology, ballooned neurons, globose tangles and astrocytic plaques, mainly in the frontal cortex and basal ganglia. The Alzheimer-related pathology was also present concomitantly. Senile plagues deposited diffusively throughout the hippocampus and neocortices. Neurofibrillary tangles (NFTs) were more confined to the hippocampus. The autopsy demonstrated pathological overlap of CBD and AD, which therefore explained the clinical early development of dementia and parkinsonism. We should suspect the concurrence of various neurodegenerative disorders in any case with atypical or complex clinical manifestations. Tau pathology is a prominent feature in both CBD and AD. Such a combination would be a clue for the pathogenesis of various tauopathies.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurology, First Hospital, Peking University, Beijing, China
| | | | | | | |
Collapse
|
47
|
Gendron TF, Petrucelli L. The role of tau in neurodegeneration. Mol Neurodegener 2009; 4:13. [PMID: 19284597 PMCID: PMC2663562 DOI: 10.1186/1750-1326-4-13] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 03/11/2009] [Indexed: 01/31/2023] Open
Abstract
Since the identification of tau as the main component of neurofibrillary tangles in Alzheimer's disease and related tauopathies, and the discovery that mutations in the tau gene cause frontotemporal dementia, much effort has been directed towards determining how the aggregation of tau into fibrillar inclusions causes neuronal death. As evidence emerges that tau-mediated neuronal death can occur even in the absence of tangle formation, a growing number of studies are focusing on understanding how abnormalities in tau (e.g. aberrant phosphorylation, glycosylation or truncation) confer toxicity. Though data obtained from experimental models of tauopathies strongly support the involvement of pathologically modified tau and tau aggregates in neurodegeneration, the exact neurotoxic species remain unclear, as do the mechanism(s) by which they cause neuronal death. Nonetheless, it is believed that tau-mediated neurodegeneration is likely to result from a combination of toxic gains of function as well as from the loss of normal tau function. To truly appreciate the detrimental consequences of aberrant tau function, a better understanding of all functions carried out by tau, including but not limited to the role of tau in microtubule assembly and stabilization, is required. This review will summarize what is currently known regarding the involvement of tau in the initiation and development of neurodegeneration in tauopathies, and will also highlight some of the remaining questions in need of further investigation.
Collapse
Affiliation(s)
- Tania F Gendron
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida, USA.
| | | |
Collapse
|
48
|
Zhang Q, Zhang X, Chen J, Miao Y, Sun A. Role of caspase-3 in tau truncation at D421 is restricted in transgenic mouse models for tauopathies. J Neurochem 2009; 109:476-84. [PMID: 19200347 DOI: 10.1111/j.1471-4159.2009.05959.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Truncated tau is widely detected in Alzheimer's disease brain, and caspase-3 has been considered as a major executioner for tau truncation at aspartate421 (D421), according to its capability of cleaving recombinant tau in vitro. Here we investigated the relationship between D421 truncated tau and caspase-3 in two transgenic mouse models for tauopathies. In adult transgenic mice, activated caspase-3 could not be detected in neurons containing truncated tau, with the exception of a few glia-like cells or neurons in postnatal mice. Caspase-3 expression exhibited a dramatic decrease at the early development stage, and kept at constantly low levels during adult stages in both wild type and transgenic mice. On the other hand, co-incubating brain homogenates from adult tau transgenic mice and ethanol-treated postnatal mice promoted tau truncation at D421, which was mildly reduced by caspase inhibitor, but completely suppressed by phosphatase inhibitor, indicating that hyperphosphorylated tau becomes a poor substrate for truncation at D421. Taken together, our study shows that insufficient caspase-3 expression and hyperphosphorylated status of tau in the adult transgenic mouse brain restrict caspase-3 as an efficient enzyme for tau truncation in vivo. Clearly, there is a caspase-3 independent mechanism responsible for tau truncation at D421 in these models.
Collapse
Affiliation(s)
- Qipeng Zhang
- Institute of Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
49
|
Folate deficiency induces in vitro and mouse brain region-specific downregulation of leucine carboxyl methyltransferase-1 and protein phosphatase 2A B(alpha) subunit expression that correlate with enhanced tau phosphorylation. J Neurosci 2008; 28:11477-87. [PMID: 18987184 DOI: 10.1523/jneurosci.2816-08.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Altered folate homeostasis is associated with many clinical and pathological manifestations in the CNS. Notably, folate-mediated one-carbon metabolism is essential for methyltransferase-dependent cellular methylation reactions. Biogenesis of protein phosphatase 2A (PP2A) holoenzyme containing the regulatory B(alpha) subunit, a major brain tau phosphatase, is controlled by methylation. Here, we show that folate deprivation in neuroblastoma cells induces downregulation of PP2A leucine carboxyl methyltransferase-1 (LCMT-1) expression, resulting in progressive accumulation of newly synthesized demethylated PP2A pools, concomitant loss of B(alpha), and ultimately cell death. These effects are further accentuated by overexpression of PP2A methylesterase (PME-1) but cannot be rescued by PME-1 knockdown. Overexpression of either LCMT-1 or B(alpha) is sufficient to protect cells against the accumulation of demethylated PP2A, increased tau phosphorylation, and cell death induced by folate starvation. Conversely, knockdown of either protein accelerates folate deficiency-evoked cell toxicity. Significantly, mice maintained for 2 months on low-folate or folate-deficient diets have brain-region-specific alterations in metabolites of the methylation pathway. Those are associated with downregulation of LCMT-1, methylated PP2A, and B(alpha) expression and enhanced tau phosphorylation in susceptible brain regions. Our studies provide novel mechanistic insights into the regulation of PP2A methylation and tau. They establish LCMT-1- and B(alpha)-containing PP2A holoenzymes as key mediators of the role of folate in the brain. Our results suggest that counteracting the neuronal loss of LCMT-1 and B(alpha) could be beneficial for all tauopathies and folate-dependent disorders of the CNS.
Collapse
|
50
|
Koson P, Zilka N, Kovac A, Kovacech B, Korenova M, Filipcik P, Novak M. Truncated tau expression levels determine life span of a rat model of tauopathy without causing neuronal loss or correlating with terminal neurofibrillary tangle load. Eur J Neurosci 2008; 28:239-46. [DOI: 10.1111/j.1460-9568.2008.06329.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|