1
|
Lui KNC, Li Z, Lai FPL, Lau ST, Ngan ESW. Organoid models of breathing disorders reveal patterning defect of hindbrain neurons caused by PHOX2B-PARMs. Stem Cell Reports 2023:S2213-6711(23)00199-6. [PMID: 37352849 PMCID: PMC10362500 DOI: 10.1016/j.stemcr.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/25/2023] Open
Abstract
Retrotrapezoid nucleus (RTN) neurons in the brainstem regulate the ventilatory response to hypercarbia. It is unclear how PHOX2B-polyalanine repeat mutations (PHOX2B-PARMs) alter the function of PHOX2B and perturb the formation of RTN neurons. Here, we generated human brainstem organoids (HBSOs) with RTN-like neurons from human pluripotent stem cells. Single-cell transcriptomics revealed that expression of PHOX2B+7Ala PARM alters the differentiation trajectories of the hindbrain neurons and hampers the formation of the RTN-like neurons in HBSOs. With the unguided cerebral organoids (HCOs), PHOX2B+7Ala PARM interrupted the patterning of PHOX2B+ neurons with dysregulation of Hedgehog pathway and HOX genes. With complementary use of HBSOs and HCOs with a patient and two mutant induced pluripotent stem cell lines carrying different polyalanine repetition in PHOX2B, we further defined the association between the length of polyalanine repetition and malformation of RTN-respiratory center and demonstrated the potential toxic gain of function of PHOX2B-PARMs, highlighting the uniqueness of these organoid models for disease modeling.
Collapse
Affiliation(s)
- Kathy Nga-Chu Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Zhixin Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Frank Pui-Ling Lai
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Sin-Ting Lau
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR
| | - Elly Sau-Wai Ngan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR.
| |
Collapse
|
2
|
Slattery SM, Perez IA, Ceccherini I, Chen ML, Kurek KC, Yap KL, Keens TG, Khaytin I, Ballard HA, Sokol EA, Mittal A, Rand CM, Weese-Mayer DE. Transitional care and clinical management of adolescents, young adults, and suspected new adult patients with congenital central hypoventilation syndrome. Clin Auton Res 2023; 33:231-249. [PMID: 36403185 DOI: 10.1007/s10286-022-00908-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE With contemporaneous advances in congenital central hypoventilation syndrome (CCHS), recognition, confirmatory diagnostics with PHOX2B genetic testing, and conservative management to reduce the risk of early morbidity and mortality, the prevalence of identified adolescents and young adults with CCHS and later-onset (LO-) CCHS has increased. Accordingly, there is heightened awareness and need for transitional care of these patients from pediatric medicine into a multidisciplinary adult medical team. Hence, this review summarizes key clinical and management considerations for patients with CCHS and LO-CCHS and emphasizes topics of particular importance for this demographic. METHODS We performed a systematic review of literature on diagnostics, pathophysiology, and clinical management in CCHS and LO-CCHS, and supplemented the review with anecdotal but extensive experiences from large academic pediatric centers with expertise in CCHS. RESULTS We summarized our findings topically for an overview of the medical care in CCHS and LO-CCHS specifically applicable to adolescents and adults. Care topics include genetic and embryologic basis of the disease, clinical presentation, management, variability in autonomic nervous system dysfunction, and clarity regarding transitional care with unique considerations such as living independently, family planning, exposure to anesthesia, and alcohol and drug use. CONCLUSIONS While a lack of experience and evidence exists in the care of adults with CCHS and LO-CCHS, a review of the relevant literature and expert consensus provides guidance for transitional care areas.
Collapse
Affiliation(s)
- Susan M Slattery
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA.
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Iris A Perez
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maida L Chen
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Kyle C Kurek
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Lee Yap
- Molecular Diagnostics Laboratory, Department of Pathology & Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Thomas G Keens
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Ilya Khaytin
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Heather A Ballard
- Department of Pediatric Anesthesiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Anesthesia, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth A Sokol
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Angeli Mittal
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
| | - Casey M Rand
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
| | - Debra E Weese-Mayer
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
3
|
Ceccherini I, Kurek KC, Weese-Mayer DE. Developmental disorders affecting the respiratory system: CCHS and ROHHAD. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:53-91. [PMID: 36031316 DOI: 10.1016/b978-0-323-91532-8.00005-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) and Congenital Central Hypoventilation Syndrome (CCHS) are ultra-rare distinct clinical disorders with overlapping symptoms including altered respiratory control and autonomic regulation. Although both disorders have been considered for decades to be on the same spectrum with necessity of artificial ventilation as life-support, recent acquisition of specific knowledge concerning the genetic basis of CCHS coupled with an elusive etiology for ROHHAD have definitely established that the two disorders are different. CCHS is an autosomal dominant neurocristopathy characterized by alveolar hypoventilation resulting in hypoxemia/hypercarbia and features of autonomic nervous system dysregulation (ANSD), with presentation typically in the newborn period. It is caused by paired-like homeobox 2B (PHOX2B) variants, with known genotype-phenotype correlation but pathogenic mechanism(s) are yet unknown. ROHHAD is characterized by rapid weight gain, followed by hypothalamic dysfunction, then hypoventilation followed by ANSD, in seemingly normal children ages 1.5-7 years. Postmortem neuroanatomical studies, thorough clinical characterization, pathophysiological assessment, and extensive genetic inquiry have failed to identify a cause attributable to a traditional genetic basis, somatic mosaicism, epigenetic mechanism, environmental trigger, or other. To find the key to the ROHHAD pathogenesis and to improve its clinical management, in the present chapter, we have carefully compared CCHS and ROHHAD.
Collapse
Affiliation(s)
- Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Kyle C Kurek
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Debra E Weese-Mayer
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute; and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
4
|
Adolescent Congenital Central Hypoventilation Syndrome: An Easily Overlooked Diagnosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413402. [PMID: 34949014 PMCID: PMC8703802 DOI: 10.3390/ijerph182413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
Congenital central hypoventilation syndrome (CCHS), also known as Ondine’s curse, is a rare, potentially fatal genetic disease, manifesting as a lack of respiratory drive. Most diagnoses are made in pediatric patients, however late-onset cases have been rarely reported. Due to the milder symptoms at presentation that might easily go overlooked, these late-onset cases can result in serious health consequences later in life. Here, we present a case report of late-onset CCHS in an adolescent female patient. In this review we summarize the current knowledge about symptoms, as well as clinical management of CCHS, and describe in detail the molecular mechanism responsible for this disorder.
Collapse
|
5
|
Blackburn J, Chapur VF, Stephens JA, Zhao J, Shepler A, Pierson CR, Otero JJ. Revisiting the Neuropathology of Sudden Infant Death Syndrome (SIDS). Front Neurol 2020; 11:594550. [PMID: 33391159 PMCID: PMC7773837 DOI: 10.3389/fneur.2020.594550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/10/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Sudden infant death syndrome (SIDS) is one of the leading causes of infant mortality in the United States (US). The extent to which SIDS manifests with an underlying neuropathological mechanism is highly controversial. SIDS correlates with markers of poor prenatal and postnatal care, generally rooted in the lack of access and quality of healthcare endemic to select racial and ethnic groups, and thus can be viewed in the context of health disparities. However, some evidence suggests that at least a subset of SIDS cases may result from a neuropathological mechanism. To explain these issues, a triple-risk hypothesis has been proposed, whereby an underlying biological abnormality in an infant facing an extrinsic risk during a critical developmental period SIDS is hypothesized to occur. Each SIDS decedent is thus thought to have a unique combination of these risk factors leading to their death. This article reviews the neuropathological literature of SIDS and uses machine learning tools to identify distinct subtypes of SIDS decedents based on epidemiological data. Methods: We analyzed US Period Linked Birth/Infant Mortality Files from 1990 to 2017 (excluding 1992–1994). Using t-SNE, an unsupervised machine learning dimensionality reduction algorithm, we identified clusters of SIDS decedents. Following identification of these groups, we identified changes in the rates of SIDS at the state level and across three countries. Results: Through t-SNE and distance based statistical analysis, we identified three groups of SIDS decedents, each with a unique peak age of death. Within the US, SIDS is geographically heterogeneous. Following this, we found low birth weight and normal birth weight SIDS rates have not been equally impacted by implementation of clinical guidelines. We show that across countries with different levels of cultural heterogeneity, reduction in SIDS rates has also been distinct between decedents with low vs. normal birth weight. Conclusions: Different epidemiological and extrinsic risk factors exist based on the three unique SIDS groups we identified with t-SNE and distance based statistical measurements. Clinical guidelines have not equally impacted the groups, and normal birth weight infants comprise more of the cases of SIDS even though low birth weight infants have a higher SIDS rate.
Collapse
Affiliation(s)
- Jessica Blackburn
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States.,Division of Anatomy, Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Valeria F Chapur
- Instituto de Ecoregiones Andinas (INECOA)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Biología de la Altura (INBIAL)/Universidad Nacional de Jujuy (UNJU), San Salvador de Jujuy, Argentina
| | - Julie A Stephens
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Jing Zhao
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Anne Shepler
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States.,Franklin County Forensic Science Center, Columbus, OH, United States
| | - Christopher R Pierson
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States.,Division of Anatomy, Department of Biomedical Education & Anatomy, The Ohio State University College of Medicine, Columbus, OH, United States.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - José Javier Otero
- Division of Neuropathology, Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
6
|
Camilleri M, Wieben E, Eckert D, Carlson P, O’Dwyer RH, Gibbons D, Acosta A, Klee EW. Familial chronic megacolon presenting in childhood or adulthood: Seeking the presumed gene association. Neurogastroenterol Motil 2019; 31:e13550. [PMID: 30663199 PMCID: PMC6432647 DOI: 10.1111/nmo.13550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE We identified a pedigree over five generations with 49 members, some of whom had chronic megacolon presenting in adolescence or adulthood. We aimed to assess the genetic cause of chronic megacolon through clinical and DNA studies. DESIGN After ethical approval and informed consent, family members provided answers to standard bowel disease questionnaires, radiological or surgical records, and DNA (buccal mucosal scraping). Exome DNA sequencing of colon tissue or blood DNA from seven family members with colon or duodenal dilatation, or no megacolon (n = 1) was carried out. Sanger sequencing was performed in 22 additional family members to further evaluate candidate variants. The study focused on genes of potential relevance to enteric nerve (ENS) maturation and Hirschsprung's disease or megacolon, based on the literature (GFRA1, NKX2-1, KIF26A, TPM3, ACTG2, SCN10A, and C17orf107 [CHRNE]) and other genetic variants that co-segregated with megacolon in the six affected family members. RESULTS Information was available in all except five members alive at time of study; among 30 members who provided DNA, six had definite megacolon, one megaduodenum, seven significant constipation without bowel dilatation, and 16 normal bowel function by questionnaire. Among genes studied, SEMA3F (g.3:50225360A>G; c1873A>G) was found in 6/6 family members with megacolon. The SEMA3F gene variant was assessed as potentially pathogenic, based on M-CAP in silico prediction. SEMA3F function is associated with genes (KIT and PDGFRB) that impact intestinal pacemaker function. CONCLUSION Familial chronic megacolon appears to be associated with SEMA3F, which is associated with genes impacting enteric nerve or pacemaker function.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Eric Wieben
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Deborah Eckert
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Paula Carlson
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Ralph Hurley O’Dwyer
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Denys Gibbons
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Andres Acosta
- Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| | - Eric W. Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Rochtus AM, Trowbridge S, Goldstein RD, Sheidley BR, Prabhu SP, Haynes R, Kinney HC, Poduri AH. Mutations in NRXN1 and NRXN2 in a patient with early-onset epileptic encephalopathy and respiratory depression. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003442. [PMID: 30709877 PMCID: PMC6371743 DOI: 10.1101/mcs.a003442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/06/2018] [Indexed: 01/18/2023] Open
Abstract
Early infantile epileptic encephalopathy (EIEE) is a severe disorder associated with epilepsy, developmental delay and intellectual disability, and in some cases premature mortality. We report the case of a female infant with EIEE and strikingly suppressed respiratory dysfunction that led to death. Postmortem research evaluation revealed hypoplasia of the arcuate nucleus of the medulla, a candidate region for respiratory regulation. Genetic evaluation revealed heterozygous variants in the related genes NRXN1 (c.2686C>T, p.Arg896Trp) and NRXN2 (c.3176G>A, p.Arg1059Gln), one inherited from the mother with family history of sudden infant death syndrome (SIDS) and one from the father with family history of febrile seizures. Although there are no previous reports with the digenic combination of NRXN1 and NRXN2 variants, patients with biallelic loss of NRXN1 in humans and double neurexin 1α/2α knockout mice have severe breathing abnormalities, corresponding to the respiratory phenotype of our patient. These observations and the known interaction between the NRXN1 and NRXN2 proteins lead us to hypothesize that digenic variants in NRXN1 and NRXN2 contributed to the phenotype of EIEE, arcuate nucleus hypoplasia, respiratory failure, and death.
Collapse
Affiliation(s)
- Anne M Rochtus
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Sara Trowbridge
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Richard D Goldstein
- Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Beth Rosen Sheidley
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Sanjay P Prabhu
- Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Robin Haynes
- Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hannah C Kinney
- Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Annapurna H Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Robert's Program on Sudden Death in Pediatrics, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Neurology, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Broad Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
8
|
Bardanzellu F, Pintus MC, Fanos V, Marcialis MA. Neonatal Congenital Central Hypoventilation Syndrome: Why We Should not Sleep on it. Literature Review of Forty-two Neonatal Onset Cases. Curr Pediatr Rev 2019; 15:139-153. [PMID: 31223092 DOI: 10.2174/1573396315666190621103954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022]
Abstract
Congenital Central Hypoventilation Syndrome (CCHS), also referred with the expression "Ondine's Curse", is a rare genetic life-long disease resulting from the mutation of PHOX2B gene on chromosome 4p12.3. CCHS represents an autonomic nervous system disorder; its more fearsome manifestation is central hypoventilation, due to a deficient response of chemoreceptors to hypercapnia and hypoxia. Several associated symptoms can occur, such as pupillary anomalies, arrhythmias, reduced heart rate variability, esophageal dysmotility, and structural comorbidities (Hirschsprung's Disease or neural crest tumours). CCHS typical onset is during the neonatal period, but cases of delayed diagnosis have been reported; moreover, both sporadic or familial cases can occur. In preterm newborns, asphyxia and typical prematurity-related findings may overlap CCHS clinical manifestations and make it harder to formulate a correct diagnosis. The early recognition of CCHS allows appropriate management, useful to reduce immediate and long- term consequences.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy
| | - Maria Cristina Pintus
- Neonatal Intensive Care Unit, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy
| | | |
Collapse
|
9
|
Bishara J, Keens TG, Perez IA. The genetics of congenital central hypoventilation syndrome: clinical implications. APPLICATION OF CLINICAL GENETICS 2018; 11:135-144. [PMID: 30532577 PMCID: PMC6241683 DOI: 10.2147/tacg.s140629] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Congenital central hypoventilation syndrome (CCHS) is a rare genetic disorder of the autonomic nervous system (ANS) and respiratory control. This disorder, formerly referred to as Ondine’s curse, is due to a mutation in the PHOX2B gene that affects the development of the neural crest cells. CCHS has an autosomal dominant pattern of inheritance. Majority of the patients have a polyalanine repeat mutation (PARM) of the PHOX2B, while a small group has non-PARM (NPARM). Knowledge of the patient’s PHOX2B gene mutation helps predict a patient’s clinical presentation and outcome and aids in anticipatory management of the respiratory and ANS dysfunction.
Collapse
Affiliation(s)
- John Bishara
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA,
| | - Thomas G Keens
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA, .,Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA, USA,
| | - Iris A Perez
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA, .,Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA, USA,
| |
Collapse
|
10
|
Congenital central hypoventilation syndrome: a bedside-to-bench success story for advancing early diagnosis and treatment and improved survival and quality of life. Pediatr Res 2017; 81:192-201. [PMID: 27673423 DOI: 10.1038/pr.2016.196] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/15/2016] [Indexed: 01/13/2023]
Abstract
The "bedside-to-bench" Congenital Central Hypoventilation Syndrome (CCHS) research journey has led to increased phenotypic-genotypic knowledge regarding autonomic nervous system (ANS) regulation, and improved clinical outcomes. CCHS is a neurocristopathy characterized by hypoventilation and ANS dysregulation. Initially described in 1970, timely diagnosis and treatment remained problematic until the first large cohort report (1992), delineating clinical presentation and treatment options. A central role of ANS dysregulation (2001) emerged, precipitating evaluation of genes critical to ANS development, and subsequent 2003 identification of Paired-Like Homeobox 2B (PHOX2B) as the disease-defining gene for CCHS. This breakthrough engendered clinical genetic testing, making diagnosis exact and early tracheostomy/artificial ventilation feasible. PHOX2B genotype-CCHS phenotype relationships were elucidated, informing early recognition and timely treatment for phenotypic manifestations including Hirschsprung disease, prolonged sinus pauses, and neural crest tumors. Simultaneously, cellular models of CCHS-causing PHOX2B mutations were developed to delineate molecular mechanisms. In addition to new insights regarding genetics and neurobiology of autonomic control overall, new knowledge gained has enabled physicians to anticipate and delineate the full clinical CCHS phenotype and initiate timely effective management. In summary, from an initial guarantee of early mortality or severe neurologic morbidity in survivors, CCHS children can now be diagnosed early and managed effectively, achieving dramatically improved quality of life as adults.
Collapse
|
11
|
Moreira TS, Takakura AC, Czeisler C, Otero JJ. Respiratory and autonomic dysfunction in congenital central hypoventilation syndrome. J Neurophysiol 2016; 116:742-52. [PMID: 27226447 PMCID: PMC6208311 DOI: 10.1152/jn.00026.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/25/2016] [Indexed: 12/22/2022] Open
Abstract
The developmental lineage of the PHOX2B-expressing neurons in the retrotrapezoid nucleus (RTN) has been extensively studied. These cells are thought to function as central respiratory chemoreceptors, i.e., the mechanism by which brain Pco2 regulates breathing. The molecular and cellular basis of central respiratory chemoreception is based on the detection of CO2 via intrinsic proton receptors (TASK-2, GPR4) as well as synaptic input from peripheral chemoreceptors and other brain regions. Murine models of congenital central hypoventilation syndrome designed with PHOX2B mutations have suggested RTN neuron agenesis. In this review, we examine, through human and experimental animal models, how a restricted number of neurons that express the transcription factor PHOX2B play a crucial role in the control of breathing and autonomic regulation.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil;
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Catherine Czeisler
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio
| | - Jose J Otero
- The Ohio State University, College of Medicine, Department of Pathology, Division of Neuropathology, Columbus, Ohio
| |
Collapse
|
12
|
Harper RM, Kumar R, Macey PM, Harper RK, Ogren JA. Impaired neural structure and function contributing to autonomic symptoms in congenital central hypoventilation syndrome. Front Neurosci 2015; 9:415. [PMID: 26578872 PMCID: PMC4626648 DOI: 10.3389/fnins.2015.00415] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/15/2015] [Indexed: 12/30/2022] Open
Abstract
Congenital central hypoventilation syndrome (CCHS) patients show major autonomic alterations in addition to their better-known breathing deficiencies. The processes underlying CCHS, mutations in the PHOX2B gene, target autonomic neuronal development, with frame shift extent contributing to symptom severity. Many autonomic characteristics, such as impaired pupillary constriction and poor temperature regulation, reflect parasympathetic alterations, and can include disturbed alimentary processes, with malabsorption and intestinal motility dyscontrol. The sympathetic nervous system changes can exert life-threatening outcomes, with dysregulation of sympathetic outflow leading to high blood pressure, time-altered and dampened heart rate and breathing responses to challenges, cardiac arrhythmia, profuse sweating, and poor fluid regulation. The central mechanisms contributing to failed autonomic processes are readily apparent from structural and functional magnetic resonance imaging studies, which reveal substantial cortical thinning, tissue injury, and disrupted functional responses in hypothalamic, hippocampal, posterior thalamic, and basal ganglia sites and their descending projections, as well as insular, cingulate, and medial frontal cortices, which influence subcortical autonomic structures. Midbrain structures are also compromised, including the raphe system and its projections to cerebellar and medullary sites, the locus coeruleus, and medullary reflex integrating sites, including the dorsal and ventrolateral medullary nuclei. The damage to rostral autonomic sites overlaps metabolic, affective and cognitive regulatory regions, leading to hormonal disruption, anxiety, depression, behavioral control, and sudden death concerns. The injuries suggest that interventions for mitigating hypoxic exposure and nutrient loss may provide cellular protection, in the same fashion as interventions in other conditions with similar malabsorption, fluid turnover, or hypoxic exposure.
Collapse
Affiliation(s)
- Ronald M Harper
- Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA ; Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | - Rajesh Kumar
- Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA ; Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA ; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA ; Department of Bioengineering, University of California, Los Angeles Los Angeles, CA, USA
| | - Paul M Macey
- Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA ; UCLA School of Nursing, University of California, Los Angeles Los Angeles, CA, USA
| | - Rebecca K Harper
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | - Jennifer A Ogren
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| |
Collapse
|
13
|
Nobuta H, Cilio MR, Danhaive O, Tsai HH, Tupal S, Chang SM, Murnen A, Kreitzer F, Bravo V, Czeisler C, Gokozan HN, Gygli P, Bush S, Weese-Mayer DE, Conklin B, Yee SP, Huang EJ, Gray PA, Rowitch D, Otero JJ. Dysregulation of locus coeruleus development in congenital central hypoventilation syndrome. Acta Neuropathol 2015; 130:171-83. [PMID: 25975378 PMCID: PMC4503865 DOI: 10.1007/s00401-015-1441-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 12/29/2022]
Abstract
Human congenital central hypoventilation syndrome (CCHS), resulting from mutations in transcription factor PHOX2B, manifests with impaired responses to hypoxemia and hypercapnia especially during sleep. To identify brainstem structures developmentally affected in CCHS, we analyzed two postmortem neonatal-lethal cases with confirmed polyalanine repeat expansion (PARM) or Non-PARM (PHOX2B∆8) mutation of PHOX2B. Both human cases showed neuronal losses within the locus coeruleus (LC), which is important for central noradrenergic signaling. Using a conditionally active transgenic mouse model of the PHOX2B∆8 mutation, we found that early embryonic expression (<E10.5) caused failure of LC neuronal specification and perinatal respiratory lethality. In contrast, later onset (E11.5) of PHOX2B∆8 expression was not deleterious to LC development and perinatal respiratory lethality was rescued, despite failure of chemosensor retrotrapezoid nucleus formation. Our findings indicate that early-onset mutant PHOX2B expression inhibits LC neuronal development in CCHS. They further suggest that such mutations result in dysregulation of central noradrenergic signaling, and therefore, potential for early pharmacologic intervention in humans with CCHS.
Collapse
|
14
|
Harper RM, Kumar R, Macey PM, Woo MA, Ogren JA. Affective brain areas and sleep-disordered breathing. PROGRESS IN BRAIN RESEARCH 2014; 209:275-93. [PMID: 24746053 DOI: 10.1016/b978-0-444-63274-6.00014-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neural damage accompanying the hypoxia, reduced perfusion, and other consequences of sleep-disordered breathing, found in obstructive sleep apnea, heart failure, and congenital central hypoventilation syndrome (CCHS), appears in areas that serve multiple functions, including emotional drives to breathe, and involve systems that serve affective, cardiovascular, and breathing roles. The damage, assessed with structural magnetic resonance imaging (MRI) procedures, shows tissue loss or water content and diffusion changes indicative of injury, and impaired axonal integrity between structures; damage is preferentially unilateral. Functional MRI responses in affected areas also are time- or amplitude-distorted to ventilatory or autonomic challenges. Among the structures injured are the insular, cingulate, and ventral medial prefrontal cortices, as well as cerebellar deep nuclei and cortex, anterior hypothalamus, caudal raphé, ventrolateral medulla, portions of the basal ganglia and, in CCHS, the locus coeruleus. Caudal raphé and locus coeruleus injury have the potential to modify serotonergic and adrenergic modulation of upper airway and arousal characteristics, as well as affective drive to breathe. Since both axons and gray matter show injury, the consequences to function, especially to autonomic, cognitive, and mood regulation, are major. Several of the affected rostral sites mediate aspects of dyspnea, especially in CCHS, while others participate in initiation of inspiration after central breathing pauses, and the medullary injury can impair baroreflex and breathing control. The ancillary injury associated with sleep-disordered breathing to central structures can elicit multiple other distortions in cardiovascular, cognitive, and emotional functions in addition to effects on breathing regulation.
Collapse
Affiliation(s)
- Ronald M Harper
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Rajesh Kumar
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Paul M Macey
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA; UCLA School of Nursing, University of California at Los Angeles, Los Angeles, CA, USA
| | - Mary A Woo
- UCLA School of Nursing, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jennifer A Ogren
- UCLA School of Nursing, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Harper RM, Kumar R, Ogren JA, Macey PM. Sleep-disordered breathing: effects on brain structure and function. Respir Physiol Neurobiol 2013; 188:383-91. [PMID: 23643610 DOI: 10.1016/j.resp.2013.04.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 01/07/2023]
Abstract
Sleep-disordered breathing is accompanied by neural injury that affects a wide range of physiological systems which include processes for sensing chemoreception and airflow, driving respiratory musculature, timing circuitry for coordination of breathing patterning, and integration of blood pressure mechanisms with respiration. The damage also occurs in regions mediating emotion and mood, as well as areas regulating memory and cognitive functioning, and appears in structures that serve significant glycemic control processes. The injured structures include brain areas involved in hormone release and action of major neurotransmitters, including those playing a role in depression. The injury is reflected in a range of structural magnetic resonance procedures, and also appears as functional distortions of evoked activity in brain areas mediating vital autonomic and breathing functions. The damage is preferentially unilateral, and includes axonal projections; the asymmetry of the injury poses unique concerns for sympathetic discharge and potential consequences for arrhythmia. Sleep-disordered breathing should be viewed as a condition that includes central nervous system injury and impaired function; the processes underlying injury remain unclear.
Collapse
Affiliation(s)
- Ronald M Harper
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095, USA; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
16
|
Rand CM, Patwari PP, Carroll MS, Weese-Mayer DE. Congenital central hypoventilation syndrome and sudden infant death syndrome: disorders of autonomic regulation. Semin Pediatr Neurol 2013; 20:44-55. [PMID: 23465774 DOI: 10.1016/j.spen.2013.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Long considered a rare and unique disorder of respiratory control, congenital central hypoventilation syndrome has recently been further distinguished as a disorder of autonomic regulation. Similarly, more recent evidence suggests that sudden infant death syndrome is also a disorder of autonomic regulation. Congenital central hypoventilation syndrome typically presents in the newborn period with alveolar hypoventilation, symptoms of autonomic dysregulation and, in a subset of cases, Hirschsprung disease or tumors of neural crest origin or both. Genetic investigation identified PHOX2B, a crucial gene during early autonomic development, as disease defining for congenital central hypoventilation syndrome. Although sudden infant death syndrome is most likely defined by complex multifactorial genetic and environmental interactions, it is also thought to result from central deficits in the control of breathing and autonomic regulation. The purpose of this article is to review the current understanding of these autonomic disorders and discuss the influence of this information on clinical practice and future research directions.
Collapse
Affiliation(s)
- Casey M Rand
- Center for Autonomic Medicine in Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
17
|
Leviton A. Why the term neonatal encephalopathy should be preferred over neonatal hypoxic-ischemic encephalopathy. Am J Obstet Gynecol 2013; 208:176-80. [PMID: 22901708 DOI: 10.1016/j.ajog.2012.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/13/2012] [Accepted: 07/19/2012] [Indexed: 02/05/2023]
Abstract
The unresponsiveness of the full-term newborn is sometimes attributed to asphyxia, even when no severe physiologic disturbance occurred during labor and delivery. The controversy about whether to use the name "hypoxic-ischemic encephalopathy" or "newborn encephalopathy" has recently flared in publications directed toward pediatricians and neurologists. In this clinic opinion piece, I discuss the importance to obstetricians of this decision and explain why "newborn encephalopathy" should be the default term.
Collapse
|
18
|
Fu YH, Watson C. The arcuate nucleus of the C57BL/6J mouse hindbrain is a displaced part of the inferior olive. BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:191-204. [PMID: 22301572 DOI: 10.1159/000335032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/28/2011] [Indexed: 11/19/2022]
Abstract
The arcuate nucleus is a prominent cell group in the human hindbrain, characterized by its position on the pial surface of the pyramid. It is considered to be a precerebellar nucleus and has been implicated in the pathology of several disorders of respiration. An arcuate nucleus has not been convincingly demonstrated in other mammals, but we have found a similarly positioned nucleus in the C57BL/6J mouse. The mouse arcuate nucleus consists of a variable group of neurons lying on the pial surface of the pyramid. The nucleus is continuous with the ventrolateral part of the principal nucleus of the inferior olive and both groups are calbindin positive. At first we thought that this mouse nucleus was homologous with the human arcuate nucleus, but we have discovered that the neurons of the human nucleus are calbindin negative, and are therefore not olivary in nature. We have compared the mouse arcuate neurons with those of the inferior olive in terms of molecular markers and cerebellar projection. The neurons of the arcuate nucleus and of the inferior olive share three major characteristics: they both contain neurons utilizing glutamate, serotonin or acetylcholine as neurotransmitters; they both project to the contralateral cerebellum, and they both express a number of genes not present in the major mossy fiber issuing precerebellar nuclei. Most importantly, both cell groups express calbindin in an area of the ventral hindbrain almost completely devoid of calbindin-positive cells. We conclude that the neurons of the hindbrain mouse arcuate nucleus are a displaced part of the inferior olive, possibly separated by the caudal growth of the pyramidal tract during development. The arcuate nucleus reported in the C57BL/6J mouse can therefore be regarded as a subgroup of the rostral inferior olive, closely allied with the ventral tier of the principal nucleus.
Collapse
Affiliation(s)
- Yu Hong Fu
- Neuroscience Research Australia, Randwick, N.S.W, Australia
| | | |
Collapse
|
19
|
Lee CW, Lee JH, Jung EY, Choi SO, Kim CS, Lee SL, Kim DK. Haddad syndrome with PHOX2B gene mutation in a Korean infant. J Korean Med Sci 2011; 26:312-5. [PMID: 21286029 PMCID: PMC3031022 DOI: 10.3346/jkms.2011.26.2.312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 11/09/2010] [Indexed: 11/28/2022] Open
Abstract
Congenital central hypoventilation syndrome with Hirschsprung's disease, also known as Haddad syndrome, is an extremely rare disorder with variable symptoms. Recent studies described that congenital central hypoventilation syndrome had deep relation to the mutation of the PHOX2B gene in its diagnosis and phenotype. We report a newborn male infant with clinical manifestations of recurrent hypoventilation with hypercapnea and bowel obstruction. These clinical manifestations were compatible with congenital central hypoventilation syndrome and Hirschsprung's disease, and polyalanine 26 repeats in the PHOX2B gene supported the diagnosis of congenital central hypoventilation. We described a first case of Haddad syndrome in Korean and its clinical and genetic characteristics were discussed.
Collapse
Affiliation(s)
- Chung-Won Lee
- Institute for Medical Genetics, Keimyung University College of Medicine, Daegu, Korea
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University College of Medicine, Daegu, Korea
| | - Eun-Young Jung
- Division of Pediatric Surgery, Department of Surgery, Keimyung University College of Medicine, Daegu, Korea
| | - Soon-Ok Choi
- Division of Pediatric Surgery, Department of Surgery, Keimyung University College of Medicine, Daegu, Korea
| | - Chun-Soo Kim
- Department of Pediatrics, Keimyung University College of Medicine, Daegu, Korea
| | - Sang-Lak Lee
- Department of Pediatrics, Keimyung University College of Medicine, Daegu, Korea
| | - Dae-Kwang Kim
- Institute for Medical Genetics, Keimyung University College of Medicine, Daegu, Korea
- Department of Anatomy, Keimyung University College of Medicine, Daegu, Korea
- Hanvit Institute for Medical Genetics, Daegu, Korea
| |
Collapse
|
20
|
Kumar R, Macey PM, Woo MA, Harper RM. Selectively diminished corpus callosum fibers in congenital central hypoventilation syndrome. Neuroscience 2011; 178:261-9. [PMID: 21256194 DOI: 10.1016/j.neuroscience.2011.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
Congenital central hypoventilation syndrome (CCHS), a condition associated with mutations in the PHOX2B gene, is characterized by loss of breathing drive during sleep, insensitivity to CO2 and O2, and multiple somatomotor, autonomic, neuropsychological, and ophthalmologic deficits, including impaired intrinsic and extrinsic eye muscle control. Brain structural studies show injury in peri-callosal regions and the corpus callosum (CC), which has the potential to affect functions disturbed in the syndrome; however, the extent of CC injury in CCHS is unclear. Diffusion tensor imaging (DTI)-based fiber tractography procedures display fiber directional information and allow quantification of fiber integrity. We performed DTI in 13 CCHS children (age, 18.2±4.7 years; eight male) and 31 control (17.4±4.9 years; 18 male) subjects using a 3.0-Tesla magnetic resonance imaging scanner; CC fibers were assessed globally and regionally with tractography procedures, and fiber counts and densities compared between groups using analysis-of-covariance (covariates; age and sex). Global CC evaluation showed reduced fiber counts and densities in CCHS over control subjects (CCHS vs. controls; fiber-counts, 4490±854 vs. 5232±777, P<0.001; fiber-density, 10.0±1.5 vs. 10.8±0.9 fibers/mm2, P<0.020), and regional examination revealed that these changes are localized to callosal axons projecting to prefrontal (217±47 vs. 248±32, P<0.005), premotor (201±51 vs. 241±47, P<0.012), parietal (179±64 vs. 238±54, P<0.002), and occipital regions (363±46 vs. 431±82, P<0.004). Corpus callosum fibers in CCHS are compromised in motor, cognitive, speech, and ophthalmologic regulatory areas. The mechanisms of fiber injury are unclear, but may result from hypoxia or perfusion deficits accompanying the syndrome, or from consequences of PHOX2B action.
Collapse
Affiliation(s)
- R Kumar
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA 90095-1763, USA
| | | | | | | |
Collapse
|
21
|
Patwari PP, Carroll MS, Rand CM, Kumar R, Harper R, Weese-Mayer DE. Congenital central hypoventilation syndrome and the PHOX2B gene: a model of respiratory and autonomic dysregulation. Respir Physiol Neurobiol 2010; 173:322-35. [PMID: 20601214 DOI: 10.1016/j.resp.2010.06.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 11/20/2022]
Abstract
The paired-like homeobox 2B gene (PHOX2B) is the disease-defining gene for congenital central hypoventilation syndrome (CCHS). Individuals with CCHS typically present in the newborn period with alveolar hypoventilation during sleep and often during wakefulness, altered respiratory control including reduced or absent ventilatory responses to hypercarbia and hypoxemia, and autonomic nervous system (ANS) dysregulation; however, a subset of individuals present well into adulthood. Thermoregulation is altered and perception of shortness of breath is absent, but voluntary breathing is retained. Structural and functional magnetic resonance imaging (MRI) and limited post-mortem studies in subjects with CCHS reveal abnormalities in both forebrain and brainstem. MRI changes appear in the hypothalamus (responsible for thermal drive to breathing), posterior thalamus and midbrain (mediating O(2) and oscillatory motor patterns), caudal raphé and locus coeruleus (regulating serotonergic and noradrenergic systems), the lateral medulla, parabrachial pons, and cerebellum (coordinating chemoreceptor and somatic afferent activity with breathing), and insular and cingulate cortices (mediating shortness of breath perception). Structural and functional alterations in these sites may result from PHOX2B mutations or be secondary to hypoxia/perfusion alterations from suboptimal management/compliance. The study of CCHS, with collaboration between physician-scientists and basic scientists, offers a rare opportunity to investigate control of breathing within the complex physiological network of the ANS.
Collapse
|
22
|
Abstract
Current evidence suggests that multiple neural mechanisms contribute to the fatal lethal event in SIDS. The processes may develop from a range of otherwise seemingly-innocuous circumstances, such as unintended external airway obstruction or accidental extreme flexion of the head of an already-compromised structure of the infant upper airway. The fatal event may occur in a sleep state which can suppress muscle tone essential to restore airway patency or exert muscle action to overcome a profound loss of blood pressure. Neural processes that could overcome those transient events with reflexive compensation appear to be impaired in SIDS infants. The evidence ranges from subtle physiological signs that appear very early in life, to autopsy findings of altered neurotransmitter, including serotonergic, systems that have extensive roles in breathing, cardiovascular regulation, and thermal control. Determination of the fundamental basis of SIDS is critical to provide biologic plausibility to SIDS risk reduction messages and to develop specific prevention strategies.
Collapse
Affiliation(s)
- Ronald M Harper
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|