1
|
Caruso S, Edwards SJ. Recently Emerged Novel Henipa-like Viruses: Shining a Spotlight on the Shrew. Viruses 2023; 15:2407. [PMID: 38140648 PMCID: PMC10747904 DOI: 10.3390/v15122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Henipaviruses are zoonotic viruses, including some highly pathogenic and capable of serious disease and high fatality rates in both animals and humans. Hendra virus and Nipah virus are the most notable henipaviruses, resulting in significant outbreaks across South Asia, South-East Asia, and Australia. Pteropid fruit bats have been identified as key zoonotic reservoirs; however, the increased discovery of henipaviruses outside the geographic distribution of Pteropid fruit bats and the detection of novel henipa-like viruses in other species such as the shrew, rat, and opossum suggest that Pteropid bats are not the sole reservoir for henipaviruses. In this review, we provide an update on henipavirus spillover events and describe the recent detection of novel unclassified henipaviruses, with a strong focus on the shrew and its emerging role as a key host of henipaviruses.
Collapse
Affiliation(s)
| | - Sarah J. Edwards
- Australian Centre for Disease Preparedness, Health & Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), 5 Portarlington Road, East Geelong, VIC 3219, Australia;
| |
Collapse
|
2
|
Leach M, Bett B, Said M, Bukachi S, Sang R, Anderson N, Machila N, Kuleszo J, Schaten K, Dzingirai V, Mangwanya L, Ntiamoa-Baidu Y, Lawson E, Amponsah-Mensah K, Moses LM, Wilkinson A, Grant DS, Koninga J. Local disease-ecosystem-livelihood dynamics: reflections from comparative case studies in Africa. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0163. [PMID: 28584171 PMCID: PMC5468688 DOI: 10.1098/rstb.2016.0163] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2017] [Indexed: 12/16/2022] Open
Abstract
This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human–ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples’ interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform ‘One Health’ approaches towards managing ecosystems in ways that reduce disease risks and burdens. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’.
Collapse
Affiliation(s)
- Melissa Leach
- Institute for Development Studies, University of Sussex, Brighton BN1 9RE, UK
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | - M Said
- International Livestock Research Institute, Nairobi, Kenya
| | | | | | - Neil Anderson
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Noreen Machila
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Joanna Kuleszo
- Geography and Environment, University of Southampton, Southampton, UK
| | | | | | | | | | | | | | - Lina M Moses
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA
| | - Annie Wilkinson
- Institute for Development Studies, University of Sussex, Brighton BN1 9RE, UK
| | | | | |
Collapse
|
3
|
Pilot surveillance for childhood encephalitis in Australia using the Paediatric Active Enhanced Disease Surveillance (PAEDS) network. Epidemiol Infect 2016; 144:2117-27. [PMID: 26916674 DOI: 10.1017/s0950268816000340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We aimed to assess the performance of active surveillance for hospitalized childhood encephalitis in New South Wales (NSW) using the Paediatric Active Enhanced Disease Surveillance (PAEDS) network to inform methodology for the nationwide Australian childhood encephalitis (ACE) study. We piloted active surveillance for suspected encephalitis from May to December 2013 at the Children's Hospital at Westmead, Sydney, NSW. Cases were ascertained using four screening methods: weekday nurse screening of admission records (PAEDS), cerebrospinal fluid (CSF) microscopy records, magnetic resonance imaging (MRI) reports, and pharmacy dispensing records. Comprehensive clinical data were prospectively collected on consented participants and subsequently reviewed by an expert panel. Cases were categorized as confirmed encephalitis or 'not encephalitis'; encephalitis cases were sub-categorized as infectious, immune-mediated or unknown. We performed an ICD-10 diagnostic code audit of hospitalizations for the pilot period. We compared case ascertainment in the four screening methods and with the ICD code audit. Forty-eight cases of suspected encephalitis were identified by one or more methods. PAEDS was the most efficient mechanism (yield 34%), followed by MRI, CSF, and pharmacy audits (yield 14%, 12%, and 7% respectively). Twenty-five cases met the criteria for confirmed encephalitis. PAEDS was the most sensitive of the mechanisms for confirmed encephalitis (92%) with a positive predictive value (PPV) of 72%. The ICD audit was moderately sensitive (64%) but poorly specific (Sp 9%, PPV 14%). Of the 25 confirmed encephalitis cases, 19 (76%) were sub-categorized as infectious, three (12%) were immune-mediated, and three (12%) were 'unknown'. We identified encephalitis cases associated with two infectious disease outbreaks (enterovirus 71, parechovirus 3). PAEDS is an efficient, sensitive and accurate surveillance mechanism for detecting cases of childhood encephalitis including those associated with emerging infectious diseases. Active surveillance significantly increases the ascertainment of encephalitis cases compared with passive approaches.
Collapse
|
4
|
Henipaviruses. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153454 DOI: 10.1007/978-3-319-33133-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The first henipaviruses, Hendra virus (HeV), and Nipah virus (NiV) were pathogenic zoonoses that emerged in the mid to late 1990s causing serious disease outbreaks in livestock and humans. HeV was recognized in Australia 1994 in horses exhibiting respiratory disease along with a human case fatality, and then NiV was identified during a large outbreak of human cases of encephalitis with high mortality in Malaysia and Singapore in 1998–1999 along with respiratory disease in pigs which served as amplifying hosts. The recently identified third henipavirus isolate, Cedar virus (CedPV), is not pathogenic in animals susceptible to HeV and NiV disease. Molecular detection of additional henipavirus species has been reported but no additional isolates of virus have been reported. Central pathological features of both HeV and NiV infection in humans and several susceptible animal species is a severe systemic and often fatal neurologic and/or respiratory disease. In people, both viruses can also manifest relapsed encephalitis following recovery from an acute infection, particularly NiV. The recognized natural reservoir hosts of HeV, NiV, and CedPV are pteropid bats, which do not show clinical illness when infected. With spillovers of HeV continuing to occur in Australia and NiV in Bangladesh and India, these henipaviruses continue to be important transboundary biological threats. NiV in particular possesses several features that highlight a pandemic potential, such as its ability to infect humans directly from natural reservoirs or indirectly from other susceptible animals along with a capacity of limited human-to-human transmission. Several henipavirus animal challenge models have been developed which has aided in understanding HeV and NiV pathogenesis as well as how they invade the central nervous system, and successful active and passive immunization strategies against HeV and NiV have been reported which target the viral envelope glycoproteins.
Collapse
|
5
|
Ong KC, Wong KT. Henipavirus Encephalitis: Recent Developments and Advances. Brain Pathol 2015; 25:605-13. [PMID: 26276024 PMCID: PMC7161744 DOI: 10.1111/bpa.12278] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 06/18/2015] [Indexed: 01/27/2023] Open
Abstract
The genus Henipavirus within the family Paramyxoviridae includes the Hendra virus (HeV) and Nipah virus (NiV) which were discovered in the 1990s in Australia and Malaysia, respectively, after emerging to cause severe and often fatal outbreaks in humans and animals. While HeV is confined to Australia, more recent NiV outbreaks have been reported in Bangladesh, India and the Philippines. The clinical manifestations of both henipaviruses in humans appear similar, with a predominance of an acute encephalitic syndrome. Likewise, the pathological features are similar and characterized by disseminated, multi-organ vasculopathy comprising endothelial infection/ulceration, vasculitis, vasculitis-induced thrombosis/occlusion, parenchymal ischemia/microinfarction, and parenchymal cell infection in the central nervous system (CNS), lung, kidney and other major organs. This unique dual pathogenetic mechanism of vasculitis-induced microinfarction and neuronal infection causes severe tissue damage in the CNS. Both viruses can also cause relapsing encephalitis months and years after the acute infection. Many animal models studied to date have largely confirmed the pathology of henipavirus infection, and provided the means to test new therapeutic agents and vaccines. As the bat is the natural host of henipaviruses and has worldwide distribution, spillover events into human populations are expected to occur in the future.
Collapse
Affiliation(s)
- Kien Chai Ong
- Department of Biomedical ScienceFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Kum Thong Wong
- Department ofPathologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| |
Collapse
|
6
|
Abstract
The list of emerging and reemerging pathogens that cause neurologic disease is expanding. Various factors, including population growth and a rise in international travel, have contributed to the spread of pathogens to previously nonendemic regions. Recent advances in diagnostic methods have led to the identification of novel pathogens responsible for infections of the central nervous system. Furthermore, new issues have arisen surrounding established infections, particularly in an increasingly immunocompromised population due to advances in the treatment of rheumatologic disease and in transplant medicine.
Collapse
Affiliation(s)
- Felicia C Chow
- Division of Infectious Diseases, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Carol A Glaser
- Division of Infectious Diseases, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Bohmwald K, Espinoza JA, González PA, Bueno SM, Riedel CA, Kalergis AM. Central nervous system alterations caused by infection with the human respiratory syncytial virus. Rev Med Virol 2014; 24:407-19. [PMID: 25316031 DOI: 10.1002/rmv.1813] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/31/2014] [Accepted: 09/02/2014] [Indexed: 01/08/2023]
Abstract
Worldwide, the human respiratory syncytial virus (hRSV) is the leading cause of infant hospitalization because of acute respiratory tract infections, including severe bronchiolitis and pneumonia. Despite intense research, to date there is neither vaccine nor treatment available to control hRSV disease burden globally. After infection, an incubation period of 3-5 days is usually followed by symptoms, such as cough and low-grade fever. However, hRSV infection can also produce a larger variety of symptoms, some of which relate to the individual's age at infection. Indeed, infants can display severe symptoms, such as dyspnea and chest wall retractions. Upon examination, crackles and wheezes are also common features that suggest infection by hRSV. Additionally, infection in infants younger than 1 year is associated with several non-specific symptoms, such as failure to thrive, periodic breathing or apnea, and feeding difficulties that usually require hospitalization. Recently, neurological symptoms have also been associated with hRSV respiratory infection and include seizures, central apnea, lethargy, feeding or swallowing difficulties, abnormalities in muscle tone, strabismus, abnormalities in the CSF, and encephalopathy. Here, we discuss recent findings linking the neurological, extrapulmonary effects of hRSV with infection and functional impairment of the CNS.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
8
|
Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res 2014; 194:145-58. [PMID: 25281913 PMCID: PMC7114389 DOI: 10.1016/j.virusres.2014.09.011] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
Human coronavirus (HCoV) are naturally neuroinvasive in both mice and humans. Both transneuronal and hematogenous route may allow virus invasion of the CNS. Infection of neurons leads to excitotoxicity, neurodegeneration and cell-death. HCoV are potentially associated with human neurological disorders.
Among the various respiratory viruses infecting human beings, coronaviruses are important pathogens, which usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, and various types of respiratory distress syndrome. The respiratory involvement of human coronaviruses has been clearly established since the 1960s. Nevertheless, for almost three decades now, data reported in the scientific literature has also demonstrated that, like it was described for other human viruses, coronaviruses have neuroinvasive capacities since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Neuroinvasive coronaviruses could damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuroimmunopathology) and/or viral replication, which directly induces damage to CNS cells (virus-induced neuropathology). Given all these properties, it has been suggested that these opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of neurologic diseases for which the etiology remains poorly understood. Herein, we present host and viral factors that participate in the regulation of the possible pathogenic processes associated with CNS infection by human coronaviruses and we try to decipher the intricate interplay between virus and host target cells in order to characterize their role in the virus life cycle as well as in the capacity of the cell to respond to viral invasion.
Collapse
Affiliation(s)
- Marc Desforges
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | - Alain Le Coupanec
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Jenny K Stodola
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Mathieu Meessen-Pinard
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Pierre J Talbot
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| |
Collapse
|
9
|
Adhikari R, Thapa S. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 807:75-96. [PMID: 24619619 PMCID: PMC7121612 DOI: 10.1007/978-81-322-1777-0_6] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In humans, viral infections of the respiratory tract are a leading cause of morbidity and mortality worldwide. Several recognized respiratory viral agents have a neuroinvasive capacity since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Among the various respiratory viruses, coronaviruses are important pathogens of humans and animals. Human Coronaviruses (HCoV) usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly, and immune-compromised individuals, they can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, respiratory distress syndrome, or even severe acute respiratory syndrome (SARS). The respiratory involvement of HCoV has been clearly established since the 1960s. In addition, for almost three decades now, the scientific literature has also demonstrated that HCoV are neuroinvasive and neurotropic and could induce an overactivation of the immune system, in part by participating in the activation of autoreactive immune cells that could be associated with autoimmunity in susceptible individuals. Furthermore, it was shown that in the murine CNS, neurons are the main target of infection, which causes these essential cells to undergo degeneration and eventually die by some form of programmed cell death after virus infection. Moreover, it appears that the viral surface glycoprotein (S) represents an important factor in the neurodegenerative process. Given all these properties, it has been suggested that these recognized human respiratory pathogens could be associated with the triggering or the exacerbation of neurological diseases for which the etiology remains unknown or poorly understood.
Collapse
Affiliation(s)
| | - Santosh Thapa
- Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
10
|
Nieto K, Salvetti A. AAV Vectors Vaccines Against Infectious Diseases. Front Immunol 2014; 5:5. [PMID: 24478774 PMCID: PMC3896988 DOI: 10.3389/fimmu.2014.00005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
Since their discovery as a tool for gene transfer, vectors derived from the adeno-associated virus (AAV) have been used for gene therapy applications and attracted scientist to this field for their exceptional properties of efficiency of in vivo gene transfer and the level and duration of transgene expression. For many years, AAVs have been considered as low immunogenic vectors due to their ability to induce long-term expression of non-self-proteins in contrast to what has been observed with other viral vectors, such as adenovirus, for which strong immune responses against the same transgene products were documented. The perceived low immunogenicity likely explains why the use of AAV vectors for vaccination was not seriously considered before the early 2000s. Indeed, while analyses conducted using a variety of transgenes and animal species slowly changed the vision of immunological properties of AAVs, an increasing number of studies were also performed in the field of vaccination. Even if the comparison with other modes of vaccination was not systemically performed, the analyses conducted so far in the field of active immunotherapy strongly suggest that AAVs possess some interesting features to be used as tools to produce an efficient and sustained antibody response. In addition, recent studies also highlighted the potential of AAVs for passive immunotherapy. This review summarizes the main studies conducted to evaluate the potential of AAV vectors for vaccination against infectious agents and discusses their advantages and drawbacks. Altogether, the variety of studies conducted in this field contributes to the understanding of the immunological properties of this versatile virus and to the definition of its possible future applications.
Collapse
Affiliation(s)
- Karen Nieto
- Tumor Immunology Program (D030), German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Anna Salvetti
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon , Lyon , France ; LabEx Ecofect, Université de Lyon , Lyon , France
| |
Collapse
|
11
|
Broder CC, Xu K, Nikolov DB, Zhu Z, Dimitrov DS, Middleton D, Pallister J, Geisbert TW, Bossart KN, Wang LF. A treatment for and vaccine against the deadly Hendra and Nipah viruses. Antiviral Res 2013; 100:8-13. [PMID: 23838047 DOI: 10.1016/j.antiviral.2013.06.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/29/2022]
Abstract
Hendra virus and Nipah virus are bat-borne paramyxoviruses that are the prototypic members of the genus Henipavirus. The henipaviruses emerged in the 1990s, spilling over from their natural bat hosts and causing serious disease outbreaks in humans and livestock. Hendra virus emerged in Australia and since 1994 there have been 7 human infections with 4 case fatalities. Nipah virus first appeared in Malaysia and subsequent outbreaks have occurred in Bangladesh and India. In total, there have been an estimated 582 human cases of Nipah virus and of these, 54% were fatal. Their broad species tropism and ability to cause fatal respiratory and/or neurologic disease in humans and animals make them important transboundary biological threats. Recent experimental findings in animals have demonstrated that a human monoclonal antibody targeting the viral G glycoprotein is an effective post-exposure treatment against Hendra and Nipah virus infection. In addition, a subunit vaccine based on the G glycoprotein of Hendra virus affords protection against Hendra and Nipah virus challenge. The vaccine has been developed for use in horses in Australia and is the first vaccine against a Biosafety Level-4 (BSL-4) agent to be licensed and commercially deployed. Together, these advances offer viable approaches to address Hendra and Nipah virus infection of livestock and people.
Collapse
Affiliation(s)
- Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Phares TW, Stohlman SA, Bergmann CC. Intrathecal humoral immunity to encephalitic RNA viruses. Viruses 2013; 5:732-52. [PMID: 23435240 PMCID: PMC3640523 DOI: 10.3390/v5020732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/10/2013] [Accepted: 02/11/2013] [Indexed: 12/21/2022] Open
Abstract
The nervous system is the target for acute encephalitic viral infections, as well as a reservoir for persisting viruses. Intrathecal antibody (Ab) synthesis is well documented in humans afflicted by infections associated with neurological complications, as well as the demyelinating disease, multiple sclerosis. This review focuses on the origin, recruitment, maintenance, and biological relevance of Ab-secreting cells (ASC) found in the central nervous system (CNS) following experimental neurotropic RNA virus infections. We will summarize evidence for a highly dynamic, evolving humoral response characterized by temporal alterations in B cell subsets, proliferation, and differentiation. Overall local Ab plays a beneficial role via complement-independent control of virus replication, although cross or self-reactive Ab to CNS antigens may contribute to immune-mediated pathogenesis during some infections. Importantly, protective Ab exert anti-viral activity not only by direct neutralization, but also by binding to cell surface-expressed viral glycoproteins. Ab engagement of viral glycoproteins blocks budding and mediates intracellular signaling leading to restored homeostatic and innate functions. The sustained Ab production by local ASC, as well as chemokines and cytokines associated with ASC recruitment and retention, are highlighted as critical components of immune control.
Collapse
Affiliation(s)
- Timothy W Phares
- Departments of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
13
|
Wong KT, Ng KY, Ong KC, Ng WF, Shankar SK, Mahadevan A, Radotra B, Su IJ, Lau G, Ling AE, Chan KP, Macorelles P, Vallet S, Cardosa MJ, Desai A, Ravi V, Nagata N, Shimizu H, Takasaki T. Enterovirus 71 encephalomyelitis and Japanese encephalitis can be distinguished by topographic distribution of inflammation and specific intraneuronal detection of viral antigen and RNA. Neuropathol Appl Neurobiol 2012; 38:443-53. [PMID: 22236252 DOI: 10.1111/j.1365-2990.2011.01247.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To investigate if two important epidemic viral encephalitis in children, Enterovirus 71 (EV71) encephalomyelitis and Japanese encephalitis (JE) whose clinical and pathological features may be nonspecific and overlapping, could be distinguished. METHODS Tissue sections from the central nervous system of infected cases were examined by light microscopy, immunohistochemistry and in situ hybridization. RESULTS All 13 cases of EV71 encephalomyelitis collected from Asia and France invariably showed stereotyped distribution of inflammation in the spinal cord, brainstem, hypothalamus, cerebellar dentate nucleus and, to a lesser extent, cerebral cortex and meninges. Anterior pons, corpus striatum, thalamus, temporal lobe, hippocampus and cerebellar cortex were always uninflamed. In contrast, the eight JE cases studied showed inflammation involving most neuronal areas of the central nervous system, including the areas that were uninflamed in EV71 encephalomyelitis. Lesions in both infections were nonspecific, consisting of perivascular and parenchymal infiltration by inflammatory cells, oedematous/necrolytic areas, microglial nodules and neuronophagia. Viral inclusions were absent. CONCLUSIONS Immunohistochemistry and in situ hybridization assays were useful to identify the causative virus, localizing viral antigens and RNA, respectively, almost exclusively to neurones. The stereotyped distribution of inflammatory lesions in EV71 encephalomyelitis appears to be very useful to help distinguish it from JE.
Collapse
Affiliation(s)
- K T Wong
- Faculty of Medicine, University of Malaya, Kuala Lumpur, Kuching, Malaysia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ploquin A, Szécsi J, Mathieu C, Guillaume V, Barateau V, Ong KC, Wong KT, Cosset FL, Horvat B, Salvetti A. Protection against henipavirus infection by use of recombinant adeno-associated virus-vector vaccines. J Infect Dis 2012; 207:469-78. [PMID: 23175762 PMCID: PMC7107322 DOI: 10.1093/infdis/jis699] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are closely related, recently emerged paramyxoviruses that are capable of causing considerable morbidity and mortality in several mammalian species, including humans. Henipavirus-specific vaccines are still commercially unavailable, and development of novel antiviral strategies to prevent lethal infections due to henipaviruses is highly desirable. Here we describe the development of adeno-associated virus (AAV) vaccines expressing the NiV G protein. Characterization of these vaccines in mice demonstrated that a single intramuscular AAV injection was sufficient to induce a potent and long-lasting antibody response. Translational studies in hamsters further demonstrated that all vaccinated animals were protected against lethal challenge with NiV. In addition, this vaccine induced a cross-protective immune response that was able to protect 50% of the animals against a challenge by HeV. This study presents a new efficient vaccination strategy against henipaviruses and opens novel perspectives on the use of AAV vectors as vaccines against emergent diseases.
Collapse
Affiliation(s)
- Aurélie Ploquin
- INSERM U758, 2Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Denizot M, Neal JW, Gasque P. Encephalitis due to emerging viruses: CNS innate immunity and potential therapeutic targets. J Infect 2012; 65:1-16. [PMID: 22484271 DOI: 10.1016/j.jinf.2012.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 02/27/2012] [Accepted: 03/08/2012] [Indexed: 12/21/2022]
Abstract
The emerging viruses represent a group of pathogens that are intimately connected to a diverse range of animal vectors. The recent escalation of air travel climate change and urbanization has meant humans will have increased risk of contacting these pathogens resulting in serious CNS infections. Many RNA viruses enter the CNS by evading the BBB due to axonal transport from the periphery. The systemic adaptive and CNS innate immune systems express pattern recognition receptors PRR (TLRs, RiG-1 and MDA-5) that detect viral nucleic acids and initiate host antiviral response. However, several emerging viruses (West Nile Fever, Influenza A, Enterovirus 71 Ebola) are recognized and internalized by host cell receptors (TLR, MMR, DC-SIGN, CD162 and Scavenger receptor B) and escape immuno surveillance by the host systemic and innate immune systems. Many RNA viruses express viral proteins WNF (E protein), Influenza A (NS1), EV71 (protein 3C), Rabies (Glycoprotein), Ebola proteins (VP24 and VP 35) that inhibit the host cell anti-virus Interferon type I response promoting virus replication and encephalitis. The therapeutic use of RNA interference methodologies to silence gene expression of viral peptides and treat emerging virus infection of the CNS is discussed.
Collapse
Affiliation(s)
- M Denizot
- GRI, Immunopathology and Infectious Disease Research Grouping (IRG, GRI), University of La Reunion, Reunion
| | | | | |
Collapse
|
16
|
Broder CC. Henipavirus outbreaks to antivirals: the current status of potential therapeutics. Curr Opin Virol 2012; 2:176-87. [PMID: 22482714 DOI: 10.1016/j.coviro.2012.02.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/22/2012] [Accepted: 02/25/2012] [Indexed: 12/29/2022]
Abstract
The henipaviruses, Hendra virus and Nipah virus, are classic examples of recently emerged viral zoonoses. In a relatively short time since their discoveries in the mid and late 1990s, respectively, a great deal of new information has been accumulated detailing their biology and certain unique characteristics. Their broad species tropism and abilities to cause severe and often fatal respiratory and/or neurologic disease in both animals and humans has sparked considerable interest in developing effective antiviral strategies to prevent or treat henipavirus infection and disease. Here, recent findings on the few most advanced henipavirus countermeasures are summarized and discussed.
Collapse
Affiliation(s)
- Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, United States.
| |
Collapse
|
17
|
Rapid screening for entry inhibitors of highly pathogenic viruses under low-level biocontainment. PLoS One 2012; 7:e30538. [PMID: 22396728 PMCID: PMC3292545 DOI: 10.1371/journal.pone.0030538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/18/2011] [Indexed: 01/17/2023] Open
Abstract
Emerging viruses including Nipah, Hendra, Lujo, and Junin viruses have enormous potential to spread rapidly. Nipah virus, after emerging as a zoonosis, has also evolved the capacity for human-to-human transmission. Most of the diseases caused by these pathogens are untreatable and require high biocontainment conditions. Universal methods for rapidly identifying and screening candidate antivirals are urgently needed. We have developed a modular antiviral platform strategy that relies on simple bioinformatic and genetic information about each pathogen. Central to this platform is the use of envelope glycoprotein cDNAs to establish multi-cycle replication systems under BSL2 conditions for viral pathogens that normally require BSL3 and BSL4 facilities. We generated monoclonal antibodies against Nipah G by cDNA immunization in rats, and we showed that these antibodies neutralize both Nipah and Hendra live viruses. We then used these effective Henipavirus inhibitors to validate our screening strategy. Our proposed strategy should contribute to the response capability for emerging infectious diseases, providing a way to initiate antiviral development immediately upon identifying novel viruses.
Collapse
|
18
|
Steffen DL, Xu K, Nikolov DB, Broder CC. Henipavirus mediated membrane fusion, virus entry and targeted therapeutics. Viruses 2012; 4:280-308. [PMID: 22470837 PMCID: PMC3315217 DOI: 10.3390/v4020280] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/30/2012] [Accepted: 01/30/2012] [Indexed: 11/23/2022] Open
Abstract
The Paramyxoviridae genus Henipavirus is presently represented by the type species Hendra and Nipah viruses which are both recently emerged zoonotic viral pathogens responsible for repeated outbreaks associated with high morbidity and mortality in Australia, Southeast Asia, India and Bangladesh. These enveloped viruses bind and enter host target cells through the coordinated activities of their attachment (G) and class I fusion (F) envelope glycoproteins. The henipavirus G glycoprotein interacts with host cellular B class ephrins, triggering conformational alterations in G that lead to the activation of the F glycoprotein, which facilitates the membrane fusion process. Using the recently published structures of HeV-G and NiV-G and other paramyxovirus glycoproteins, we review the features of the henipavirus envelope glycoproteins that appear essential for mediating the viral fusion process, including receptor binding, G-F interaction, F activation, with an emphasis on G and the mutations that disrupt viral infectivity. Finally, recent candidate therapeutics for henipavirus-mediated disease are summarized in light of their ability to inhibit HeV and NiV entry by targeting their G and F glycoproteins.
Collapse
Affiliation(s)
- Deborah L. Steffen
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Kai Xu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA; (K.X.); (D.B.N.)
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA; (K.X.); (D.B.N.)
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA;
- Author to whom correspondence should be addressed; ; Tel.: +1-301-295-3401; Fax: +1-301-295-1545
| |
Collapse
|
19
|
Wong KT, Tan CT. Clinical and pathological manifestations of human henipavirus infection. Curr Top Microbiol Immunol 2012; 359:95-104. [PMID: 22427144 DOI: 10.1007/82_2012_205] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The clinicopathological features of human Nipah virus and Hendra virus infections appear to be similar. The clinical manifestations may be mild, but if severe, includes acute encephalitic and pulmonary syndromes with a high mortality. The pathological features in human acute henipavirus infections comprise vasculopathy (vasculitis, endothelial multinucleated syncytia, thrombosis), microinfarcts and parenchymal cell infection in the central nervous system, lung, kidney and other major organs. Viral inclusions, antigens, nucleocapsids and RNA are readily demonstrated in blood vessel wall and numerous types of parenchymal cells. Relapsing henipavirus encephalitis is a rare complication reported in less than 10% of survivors of the acute infection and appears to be distinct from the acute encephalitic syndrome. Pathological evidence suggests viral recrudescence confined to the central nervous system as the cause.
Collapse
Affiliation(s)
- K T Wong
- Deptartment of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | | |
Collapse
|
20
|
Broder CC, Geisbert TW, Xu K, Nikolov DB, Wang LF, Middleton D, Pallister J, Bossart KN. Immunization strategies against henipaviruses. Curr Top Microbiol Immunol 2012; 359:197-223. [PMID: 22481140 PMCID: PMC4465348 DOI: 10.1007/82_2012_213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hendra virus and Nipah virus are recently discovered and closely related emerging viruses that now comprise the genus henipavirus within the sub-family Paramyxoviridae and are distinguished by their broad species tropism and in addition to bats can infect and cause fatal disease in a wide variety of mammalian hosts including humans. The high mortality associated with human and animal henipavirus infections has highlighted the importance and necessity of developing effective immunization strategies. The development of suitable animal models of henipavirus infection and pathogenesis has been critical for testing the efficacy of potential therapeutic approaches. Several henipavirus challenge models have been used and recent successes in both active and passive immunization strategies against henipaviruses have been reported which have all targeted the viral envelope glycoproteins.
Collapse
Affiliation(s)
- Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Kai Xu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Dimitar B. Nikolov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Lin-Fa Wang
- CSIRO Livestock Industries, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC 3220, Australia
| | - Deborah Middleton
- CSIRO Livestock Industries, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC 3220, Australia
| | - Jackie Pallister
- CSIRO Livestock Industries, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC 3220, Australia
| | - Katharine N. Bossart
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA. National Emerging Infectious Diseases Laboratories Institute, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
21
|
Wong KT, Ong KC. Pathology of acute henipavirus infection in humans and animals. PATHOLOGY RESEARCH INTERNATIONAL 2011; 2011:567248. [PMID: 21961078 PMCID: PMC3180787 DOI: 10.4061/2011/567248] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/09/2011] [Indexed: 11/25/2022]
Abstract
Zoonoses as causes of human infections have been increasingly reported, and many of these are viruses that cause central nervous system infections. This paper focuses on the henipaviruses (family Paramyxoviridae, genus henipavirus) that have recently emerged to cause severe encephalitis and systemic infection in humans and animals in the Asia-Pacific region. The pathological features in the human infections comprise vasculopathy (vasculitis, endothelial multinucleated syncytia, thrombosis, etc.) and parenchymal cell infection in the central nervous system, lung, kidney, and other major organs. Most animals naturally or experimentally infected show more or less similar features confirming the dual pathogenetic mechanism of vasculopathy-associated microinfarction and direct extravascular parenchymal cell infection as causes of tissue injury. The most promising animal models include the hamster, ferret, squirrel monkey, and African green monkey. With increasing evidence of infection in the natural hosts, the pteropid bats and, hence, probable future outbreaks in many more countries, a greater awareness of henipavirus infection in both humans and animals is imperative.
Collapse
Affiliation(s)
- K. T. Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - K. C. Ong
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Abstract
Viral infections are a major cause of human disease. Although most viruses replicate in peripheral tissues, some have developed unique strategies to move into the nervous system, where they establish acute or persistent infections. Viral infections in the central nervous system (CNS) can alter homeostasis, induce neurological dysfunction and result in serious, potentially life-threatening inflammatory diseases. This Review focuses on the strategies used by neurotropic viruses to cross the barrier systems of the CNS and on how the immune system detects and responds to viral infections in the CNS. A special emphasis is placed on immune surveillance of persistent and latent viral infections and on recent insights gained from imaging both protective and pathogenic antiviral immune responses.
Collapse
|