1
|
Qi L, Du Y, Huang Y, Kogiso M, Zhang H, Xiao S, Abdallah A, Suarez M, Niu L, Liu ZG, Lindsay H, Braun FK, Stephen C, Davies PJ, Teo WY, Adenkunle A, Baxter P, Su JM, Li XN. CD57 defines a novel cancer stem cell that drive invasion of diffuse pediatric-type high grade gliomas. Br J Cancer 2024; 131:258-270. [PMID: 38834745 PMCID: PMC11263392 DOI: 10.1038/s41416-024-02724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Diffuse invasion remains a primary cause of treatment failure in pediatric high-grade glioma (pHGG). Identifying cellular driver(s) of pHGG invasion is needed for anti-invasion therapies. METHODS Ten highly invasive patient-derived orthotopic xenograft (PDOX) models of pHGG were subjected to isolation of matching pairs of invasive (HGGINV) and tumor core (HGGTC) cells. RESULTS pHGGINV cells were intrinsically more invasive than their matching pHGGTC cells. CSC profiling revealed co-positivity of CD133 and CD57 and identified CD57+CD133- cells as the most abundant CSCs in the invasive front. In addition to discovering a new order of self-renewal capacities, i.e., CD57+CD133- > CD57+CD133+ > CD57-CD133+ > CD57-CD133- cells, we showed that CSC hierarchy was impacted by their spatial locations, and the highest self-renewal capacities were found in CD57+CD133- cells in the HGGINV front (HGGINV/CD57+CD133- cells) mediated by NANOG and SHH over-expression. Direct implantation of CD57+ (CD57+/CD133- and CD57+/CD133+) cells into mouse brains reconstituted diffusely invasion, while depleting CD57+ cells (i.e., CD57-CD133+) abrogated pHGG invasion. CONCLUSION We revealed significantly increased invasive capacities in HGGINV cells, confirmed CD57 as a novel glioma stem cell marker, identified CD57+CD133- and CD57+CD133+ cells as a new cellular driver of pHGG invasion and suggested a new dual-mode hierarchy of HGG stem cells.
Collapse
Affiliation(s)
- Lin Qi
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 510080, China
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuchen Du
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulun Huang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery and Brain and Nerve Research Laboratory, the First Affiliated Hospital, and Dushu Lake Hospital, Soochow University Medical School, Suzhou, 215007, China
| | - Mari Kogiso
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sophie Xiao
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Aalaa Abdallah
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Milagros Suarez
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Long Niu
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhi-Gang Liu
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Cancer Center, Affiliated Dongguan Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Holly Lindsay
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frank K Braun
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clifford Stephen
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Peter J Davies
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Wan Yee Teo
- The Laboratory of Pediatric Brain Tumor Research Office, SingHealth Duke-NUS Academic Medical Center, Singapore, 169856, Singapore
| | - Adesina Adenkunle
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Patricia Baxter
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jack Mf Su
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiao-Nan Li
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Lin J, Huang C, Diao W, Liu H, Lu H, Huang S, Wang J. CPE correlates with poor prognosis in gastric cancer by promoting tumourigenesis. Heliyon 2024; 10:e29901. [PMID: 38694095 PMCID: PMC11058891 DOI: 10.1016/j.heliyon.2024.e29901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
Aims To investigate the potential functions and mechanisms of tumourigenesis in carboxypeptidase E (CPE) and its prognostic value in gastric cancer, and to develop a predictive model for prognosis based on CPE. Results Transcriptome level variation and the prognostic value of CPE in different types of cancers were investigated using bioinformatics analyses. The association between CPE and clinicopathological characteristics was specifically explored in gastric cancer. Elevated CPE expression was associated with poor survival and recurrence prognosis and was found in cases with a later clinical stage of gastric cancer. The CPE was considered an independent prognostic factor, as assessed using Cox regression analysis. The prognostic value of CPE was further verified through immunohistochemistry and haematoxylin staining. Enrichment analysis provided a preliminary confirmation of the potential functions and mechanisms of CPE. Immune cell infiltration analysis revealed a significant correlation between CPE and macrophage infiltration. Eventually, a prognosis prediction nomogram model based on CPE was developed. Conclusion CPE was identified as an independent biomarker associated with poor prognosis in gastric cancer. This suggests that CPE overexpression promoted epithelial-mesenchymal transition via the activation of the Erk/Wnt pathways, leading to proliferation, invasion, and metastasis. Targeted therapeutic strategies for gastric cancer may benefit from these findings.
Collapse
Affiliation(s)
- Jiarui Lin
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Chengzhi Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wenfei Diao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Shantou University Medical College, Shantou, 515000, China
| | - Haoming Liu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Hesong Lu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
| | - Shengchao Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
3
|
Zhang Y, Wang X, Chen G, Lu Y, Chen Q. Autocrine motility factor receptor promotes the malignancy of glioblastoma by regulating cell migration and invasion. Neurol Res 2024; 46:89-97. [PMID: 37703903 DOI: 10.1080/01616412.2023.2257463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/30/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE One of the important causes of death in cancer patients is malignant metastasis, invasion, and metastasis of tumor cells. Metastasis is also the most basic physiological characteristics and pathogenesis of various tumors. Previously published studies have suggested that autocrine motor factor receptor (AMFR) is the key regulator of tumor cell migration and invasion. Meanwhile, AMFR is highly expressed in esophageal tumors, gastrointestinal tumors, and bladder cancer, and it is also involved in its pathogenesis. However, the role of AMFR in glioblastoma has not been reported. METHODS In order to study the role of AMFR in the cell migration and invasion of glioblastoma, AMFR was silenced using siRNA and overexpressed using cDNA. Immunoblotting analysis and real-time quantitative polymerase chain reaction (PCR) were employed to assess the expression of AMFR. We conducted wound healing assay, cell migration assay, and tumorsphere formation assay to detect the invasion and metastatic ability of glioblastoma. RESULTS This study found that the level of AMFR expression was significantly correlated with the malignant degree of glioma tissue in clinic samples. AMFR silencing decreased cell migration and invasion of LN229. Overexpression of AMFR significantly increased cell migration and invasion of U251. CONCLUSION This study suggests that AMFR could be used as a therapeutic strategy for the clinical treatment of glioblastoma.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Endocrinology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuping Wang
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanghui Chen
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yajing Lu
- Institute of geriatric medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Chen
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Viwatpinyo K, Mukda S, Warinhomhoun S. Effects of mitragynine on viability, proliferation, and migration of C6 rat glioma, SH-SY5Y human neuroblastoma, and HT22 immortalized mouse hippocampal neuron cell lines. Biomed Pharmacother 2023; 166:115364. [PMID: 37639746 DOI: 10.1016/j.biopha.2023.115364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Mitragynine (MG) is an indole alkaloid found in the extract of Mitragyna speciosa Korth native to Southeast Asia. Although MG is known for its pain-relieving and psychoactive effects, reports have suggested that it has therapeutic potential against neoplasms and psychiatric disorders. However, no evidence currently exists to support the effect of MG on brain tumors. This study aimed to investigate the antitumor effects of MG in C6 rat glioma and SH-SY5Y human neuroblastoma tumor cell lines compared with those in the non-tumor HT22 mouse hippocampal neuronal cell line. MTT assay for cell viability, clonogenic and wound healing assays for cell migration, Hoechst 33342/propidium iodide staining for nuclear morphology, and cell cycle distribution using flow cytometry were performed. MG at 125.47 μM (50 μg/ml) significantly reduced the viability of all cell lines, and the clonogenicity of C6 glioma cells began decreasing at 75.28 μM (30 μg/ml) of MG. Cell migration was inhibited in C6 and HT22 cells treated with 75.28 μM (30 μg/ml) of MG. Apoptotic nuclear condensation and fragmentation were observed in all cell lines treated with 125.47 μM (50 μg/ml) MG, whereas late-phase apoptotic cells were predominant in the group treated with 250.94 μM (100 μg/ml) of MG. The cell cycle assay results suggest that MG arrested the S phase in the C6 cell line and the G2/M phase in the HT22 cell lines. This study showed that MG induces cell death and cell cycle arrest, disrupting cell migration and reducing the clonogenicity of brain tumor cells.
Collapse
Affiliation(s)
- Kittikun Viwatpinyo
- School of Medicine, Walailak University, Tha Sala, Nakorn Si Thammarat 80160, Thailand; Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakorn Pathom 73170, Thailand
| | - Sakan Warinhomhoun
- School of Medicine, Walailak University, Tha Sala, Nakorn Si Thammarat 80160, Thailand; Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
5
|
Chen D, Wan B, Cheng Y, Luo Y, Bai X, Guo J, Li G, Jin T, Nie J, Liu W, Wang R. Carboxypeptidase E is a prognostic biomarker co-expressed with osteoblastic genes in osteosarcoma. PeerJ 2023; 11:e15814. [PMID: 37663298 PMCID: PMC10474831 DOI: 10.7717/peerj.15814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023] Open
Abstract
Osteosarcoma (OS) is a rare primary malignant bone tumor in adolescents and children with a poor prognosis. The identification of prognostic genes lags far behind advancements in treatment. In this study, we identified differential genes using mRNA microarray analysis of five paired OS tissues. Hub genes, gene set enrichment analysis, and pathway analysis were performed to gain insight into the pathway alterations of OS. Prognostic genes were screened using the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) dataset, then overlapped with the differential gene dataset. The carboxypeptidase E (CPE) gene, found to be an independent risk factor, was further validated using RT-PCR and Gene Expression Omnibus (GEO) datasets. Additionally, we explored the specific expression of CPE in OS tissues by reanalyzing single-cell genomics. Interestingly, CPE was found to be co-expressed with osteoblast lineage cell clusters that expressed RUNX2, SP7, SPP1, and IBSP marker genes in OS. These results suggest that CPE could serve as a prognostic factor in osteoblastic OS and should be further investigated as a potential therapeutic target.
Collapse
Affiliation(s)
- Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Ben Wan
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Yuning Cheng
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yuwen Luo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xueshan Bai
- Cranio-Maxillo-Facial Surgery Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianxun Guo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Guangping Li
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Tao Jin
- Depatment of Orthopaedic Oncology Surgery, National Center for Orthopaedics, Beijing JiShuiTan Hospital, Capital Medical University, Beijing, China
| | - Jingjun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Weifeng Liu
- Depatment of Orthopaedic Oncology Surgery, National Center for Orthopaedics, Beijing JiShuiTan Hospital, Capital Medical University, Beijing, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Athni Hiremath S, Surulescu C. Data driven modeling of pseudopalisade pattern formation. J Math Biol 2023; 87:4. [PMID: 37300719 DOI: 10.1007/s00285-023-01933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/19/2023] [Accepted: 04/29/2023] [Indexed: 06/12/2023]
Abstract
Pseudopalisading is an interesting phenomenon where cancer cells arrange themselves to form a dense garland-like pattern. Unlike the palisade structure, a similar type of pattern first observed in schwannomas by pathologist J.J. Verocay (Wippold et al. in AJNR Am J Neuroradiol 27(10):2037-2041, 2006), pseudopalisades are less organized and associated with a necrotic region at their core. These structures are mainly found in glioblastoma (GBM), a grade IV brain tumor, and provide a way to assess the aggressiveness of the tumor. Identification of the exact bio-mechanism responsible for the formation of pseudopalisades is a difficult task, mainly because pseudopalisades seem to be a consequence of complex nonlinear dynamics within the tumor. In this paper we propose a data-driven methodology to gain insight into the formation of different types of pseudopalisade structures. To this end, we start from a state of the art macroscopic model for the dynamics of GBM, that is coupled with the dynamics of extracellular pH, and formulate a terminal value optimal control problem. Thus, given a specific, observed pseudopalisade pattern, we determine the evolution of parameters (bio-mechanisms) that are responsible for its emergence. Random histological images exhibiting pseudopalisade-like structures are chosen to serve as target pattern. Having identified the optimal model parameters that generate the specified target pattern, we then formulate two different types of pattern counteracting ansatzes in order to determine possible ways to impair or obstruct the process of pseudopalisade formation. This provides the basis for designing active or live control of malignant GBM. Furthermore, we also provide a simple, yet insightful, mechanism to synthesize new pseudopalisade patterns by linearly combining the optimal model parameters responsible for generating different known target patterns. This particularly provides a hint that complex pseudopalisade patterns could be synthesized by a linear combination of parameters responsible for generating simple patterns. Going even further, we ask ourselves if complex therapy approaches can be conceived, such that some linear combination thereof is able to reverse or disrupt simple pseudopalisade patterns; this is investigated with the help of numerical simulations.
Collapse
Affiliation(s)
- Sandesh Athni Hiremath
- Mechanical and Process Engineering, TU Kaiserslautern, Gottlieb-Daimler-Straße 42, 67663, Kaiserslautern, Rhineland-Palatinate, Germany.
| | - Christina Surulescu
- Felix-Klein-Zentrum für Mathematik, TU Kaiserslautern, Paul-Ehrlich-Str. 31, 67663, Kaiserslautern, Rhineland-Palatinate, Germany
| |
Collapse
|
7
|
Żwierełło W, Maruszewska A, Skórka-Majewicz M, Gutowska I. Fluoride in the Central Nervous System and Its Potential Influence on the Development and Invasiveness of Brain Tumours-A Research Hypothesis. Int J Mol Sci 2023; 24:1558. [PMID: 36675073 PMCID: PMC9866357 DOI: 10.3390/ijms24021558] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The purpose of this review is to attempt to outline the potential role of fluoride in the pathogenesis of brain tumours, including glioblastoma (GBM). In this paper, we show for the first time that fluoride can potentially affect the generally accepted signalling pathways implicated in the formation and clinical course of GBM. Fluorine compounds easily cross the blood-brain barrier. Enhanced oxidative stress, disruption of multiple cellular pathways, and microglial activation are just a few examples of recent reports on the role of fluoride in the central nervous system (CNS). We sought to present the key mechanisms underlying the development and invasiveness of GBM, as well as evidence on the current state of knowledge about the pleiotropic, direct, or indirect involvement of fluoride in the regulation of these mechanisms in various tissues, including neural and tumour tissue. The effects of fluoride on the human body are still a matter of controversy. However, given the growing incidence of brain tumours, especially in children, and numerous reports on the effects of fluoride on the CNS, it is worth taking a closer look at these mechanisms in the context of brain tumours, including gliomas.
Collapse
Affiliation(s)
- Wojciech Żwierełło
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Agnieszka Maruszewska
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Centre, Institute of Biology, University of Szczecin, Wąska 13 St., 71-415 Szczecin, Poland
| | - Marta Skórka-Majewicz
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 71 St., 70-111 Szczecin, Poland
| |
Collapse
|
8
|
Hareendran S, Yang X, Sharma VK, Loh YP. Carboxypeptidase E and its splice variants: Key regulators of growth and metastasis in multiple cancer types. Cancer Lett 2022; 548:215882. [PMID: 35988818 PMCID: PMC9532369 DOI: 10.1016/j.canlet.2022.215882] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
Mechanisms driving tumor growth and metastasis are complex, and involve the recruitment of many genes working in concert with each other. The tumor is characterized by the expression of specific sets of genes depending on its environment. Here we review the role of the carboxypeptidase E (CPE) gene which has been shown to be important in driving growth, survival and metastasis in many cancer types. CPE was first discovered as a prohormone processing enzyme, enriched in endocrine tumors, and later found to be expressed and secreted from many epithelial-derived tumors and cancer cell lines. Numerous studies have shown that besides wild-type CPE, a N-terminal truncated splice variant form of CPE (CPE-ΔN) has been cloned and found to be highly expressed in malignant tumors and cell lines derived from prostate, breast, liver and lung cancers and gliomas. The mechanisms of action of CPE and the splice variant in promoting tumor growth and metastasis in different cancer types are discussed. Mechanistically, secreted CPE activates the Erk/wnt pathways, while CPE-ΔN interacts with HDACs in a protein complex in the nucleus, to recruit various cell cycle genes and metastatic genes, respectively. Clinical studies suggest that CPE and CPE-ΔN mRNA and protein are potential diagnostic and prognostic biomarkers for multiple cancer types, assayed using solid tumors and secreted serum exosomes. CPE has been shown to be a therapeutic target for multiple cancer types. CPE/CPE-ΔN siRNA transported via exosomes and taken up by recipient high metastatic cancer cells, suppressed growth and proliferation of these cells. Thus future studies, delivering CPE/CPE-ΔN siRNA, perhaps via exosomes, to the tumor could be a novel treatment approach to suppress tumor growth and metastasis.
Collapse
Affiliation(s)
- Sangeetha Hareendran
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Xuyu Yang
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Vinay Kumar Sharma
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md, 20892, USA.
| |
Collapse
|
9
|
Fricker LD, Lemos Duarte M, Jeltyi A, Lueptow L, Fakira AK, Tashima AK, Hochgeschwender U, Wetsel WC, Devi LA. Mice heterozygous for a null mutation of Cpe show reduced expression of carboxypeptidase E mRNA and enzyme activity but normal physiology, behavior, and levels of neuropeptides. Brain Res 2022; 1789:147951. [PMID: 35618016 DOI: 10.1016/j.brainres.2022.147951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
Abstract
Carboxypeptidase E (CPE) is an essential enzyme that contributes to the biosynthesis of the vast majority of neuropeptides and peptide hormones. There are several reports claiming that small decreases in CPE activity cause physiological changes in animals and/or cultured cells, but these studies did not provide evidence that neuropeptide levels were affected by decreased CPE activity. In the present study, we tested if CPE is a rate-limiting enzyme in neuropeptide production using CpeNeo mice, which contain a neomycin cassette within the Cpe gene that eliminates enzyme expression. Homozygous CpeNeo/Neo mice show defects found in Cpefat/fat and/or Cpe global knockout (KO) mice, including greatly decreased levels of most neuropeptides, severely impaired fertility, depressive-like behavior, adult-onset obesity, and anxiety-like behavior. Removal of the neomycin cassette with Flp recombinase under a germline promoter restored expression of CPE activity and resulted in normal behavioral and physiological properties, including levels of neuropeptides. Mice heterozygous for the CpeNeo allele have greatly reduced levels of Cpe mRNA and CPE-like enzymatic activity. Despite the decreased levels of Cpe expression, heterozygous CpeNeo mice are behaviorally and physiologically identical to wild-type mice, with normal levels of most neuropeptides. These results indicate that CPE is not a rate-limiting enzyme in the production of most neuropeptides, casting doubt upon studies claiming small decreases in CPE activity contribute to obesity or other physiological effects.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461.
| | - Mariana Lemos Duarte
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, 10029.
| | - Andrei Jeltyi
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, 10029.
| | - Lindsay Lueptow
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, 10029.
| | - Amanda K Fakira
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, 10029.
| | - Alexandre K Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, SP 04023-901, Brazil.
| | | | - William C Wetsel
- Departments of Psychiatry and Behavioral Sciences, Neurobiology, and Cell Biology, Duke University Medical Center, Durham, NC, 27710.
| | - Lakshmi A Devi
- Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, NY, NY, 10029.
| |
Collapse
|
10
|
Huang Y, Qi L, Kogiso M, Du Y, Braun FK, Zhang H, Huang LF, Xiao S, Teo W, Lindsay H, Zhao S, Baxter P, Su JMF, Adesina A, Yang J, Brabetz S, Kool M, Pfister SM, Chintagumpala M, Perlaky L, Wang Z, Zhou Y, Man T, Li X. Spatial Dissection of Invasive Front from Tumor Mass Enables Discovery of Novel microRNA Drivers of Glioblastoma Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101923. [PMID: 34719887 PMCID: PMC8655179 DOI: 10.1002/advs.202101923] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Diffuse invasion is the primary cause of treatment failure of glioblastoma (GBM). Previous studies on GBM invasion have long been forced to use the resected tumor mass cells. Here, a strategy to reliably isolate matching pairs of invasive (GBMINV ) and tumor core (GBMTC ) cells from the brains of 6 highly invasive patient-derived orthotopic models is described. Direct comparison of these GBMINV and GBMTC cells reveals a significantly elevated invasion capacity in GBMINV cells, detects 23/768 miRNAs over-expressed in the GBMINV cells (miRNAINV ) and 22/768 in the GBMTC cells (miRNATC ), respectively. Silencing the top 3 miRNAsINV (miR-126, miR-369-5p, miR-487b) successfully blocks invasion of GBMINV cells in vitro and in mouse brains. Integrated analysis with mRNA expression identifies miRNAINV target genes and discovers KCNA1 as the sole common computational target gene of which 3 inhibitors significantly suppress invasion in vitro. Furthermore, in vivo treatment with 4-aminopyridine (4-AP) effectively eliminates GBM invasion and significantly prolongs animal survival times (P = 0.035). The results highlight the power of spatial dissection of functionally accurate GBMINV and GBMTC cells in identifying novel drivers of GBM invasion and provide strong rationale to support the use of biologically accurate starting materials in understanding cancer invasion and metastasis.
Collapse
Affiliation(s)
- Yulun Huang
- Department of NeurosurgeryDushu Lake HospitalSoochow UniversitySuzhou205124China
- Department of Neurosurgery and Brain and Nerve Research Laboratorythe First Affiliated HospitalSoochow UniversitySuzhou215007China
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Lin Qi
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
- Program of Precision Medicine PDOX Modeling of Pediatric TumorsAnn & Robert H. Lurie Children's Hospital of ChicagoDepartment of PediatricsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
- Department of PharmacologySchool of MedicineSun Yat‐Sen UniversityShenzhen518107China
| | - Mari Kogiso
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Yuchen Du
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
- Program of Precision Medicine PDOX Modeling of Pediatric TumorsAnn & Robert H. Lurie Children's Hospital of ChicagoDepartment of PediatricsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Frank K. Braun
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Huiyuan Zhang
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - L. Frank Huang
- Department of Systems Medicine and BioegineeringHouston Methodist Hospital Research Institute and Cancer CenterWeill Cornell MedicineHoustonTX77030USA
- Division of Experimental Hematology and Cancer BiologyBrain Tumor CenterCincinnati Children’s Hospital Medical CenterDepartment of PediatricsUniversity of Cincinnati College of MedicineCincinnatiUnited States45229United States
| | - Sophie Xiao
- Program of Precision Medicine PDOX Modeling of Pediatric TumorsAnn & Robert H. Lurie Children's Hospital of ChicagoDepartment of PediatricsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Wan‐Yee Teo
- Humphrey Oei Institute of Cancer ResearchNational Cancer Center SingaporeSingapore169610Singapore
| | - Holly Lindsay
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Sibo Zhao
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Patricia Baxter
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Jack M. F. Su
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Adekunle Adesina
- Department of PathologyTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Jianhua Yang
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Sebastian Brabetz
- Hopp Children's Cancer Center (KiTZ)Heidelberg69120Germany
- Division of Pediatric Neuro‐oncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)Heidelberg69120Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ)Heidelberg69120Germany
- Division of Pediatric Neuro‐oncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)Heidelberg69120Germany
| | - Stefan M. Pfister
- Hopp Children's Cancer Center (KiTZ)Heidelberg69120Germany
- Division of Pediatric Neuro‐oncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)Heidelberg69120Germany
- Department of Pediatric Hematology and OncologyHeidelberg University HospitalHeidelberg69120Germany
| | - Murali Chintagumpala
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Laszlo Perlaky
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratorythe First Affiliated HospitalSoochow UniversitySuzhou215007China
| | - Youxin Zhou
- Department of Neurosurgery and Brain and Nerve Research Laboratorythe First Affiliated HospitalSoochow UniversitySuzhou215007China
| | - Tsz‐Kwong Man
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Xiao‐Nan Li
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
- Program of Precision Medicine PDOX Modeling of Pediatric TumorsAnn & Robert H. Lurie Children's Hospital of ChicagoDepartment of PediatricsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| |
Collapse
|
11
|
Barranco N, Plá V, Alcolea D, Sánchez-Domínguez I, Fischer-Colbrie R, Ferrer I, Lleó A, Aguado F. Dense core vesicle markers in CSF and cortical tissues of patients with Alzheimer's disease. Transl Neurodegener 2021; 10:37. [PMID: 34565482 PMCID: PMC8466657 DOI: 10.1186/s40035-021-00263-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Background New fluid biomarkers for Alzheimer's disease (AD) that reveal synaptic and neural network dysfunctions are needed for clinical practice and therapeutic trial design. Dense core vesicle (DCV) cargos are promising cerebrospinal fluid (CSF) indicators of synaptic failure in AD patients. However, their value as biomarkers has not yet been determined. Methods Immunoassays were performed to analyze the secretory proteins prohormone convertases PC1/3 and PC2, carboxypeptidase E (CPE), secretogranins SgIII and SgII, and Cystatin C in the cerebral cortex (n = 45, provided by Bellvitge University Hospital) and CSF samples (n = 66, provided by The Sant Pau Initiative on Neurodegeneration cohort) from AD patients (n = 56) and age-matched controls (n = 55).
Results In AD tissues, most DCV proteins were aberrantly accumulated in dystrophic neurites and activated astrocytes, whereas PC1/3, PC2 and CPE were also specifically accumulated in hippocampal granulovacuolar degeneration bodies. AD individuals displayed an overall decline of secretory proteins in the CSF. Interestingly, in AD patients, the CSF levels of prohormone convertases strongly correlated inversely with those of neurodegeneration markers and directly with cognitive impairment status. Conclusions These results demonstrate marked alterations of neuronal-specific prohormone convertases in CSF and cortical tissues of AD patients. The neuronal DCV cargos are biomarker candidates for synaptic dysfunction and neurodegeneration in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00263-0.
Collapse
Affiliation(s)
- Neus Barranco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
| | - Virginia Plá
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Daniel Alcolea
- Memory Unit, Department of Neurology, Sant Pau Biomedical Research Institute. Sant Pau Hospital, Autonomous University of Barcelona, 08041, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Irene Sánchez-Domínguez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
| | | | - Isidro Ferrer
- Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, and Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Hospitalet de Llobregat, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Sant Pau Biomedical Research Institute. Sant Pau Hospital, Autonomous University of Barcelona, 08041, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Fernando Aguado
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
12
|
Kuo IY, Liu D, Lai WW, Wang YC, Loh YP. Carboxypeptidase E mRNA: Overexpression predicts recurrence and death in lung adenocarcinoma cancer patients. Cancer Biomark 2021; 33:369-377. [PMID: 34511486 DOI: 10.3233/cbm-210206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Effective biomarkers for prediction of recurrence of lung adenocarcinoma cancer (LADC) patients are needed to determine treatment strategies post-surgery to improve outcome. OBJECTIVE This study evaluates the efficacy of carboxypeptidase E (CPE) mRNA including its splice isoforms, CPE-ΔN, as a biomarker for predicting recurrence in adenocarcinoma patients. METHODS RNA was extracted from resected tumors from 86 patients with different stages of non-small cell LADC. cDNA was synthesized and qRT-PCR carried out to determine the copy numbers of CPE/CPE-ΔN mRNA. Patients were followed for 7 years post-tumor resection to determine recurrence and death. RESULTS ROC curve analysis showed the overall AUC for CPE/CPE-ΔN copy number was 0.563 in predicting recurrence and 0.563 in predicting death. Kaplan-Meier survival analysis showed statistical difference (p= 0.018), indicating that patients with high CPE/CPE-ΔN copy numbers had a shorter time of disease-free survival and also shorter time to death (p= 0.035). Subgroup analyses showed that association of disease-free survival time with CPE/CPE-ΔN copy number was stronger among stage I and II LADC patients (p= 0.047). CONCLUSIONS CPE/CPE-ΔN mRNA is a potentially useful biomarker for predicting recurrence and death in LADC patients, especially in identifying patients at high risk of recurrence at early stages I and II.
Collapse
Affiliation(s)
- I-Ying Kuo
- Institute of Basic Medical Sciences and Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Danping Liu
- Biostatistics and Bioinformatics Branch, Bethesda, MD, USA.,Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Wu-Wei Lai
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences and Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Lou H, Loh YP. Silencing of Carboxypeptidase E expression inhibits proliferation and invasion of Panc-1 pancreatic cancer cells. F1000Res 2021; 10:489. [PMID: 35528956 PMCID: PMC9069412 DOI: 10.12688/f1000research.53737.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 10/27/2023] Open
Abstract
Background: Pancreatic cancer is one of the leading cause of cancer-related death globally. The molecular basis of this disease is complex and not fully understood. Previous studies have indicated that carboxypeptidase E (CPE) plays a role in promoting tumorigenesis in many cancer types. Here we have investigated the effect of carboxypeptidase E (CPE), including its isoform, in regulating the proliferation, migration and invasion of Panc-1 cells, a pancreatic cell line. Methods: Panc-1 cells were transfected with CPE siRNA which targets both CPE-wild type and its isoform, or scrambled siRNA, for 24 h and then assayed for proliferation by the MTT and colony formation assays, and migration and invasion by wound healing and matrigel assays, respectively. Results: CPE siRNA treatment of Panc-1 cells down-regulated the expression of CPE mRNA by 94.8%. Silencing of CPE mRNA expression resulted in a significant decrease in proliferation as revealed by the MTT assay and a 62.8% decrease in colony formation. Western blot analysis of expression of Cyclin D1 in Panc-1 cells treated with CPE siRNA showed a decrease of 32.5% compared to scr siRNA treated cells, indicating that CPE regulates proliferation through modulating this cell cycle protein. Additionally, suppression of CPE expression in Panc-1 cells significantly decreased migration and invasion. Conclusions: Our findings indicate that CPE may play an important role in regulating cell proliferation, migration and invasion to promote pancreatic cancer tumorigenesis.
Collapse
Affiliation(s)
- Hong Lou
- Section Cellular Neurobiology, National Institute of Child Health and Human Development of the National Institutes of Health, Bethesda, MD, 20892, USA
| | - Y Peng Loh
- Section Cellular Neurobiology, National Institute of Child Health and Human Development of the National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
14
|
Lou H, Loh YP. Silencing of Carboxypeptidase E expression inhibits proliferation and invasion of Panc-1 pancreatic cancer cells. F1000Res 2021; 10:489. [PMID: 35528956 PMCID: PMC9069412 DOI: 10.12688/f1000research.53737.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Pancreatic cancer is one of the leading cause of cancer-related death globally. The molecular basis of this disease is complex and not fully understood. Previous studies have indicated that carboxypeptidase E (CPE) plays a role in promoting tumorigenesis in many cancer types. Here we have investigated the effect of carboxypeptidase E (CPE), including its isoform, in regulating the proliferation, migration and invasion of Panc-1 cells, a pancreatic cell line. Methods: Panc-1 cells were transfected with CPE siRNA which targets both CPE-wild type and its isoform, or scrambled siRNA, for 24 h and then assayed for proliferation by the MTT and colony formation assays, and migration and invasion by wound healing and matrigel assays, respectively. Results: CPE siRNA treatment of Panc-1 cells down-regulated the expression of CPE mRNA by 94.8%. Silencing of CPE mRNA expression resulted in a significant decrease in proliferation as revealed by the MTT assay and a 62.8% decrease in colony formation. Western blot analysis of expression of Cyclin D1 in Panc-1 cells treated with CPE siRNA showed a decrease of 32.5% compared to scr siRNA treated cells, indicating that CPE regulates proliferation through modulating this cell cycle protein. Additionally, suppression of CPE expression in Panc-1 cells significantly decreased migration and invasion. Conclusions: Our findings indicate that CPE may play an important role in regulating cell proliferation, migration and invasion to promote pancreatic cancer tumorigenesis.
Collapse
Affiliation(s)
- Hong Lou
- Section Cellular Neurobiology, National Institute of Child Health and Human Development of the National Institutes of Health, Bethesda, MD, 20892, USA
| | - Y Peng Loh
- Section Cellular Neurobiology, National Institute of Child Health and Human Development of the National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
15
|
Cui R, Wang C, Zhao Q, Wang Y, Li Y. Serum Carboxypeptidase N1 Serves as a Potential Biomarker Complementing CA15-3 for Breast Cancer. Anticancer Agents Med Chem 2021; 20:2053-2065. [PMID: 32619179 DOI: 10.2174/1871520620666200703191135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The incidence and mortality of breast cancer are increasing annually. Breast cancer seriously threatens women's health and quality of life. We aimed to measure the clinical value of CPN1, a new serum marker of breast cancer and to evaluate the efficacy of CPN1 in combination with CA15-3. METHODS Seventy samples of breast cancer with lymph node metastasis, seventy-three samples of nonmetastatic breast cancer and twenty-five samples of healthy human serum were collected. Serum CA15-3 concentration was determined by Roche Elecsys, and serum CPN1 concentration was determined by ELISA. RESULTS In breast cancer patients, serum CPN1 concentration was positively correlated with tumour size, clinical stage and CA15-3 concentration (r = 0.376, P<0.0001). ROC curve analysis showed that the optimal critical concentration of CPN1 for breast cancer diagnosis was 32.8pg/ml. The optimal critical concentration of CPN1 in the diagnosis of metastatic breast cancer was 66.121pg/ml. CPN1 has a greater diagnostic ability for breast cancer (AUCCA15-3=0.702 vs. AUCCPN1=0.886, P<0.0001) and metastatic breast cancer (AUCCA15-3=0.629 vs. AUCCPN1=0.887, P<0.0001) than CA15-3, and the combined detection of CA15-3 and CPN1 can improve the diagnostic efficiency for breast cancer (AUCCA15-3+CPN1=0.916) and for distinguishing between metastatic and non-metastatic breast cancer (AUCCA15-3+CPN1=0.895). CONCLUSION CPN1 can be used as a new tumour marker to diagnose and evaluate the invasion and metastasis of breast cancer. The combined detection of CPN1 and CA15-3 is more accurate and has a certain value in clinical application.
Collapse
Affiliation(s)
- Ranliang Cui
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Chaomin Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Qi Zhao
- Tianjin Medical University, Tianjin, China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Yueguo Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
16
|
So JS, Kim H, Han KS. Mechanisms of Invasion in Glioblastoma: Extracellular Matrix, Ca 2+ Signaling, and Glutamate. Front Cell Neurosci 2021; 15:663092. [PMID: 34149360 PMCID: PMC8206529 DOI: 10.3389/fncel.2021.663092] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and malignant form of primary brain tumor with a median survival time of 14–16 months in GBM patients. Surgical treatment with chemotherapy and radiotherapy may help increase survival by removing GBM from the brain. However, complete surgical resection to eliminate GBM is almost impossible due to its high invasiveness. When GBM cells migrate to the brain, they interact with various cells, including astrocytes, neurons, endothelial cells, and the extracellular matrix (ECM). They can also make their cell body shrink to infiltrate into narrow spaces in the brain; thereby, they can invade regions of the brain and escape from surgery. Brain tumor cells create an appropriate microenvironment for migration and invasion by modifying and degrading the ECM. During those processes, the Ca2+ signaling pathway and other signaling cascades mediated by various ion channels contribute mainly to gene expression, motility, and invasion of GBM cells. Furthermore, GBM cells release glutamate, affecting migration via activation of ionotropic glutamate receptors in an autocrine manner. This review focuses on the cellular mechanisms of glioblastoma invasion and motility related to ECM, Ca2+ signaling, and glutamate. Finally, we discuss possible therapeutic interventions to inhibit invasion by GBM cells.
Collapse
Affiliation(s)
- Jae-Seon So
- Department of Medical Biotechnology, Dongguk University-Gyeongju, Gyeongju, South Korea
| | - Hyeono Kim
- Department of Medical Biotechnology, Dongguk University-Gyeongju, Gyeongju, South Korea
| | - Kyung-Seok Han
- Department of Medical Biotechnology, Dongguk University-Gyeongju, Gyeongju, South Korea
| |
Collapse
|
17
|
Danielyan L, Schwab M, Siegel G, Brawek B, Garaschuk O, Asavapanumas N, Buadze M, Lourhmati A, Wendel HP, Avci-Adali M, Krueger MA, Calaminus C, Naumann U, Winter S, Schaeffeler E, Spogis A, Beer-Hammer S, Neher JJ, Spohn G, Kretschmer A, Krämer-Albers EM, Barth K, Lee HJ, Kim SU, Frey WH, Claussen CD, Hermann DM, Doeppner TR, Seifried E, Gleiter CH, Northoff H, Schäfer R. Cell motility and migration as determinants of stem cell efficacy. EBioMedicine 2020; 60:102989. [PMID: 32920368 PMCID: PMC7494685 DOI: 10.1016/j.ebiom.2020.102989] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Stem cells` (SC) functional heterogeneity and its poorly understood aetiology impedes clinical development of cell-based therapies in regenerative medicine and oncology. Recent studies suggest a strong correlation between the SC migration potential and their therapeutic efficacy in humans. Designating SC migration as a denominator of functional SC heterogeneity, we sought to identify highly migrating subpopulations within different SC classes and evaluate their therapeutic properties in comparison to the parental non-selected cells. METHODS We selected highly migrating subpopulations from mesenchymal and neural SC (sMSC and sNSC), characterized their features including but not limited to migratory potential, trophic factor release and transcriptomic signature. To assess lesion-targeted migration and therapeutic properties of isolated subpopulations in vivo, surgical transplantation and intranasal administration of MSCs in mouse models of glioblastoma and Alzheimer's disease respectively were performed. FINDINGS Comparison of parental non-selected cells with isolated subpopulations revealed superior motility and migratory potential of sMSC and sNSC in vitro. We identified podoplanin as a major regulator of migratory features of sMSC/sNSC. Podoplanin engineering improved oncovirolytic activity of virus-loaded NSC on distantly located glioblastoma cells. Finally, sMSC displayed more targeted migration to the tumour site in a mouse glioblastoma model and remarkably higher potency to reduce pathological hallmarks and memory deficits in transgenic Alzheimer's disease mice. INTERPRETATION Functional heterogeneity of SC is associated with their motility and migration potential which can serve as predictors of SC therapeutic efficacy. FUNDING This work was supported in part by the Robert Bosch Stiftung (Stuttgart, Germany) and by the IZEPHA grant.
Collapse
Affiliation(s)
- Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany; Neuroscience Laboratory and Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, Yerevan, Armenia.
| | - Matthias Schwab
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany; Neuroscience Laboratory and Departments of Biochemistry and Clinical Pharmacology, Yerevan State Medical University, Yerevan, Armenia; Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tübingen, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Georg Siegel
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Bianca Brawek
- Institute of Physiology, Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Olga Garaschuk
- Institute of Physiology, Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Nithi Asavapanumas
- Institute of Physiology, Department of Neurophysiology, University of Tübingen, Tübingen, Germany
| | - Marine Buadze
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Ali Lourhmati
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Hans-Peter Wendel
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Meltem Avci-Adali
- Department of Thoracic, Cardiac and Vascular Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Marcel A Krueger
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Carsten Calaminus
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike Naumann
- Hertie Institute for Clinical Brain Research and Center Neurology, Department of Vascular Neurology, Tübingen Neuro-Campus (TNC), University of Tübingen, Tübingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany and University of Tübingen, Tübingen, Germany
| | - Annett Spogis
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomic, and ICePhA, University Hospital Tübingen, Tübingen, Germany
| | - Jonas J Neher
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Tübingen, Germany
| | - Gabriele Spohn
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Anja Kretschmer
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Eva-Maria Krämer-Albers
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Barth
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea; Research Institute eBiogen Inc., Seoul, Republic of Korea
| | - Seung U Kim
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, BC, Canada
| | - William H Frey
- HealthPartners Center for Memory and Aging, HealthPartners Neurosciences, St. Paul, MN, U.S.A
| | - Claus D Claussen
- Department of Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen, Essen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen, Essen, Germany; Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany
| | - Christoph H Gleiter
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
| | - Hinnak Northoff
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Richard Schäfer
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany; Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe-University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
18
|
2D and 3D in vitro assays to quantify the invasive behavior of glioblastoma stem cells in response to SDF-1α. Biotechniques 2020; 69:339-346. [PMID: 32867513 DOI: 10.2144/btn-2020-0046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Invasion is a hallmark of cancer and therefore in vitro invasion assays are important tools in cancer research. We aimed to describe in vitro 2D transwell assays and 3D spheroid assays to quantitatively determine the invasive behavior of glioblastoma stem cells in response to the chemoattractant SDF-1α. Matrigel was used as a matrix in both assays. We demonstrated quantitatively that SDF-1α increased invasive behavior of glioblastoma stem cells in both assays. We conclude that the 2D transwell invasion assay is easy to perform, fast and less complex whereas the more time-consuming 3D spheroid invasion assay is physiologically closer to the in vivo situation.
Collapse
|
19
|
Kosti A, de Araujo PR, Li WQ, Guardia GDA, Chiou J, Yi C, Ray D, Meliso F, Li YM, Delambre T, Qiao M, Burns SS, Lorbeer FK, Georgi F, Flosbach M, Klinnert S, Jenseit A, Lei X, Sandoval CR, Ha K, Zheng H, Pandey R, Gruslova A, Gupta YK, Brenner A, Kokovay E, Hughes TR, Morris QD, Galante PAF, Tiziani S, Penalva LOF. The RNA-binding protein SERBP1 functions as a novel oncogenic factor in glioblastoma by bridging cancer metabolism and epigenetic regulation. Genome Biol 2020; 21:195. [PMID: 32762776 PMCID: PMC7412812 DOI: 10.1186/s13059-020-02115-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in RBP expression and function are often observed in cancer and influence critical pathways implicated in tumor initiation and growth. Identification and characterization of oncogenic RBPs and their regulatory networks provide new opportunities for targeted therapy. RESULTS We identify the RNA-binding protein SERBP1 as a novel regulator of glioblastoma (GBM) development. High SERBP1 expression is prevalent in GBMs and correlates with poor patient survival and poor response to chemo- and radiotherapy. SERBP1 knockdown causes delay in tumor growth and impacts cancer-relevant phenotypes in GBM and glioma stem cell lines. RNAcompete identifies a GC-rich region as SERBP1-binding motif; subsequent genomic and functional analyses establish SERBP1 regulation role in metabolic routes preferentially used by cancer cells. An important consequence of these functions is SERBP1 impact on methionine production. SERBP1 knockdown decreases methionine levels causing a subsequent reduction in histone methylation as shown for H3K27me3 and upregulation of genes associated with neurogenesis, neuronal differentiation, and function. Further analysis demonstrates that several of these genes are downregulated in GBM, potentially through epigenetic silencing as indicated by the presence of H3K27me3 sites. CONCLUSIONS SERBP1 is the first example of an RNA-binding protein functioning as a central regulator of cancer metabolism and indirect modulator of epigenetic regulation in GBM. By bridging these two processes, SERBP1 enhances glioma stem cell phenotypes and contributes to GBM poorly differentiated state.
Collapse
Affiliation(s)
- Adam Kosti
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Patricia Rosa de Araujo
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Wei-Qing Li
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
- Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Gabriela D. A. Guardia
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, São Paulo 01309-060 Brazil
| | - Jennifer Chiou
- Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78712 USA
| | - Caihong Yi
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Fabiana Meliso
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, São Paulo 01309-060 Brazil
| | - Yi-Ming Li
- Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Talia Delambre
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Mei Qiao
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Suzanne S. Burns
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Franziska K. Lorbeer
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Fanny Georgi
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Markus Flosbach
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Sarah Klinnert
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Anne Jenseit
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Xiufen Lei
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | | | - Kevin Ha
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Hong Zheng
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Renu Pandey
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | | | - Yogesh K. Gupta
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Andrew Brenner
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Erzsebet Kokovay
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Timothy R. Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
- Canadian Institute for Advanced Research, MaRS Centre, West Tower, 661 University Avenue, Suite 505, Toronto, ON M5G 1M1 Canada
| | - Quaid D. Morris
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1 Canada
| | - Pedro A. F. Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, São Paulo 01309-060 Brazil
| | - Stefano Tiziani
- Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78712 USA
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
20
|
Kim Y, Lee D, Lawler S. Collective invasion of glioma cells through OCT1 signalling and interaction with reactive astrocytes after surgery. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190390. [PMID: 32713306 DOI: 10.1098/rstb.2019.0390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with a short median survival time. GBM is characterized by the hallmarks of aggressive proliferation and cellular infiltration of normal brain tissue. miR-451 and its downstream molecules are known to play a pivotal role in regulation of the balance of proliferation and aggressive invasion in response to metabolic stress in the tumour microenvironment (TME). Surgery-induced transition in reactive astrocyte populations can play a significant role in tumour dynamics. In this work, we develop a multi-scale mathematical model of miR-451-LKB1-AMPK-OCT1-mTOR pathway signalling and individual cell dynamics of the tumour and reactive astrocytes after surgery. We show how the effects of fluctuating glucose on tumour cells need to be reprogrammed by taking into account the recent history of glucose variations and an AMPK/miR-451 reciprocal feedback loop. The model shows how variations in glucose availability significantly affect the activity of signalling molecules and, in turn, lead to critical cell migration. The model also predicts that microsurgery of a primary tumour induces phenotypical changes in reactive astrocytes and stem cell-like astrocytes promoting tumour cell proliferation and migration by Cxcl5. Finally, we investigated a new anti-tumour strategy by Cxcl5-targeting drugs. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea.,Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, USA
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
| | - Sean Lawler
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Kierulf-Vieira KS, Sandberg CJ, Waaler J, Lund K, Skaga E, Saberniak BM, Panagopoulos I, Brandal P, Krauss S, Langmoen IA, Vik-Mo EO. A Small-Molecule Tankyrase Inhibitor Reduces Glioma Stem Cell Proliferation and Sphere Formation. Cancers (Basel) 2020; 12:cancers12061630. [PMID: 32575464 PMCID: PMC7352564 DOI: 10.3390/cancers12061630] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022] Open
Abstract
Evidence suggests that the growth and therapeutic resistance of glioblastoma (GBM) may be enabled by a population of glioma stem cells (GSCs) that are regulated by typical stem cell pathways, including the WNT/β-catenin signaling pathway. We wanted to explore the effect of treating GSCs with a small-molecule inhibitor of tankyrase, G007-LK, which has been shown to be a potent modulator of the WNT/β-catenin and Hippo pathways in colon cancer. Four primary GSC cultures and two primary adult neural stem cell cultures were treated with G007-LK and subsequently evaluated through the measurement of growth characteristics, as well as the expression of WNT/β-catenin and Hippo signaling pathway-related proteins and genes. Treatment with G007-LK decreased in vitro proliferation and sphere formation in all four primary GSC cultures in a dose-dependent manner. G007-LK treatment altered the expression of key downstream WNT/β-catenin and Hippo signaling pathway-related proteins and genes. Finally, cotreatment with the established GBM chemotherapeutic compound temozolomide (TMZ) led to an additive reduction in sphere formation, suggesting that WNT/β-catenin signaling may contribute to TMZ resistance. These observations suggest that tankyrase inhibition may serve as a supplement to current GBM therapy, although more work is needed to determine the exact downstream mechanisms involved.
Collapse
Affiliation(s)
- Kirsten Strømme Kierulf-Vieira
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Correspondence:
| | - Cecilie Jonsgar Sandberg
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
| | - Jo Waaler
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (J.W.); (K.L.); (S.K.)
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 OSLO, Norway
| | - Kaja Lund
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (J.W.); (K.L.); (S.K.)
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 OSLO, Norway
| | - Erlend Skaga
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
| | - Birthe Mikkelsen Saberniak
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
| | - Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, P.O. Box 49534 Nydalen, 0424 Oslo, Norway; (I.P.); (P.B.)
| | - Petter Brandal
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, P.O. Box 49534 Nydalen, 0424 Oslo, Norway; (I.P.); (P.B.)
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, P.O. Box 49534 Nydalen, 0424 Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
| | - Stefan Krauss
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (J.W.); (K.L.); (S.K.)
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1110 Blindern, 0317 OSLO, Norway
| | - Iver Arne Langmoen
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| | - Einar Osland Vik-Mo
- Vilhelm Magnus Laboratory for Neurosurgical Research, Institute for Surgical Research and Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway; (C.J.S.); (E.S.); (B.M.S.); (I.A.L.); (E.O.V.-M.)
- Norwegian Stem Cell Center, Oslo University Hospital, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, P.O. Box 4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
22
|
Hareendran S, Yang X, Lou H, Xiao L, Loh YP. Carboxypeptidase E-∆N Promotes Proliferation and Invasion of Pancreatic Cancer Cells via Upregulation of CXCR2 Gene Expression. Int J Mol Sci 2019; 20:E5725. [PMID: 31731578 PMCID: PMC6888591 DOI: 10.3390/ijms20225725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the leading causes of cancer-related mortality worldwide. The molecular basis for the pathogenesis of this disease remains elusive. In this study, we have investigated the role of wild-type Carboxypeptidase E (CPE-WT) and a 40 kDa N-terminal truncated isoform, CPE-ΔN in promoting proliferation and invasion of Panc-1 cells, a pancreatic cancer cell line. Both CPE-WT and CPE-ΔN were expressed in Panc-1 and BXPC-3 pancreatic cancer cells. Immunocytochemical studies revealed that in CPE transfected Panc-1 cells, CPE-ΔN was found primarily in the nucleus, whereas CPE-WT was present exclusively in the cytoplasm as puncta, characteristic of secretory vesicles. Endogenous CPE-WT was secreted into the media. Overexpression of CPE-ΔN in Panc-1 cells resulted in enhancement of proliferation and invasion of these cells, as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell proliferation assay and Matrigel invasion assay, respectively. In contrast, the expression of CPE-WT protein at comparable levels to CPE-ΔN in Panc-1 cells resulted in promotion of proliferation but not invasion. Importantly, there was an upregulation of the expression of CXCR2 mRNA and protein in Panc-1 cells overexpressing CPE-ΔN, and these cells exhibited significant increase in proliferation in a CXCR2-dependent manner. Thus, CPE-ΔN may play an important role in promoting pancreatic cancer growth and malignancy through upregulating the expression of the metastasis-related gene, CXCR2.
Collapse
Affiliation(s)
| | | | | | | | - Y. Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Kathagen-Buhmann A, Maire CL, Weller J, Schulte A, Matschke J, Holz M, Ligon KL, Glatzel M, Westphal M, Lamszus K. The secreted glycolytic enzyme GPI/AMF stimulates glioblastoma cell migration and invasion in an autocrine fashion but can have anti-proliferative effects. Neuro Oncol 2019; 20:1594-1605. [PMID: 30053149 DOI: 10.1093/neuonc/noy117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Aerobic glycolysis confers several advantages to tumor cells, including shunting of metabolites into anabolic pathways. In glioblastoma cells, hypoxia induces a flux shift from the pentose phosphate pathway toward glycolysis and a switch from proliferation to migration. The mechanistic link between glycolysis and migration is poorly understood. Since glucose-6-phosphate isomerase (GPI) is identical to the secreted cytokine autocrine motility factor (AMF), we investigated whether GPI/AMF regulates glioblastoma cell invasion. Methods The expression and hypoxic regulation of GPI/AMF and its receptor AMFR were analyzed in glioblastoma tissue and cell lines. Functional effects were studied in vitro and in xenograft models. Results High GPI/AMF expression in glioblastomas was found to be associated with a worse patient prognosis, and levels were highest in hypoxic pseudopalisades. Hypoxia upregulated both GPI/AMF and AMFR expression as well as GPI/AMF secretion in vitro. GPI/AMF stimulated cell migration in an autocrine fashion, and GPI/AMF expression was upregulated in migratory cells but reduced in rapidly proliferating cells. Knockdown or inhibition of GPI/AMF reduced glioblastoma cell migration but in part stimulated proliferation. In a highly invasive orthotopic glioblastoma model, GPI/AMF knockdown reduced tumor cell invasion but did not prolong survival. In a highly proliferative model, knockdown tumors were even larger and more proliferative than controls; however, perivascular invasion, provoked by simultaneous bevacizumab treatment, was reduced. Conclusions GPI/AMF is a potent motogen for glioblastoma cells, explaining in part the association between glycolysis and migration. Targeting GPI/AMF is, however, problematic, since beneficial anti-invasive effects may be outweighed by unintended mitogenic effects. Key Points 1.Increased glycolysis is linked with increased cell migration and invasion in glioblastoma cells. 2.The glycolysis enzyme GPI/AMF may serve as a target for antimetabolic and anti-invasive therapy. 3.Despite reducing tumor invasion, GPI/AMF targeting may have unwanted growth stimulatory effects.
Collapse
Affiliation(s)
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan Weller
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Schulte
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mareike Holz
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Keith L Ligon
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Fan S, Gao X, Chen P, Li X. Carboxypeptidase E-ΔN promotes migration, invasiveness, and epithelial–mesenchymal transition of human osteosarcoma cells via the Wnt–β-catenin pathway. Biochem Cell Biol 2019; 97:446-453. [PMID: 30508384 DOI: 10.1139/bcb-2018-0236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents, and metastatic OS is the major cause of OS-related death. Carboxypeptidase E (CPE) is known to be highly expressed in some cancer types, and its N-terminal truncated form, CPE-ΔN, is implicated in tumor metastasis and poor prognosis. In this study, we investigated the effect of CPE-ΔN on cell migration, invasiveness, and the epithelial–mesenchymal transition (EMT) of OS cells, and illustrated the molecular mechanisms. We first constructed CPE-ΔN overexpressing human OS cell lines (143B and U2OS cells), and found that ectopic CPE-ΔN expression in OS cells enhanced cell migration and invasiveness, and promoted the EMT process. Further, overexpression of CPE-ΔN increased the levels of c-myc and nuclear β-catenin in OS cells, which suggested the CPE-ΔN promotes activation of the Wnt–β-catenin pathway in OS cells. Treatment with β-catenin small interfering RNA (siRNA) inhibited the migration and invasiveness of CPE-ΔN-overexpressing cells, and reduced the expression of E-cadherin. Together, these results suggest that CPE-ΔN promotes migration, invasiveness, and the EMT of OS cells via the Wnt–β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shuli Fan
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
| | - Xiang Gao
- Department of Orthopedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
| | - Peng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
| | - Xu Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
| |
Collapse
|
25
|
Yang X, Lou H, Chen YT, Huang SF, Loh YP. A novel 40kDa N-terminal truncated carboxypeptidase E splice variant: cloning, cDNA sequence analysis and role in regulation of metastatic genes in human cancers. Genes Cancer 2019; 10:160-170. [PMID: 31798768 PMCID: PMC6872665 DOI: 10.18632/genesandcancer.193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Carboxypeptidase E (CPE), a prohormone processing enzyme, is a 476- amino acid protein with a signal peptide in its N-terminus and is expressed in the nervous and the endocrine systems. Recent evidence indicate CPE plays various non-enzymatic roles in the endocrine and nervous systems and in various cancers. Besides wild type (WT) CPE, a 40-kDa CPE protein that localizes in the nucleus and cytoplasm has been described in embryonic mouse brain. In this study we have cloned this CPE variant encoding the 40kDa CPE-ΔN protein from human cancer cells. RACE assay and sequence analysis confirmed existence of this CPE variant mRNA, which has 198 nucleotides removed within the first exon and 589 nucleotides from the 3’-UTR, respectively, compared to WT-CPE mRNA. Bioinformatic analysis revealed that this CPE variant mRNA has a shortened open reading frame, which starts coding from the 3rd ATG relative to WT-CPE mRNA and encodes a 40kDa N-terminus truncated CPE protein. RT-PCR and Western blot analysis showed that 40kDa CPE-ΔN is expressed in multiple cancer cell lines and tumor tissues. Overexpression of this 40kDa CPE-ΔN variant up-regulated expression of multiple metastatic genes encompassing different signaling pathways, suggesting potentially an important role of CPE-ΔN in tumor metastasis.
Collapse
Affiliation(s)
- Xuyu Yang
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hong Lou
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Ya-Ting Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhuna, Miaoli, Taiwan
| | - Shui-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhuna, Miaoli, Taiwan.,Department of Anatomical Pathology, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Jo S, Lockridge A, Alejandro EU. eIF4G1 and carboxypeptidase E axis dysregulation in O-GlcNAc transferase-deficient pancreatic β-cells contributes to hyperproinsulinemia in mice. J Biol Chem 2019; 294:13040-13050. [PMID: 31300553 DOI: 10.1074/jbc.ra119.008670] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
An early hallmark of type 2 diabetes is a failure of proinsulin-to-insulin processing in pancreatic β-cells, resulting in hyperproinsulinemia. Proinsulin processing is quite sensitive to nutrient flux, and β-cell-specific deletion of the nutrient-sensing protein modifier OGlcNAc transferase (βOGTKO) causes β-cell failure and diabetes, including early development of hyperproinsulinemia. The mechanisms underlying this latter defect are unknown. Here, using several approaches, including site-directed mutagenesis, Click O-GlcNAc labeling, immunoblotting, and immunofluorescence and EM imaging, we provide the first evidence for a relationship between the O-GlcNAcylation of eukaryotic translation initiation factor 4γ1 (eIF4G1) and carboxypeptidase E (CPE)-dependent proinsulin processing in βOGTKO mice. We first established that βOGTKO hyperproinsulinemia is independent of age, sex, glucose levels, and endoplasmic reticulum-CCAAT enhancer-binding protein homologous protein (CHOP)-mediated stress status. Of note, OGT loss was associated with a reduction in β-cell-resident CPE, and genetic reconstitution of CPE in βOGTKO islets rescued the dysfunctional proinsulin-to-insulin ratio. We show that although CPE is not directly OGlcNAc modified in islets, overexpression of the suspected OGT target eIF4G1, previously shown to regulate CPE translation in β-cells, increases islet CPE levels, and fully reverses βOGTKO islet-induced hyperproinsulinemia. Furthermore, our results reveal that OGT O-GlcNAc-modifies eIF4G1 at Ser-61 and that this modification is critical for eIF4G1 protein stability. Together, these results indicate a direct link between nutrient-sensitive OGT and insulin processing, underscoring the importance of post-translational O-GlcNAc modification in general cell physiology.
Collapse
Affiliation(s)
- Seokwon Jo
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Amber Lockridge
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Emilyn U Alejandro
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota 55455.
| |
Collapse
|
27
|
Treatment Strategies Based on Histological Targets against Invasive and Resistant Glioblastoma. JOURNAL OF ONCOLOGY 2019; 2019:2964783. [PMID: 31320900 PMCID: PMC6610731 DOI: 10.1155/2019/2964783] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most common and the most malignant primary brain tumor and is characterized by rapid proliferation, invasion into surrounding normal brain tissues, and consequent aberrant vascularization. In these characteristics of GBM, invasive properties are responsible for its recurrence after various therapies. The histomorphological patterns of glioma cell invasion have often been referred to as the “secondary structures of Scherer.” The “secondary structures of Scherer” can be classified mainly into four histological types as (i) perineuronal satellitosis, (ii) perivascular satellitosis, (iii) subpial spread, and (iv) invasion along the white matter tracts. In order to develop therapeutic interventions to mitigate glioma cell migration, it is important to understand the biological mechanism underlying the formation of these secondary structures. The main focus of this review is to examine new molecular pathways based on the histopathological evidence of GBM invasion as major prognostic factors for the high recurrence rate for GBMs. The histopathology-based pharmacological and biological targets for treatment strategies may improve the management of invasive and resistant GBMs.
Collapse
|
28
|
Alfonso JCL, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson KR, Hatzikirou H, Deutsch A. The biology and mathematical modelling of glioma invasion: a review. J R Soc Interface 2018; 14:rsif.2017.0490. [PMID: 29118112 DOI: 10.1098/rsif.2017.0490] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Adult gliomas are aggressive brain tumours associated with low patient survival rates and limited life expectancy. The most important hallmark of this type of tumour is its invasive behaviour, characterized by a markedly phenotypic plasticity, infiltrative tumour morphologies and the ability of malignant progression from low- to high-grade tumour types. Indeed, the widespread infiltration of healthy brain tissue by glioma cells is largely responsible for poor prognosis and the difficulty of finding curative therapies. Meanwhile, mathematical models have been established to analyse potential mechanisms of glioma invasion. In this review, we start with a brief introduction to current biological knowledge about glioma invasion, and then critically review and highlight future challenges for mathematical models of glioma invasion.
Collapse
Affiliation(s)
- J C L Alfonso
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - K Talkenberger
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - M Seifert
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - B Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Consortium (DKTK), partner site, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Hawkins-Daarud
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - K R Swanson
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - H Hatzikirou
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - A Deutsch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| |
Collapse
|
29
|
Mehta S, Lo Cascio C. Developmentally regulated signaling pathways in glioma invasion. Cell Mol Life Sci 2018; 75:385-402. [PMID: 28821904 PMCID: PMC5765207 DOI: 10.1007/s00018-017-2608-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 08/03/2017] [Indexed: 01/06/2023]
Abstract
Malignant gliomas are the most common, infiltrative, and lethal primary brain tumors affecting the adult population. The grim prognosis for this disease is due to a combination of the presence of highly invasive tumor cells that escape surgical resection and the presence of a population of therapy-resistant cancer stem cells found within these tumors. Several studies suggest that glioma cells have cleverly hijacked the normal developmental program of neural progenitor cells, including their transcriptional programs, to enhance gliomagenesis. In this review, we summarize the role of developmentally regulated signaling pathways that have been found to facilitate glioma growth and invasion. Furthermore, we discuss how the microenvironment and treatment-induced perturbations of these highly interconnected signaling networks can trigger a shift in cellular phenotype and tumor subtype.
Collapse
Affiliation(s)
- Shwetal Mehta
- Division of Neurobiology, Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA.
| | - Costanza Lo Cascio
- Division of Neurobiology, Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| |
Collapse
|
30
|
Ilina EI, Armento A, Sanchez LG, Reichlmeir M, Braun Y, Penski C, Capper D, Sahm F, Jennewein L, Harter PN, Zukunft S, Fleming I, Schulte D, Le Guerroué F, Behrends C, Ronellenfitsch MW, Naumann U, Mittelbronn M. Effects of soluble CPE on glioma cell migration are associated with mTOR activation and enhanced glucose flux. Oncotarget 2017; 8:67567-67591. [PMID: 28978054 PMCID: PMC5620194 DOI: 10.18632/oncotarget.18747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/12/2017] [Indexed: 01/05/2023] Open
Abstract
Carboxypeptidase E (CPE) has recently been described as a multifunctional protein that regulates proliferation, migration and survival in several tumor entities. In glioblastoma (GBM), the most malignant primary brain tumor, secreted CPE (sCPE) was shown to modulate tumor cell migration. In our current study, we aimed at clarifying the underlying molecular mechanisms regulating anti-migratory as well as novel metabolic effects of sCPE in GBM. Here we show that sCPE activates mTORC1 signaling in glioma cells detectable by phosphorylation of its downstream target RPS6. Additionally, sCPE diminishes glioma cell migration associated with a negative regulation of Rac1 signaling via RPS6, since both inhibition of mTOR and stimulation of Rac1 results in a reversed effect of sCPE on migration. Knockdown of CPE leads to a decrease of active RPS6 associated with increased GBM cell motility. Apart from this, we show that sCPE enhances glucose flux into the tricarboxylic acid cycle at the expense of lactate production, thereby decreasing aerobic glycolysis, which might as well contribute to a less invasive behavior of tumor cells. Our data contributes to a better understanding of the complexity of GBM cell migration and sheds new light on how tumor cell invasion and metabolic plasticity are interconnected.
Collapse
Affiliation(s)
- Elena I Ilina
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,Luxembourg Centre of Neuropathology (LCNP), 3555 Dudelange, Luxembourg.,NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), 1526 Luxembourg, Luxembourg
| | - Angela Armento
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Leticia Garea Sanchez
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Marina Reichlmeir
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Yannick Braun
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Cornelia Penski
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David Capper
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, 69120 Heidelberg, Germany
| | - Felix Sahm
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, 69120 Heidelberg, Germany
| | - Lukas Jennewein
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sven Zukunft
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - Ingrid Fleming
- Institute for Vascular Signaling, Centre for Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - Dorothea Schulte
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany
| | - Francois Le Guerroué
- Institute of Biochemistry II, Medical School Goethe University, 60528 Frankfurt, Germany
| | - Christian Behrends
- Institute of Biochemistry II, Medical School Goethe University, 60528 Frankfurt, Germany.,Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University (LMU) Munich, 81377 Munich, Germany
| | - Michael W Ronellenfitsch
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Senckenberg Institute of Neurooncology, Goethe University, 60528 Frankfurt, Germany
| | - Ulrike Naumann
- Molecular Neurooncology, Department of Vascular Neurology, Hertie Institute for Clinical Brain Research and Center Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Michel Mittelbronn
- Institute of Neurology (Edinger Institute), Goethe University, 60528 Frankfurt, Germany.,Luxembourg Centre of Neuropathology (LCNP), 3555 Dudelange, Luxembourg.,NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (L.I.H.), 1526 Luxembourg, Luxembourg.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Laboratoire National de Santé, Department of Pathology, 3555 Dudelange, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4361 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
31
|
Armento A, Ilina EI, Kaoma T, Muller A, Vallar L, Niclou SP, Krüger MA, Mittelbronn M, Naumann U. Carboxypeptidase E transmits its anti-migratory function in glioma cells via transcriptional regulation of cell architecture and motility regulating factors. Int J Oncol 2017; 51:702-714. [DOI: 10.3892/ijo.2017.4051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/06/2017] [Indexed: 11/06/2022] Open
|
32
|
Bizjak M, Malavašič P, Dolinar K, Pohar J, Pirkmajer S, Pavlin M. Combined treatment with Metformin and 2-deoxy glucose induces detachment of viable MDA-MB-231 breast cancer cells in vitro. Sci Rep 2017; 7:1761. [PMID: 28496098 PMCID: PMC5431940 DOI: 10.1038/s41598-017-01801-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
Triple naegative breast cancer has an increased rate of distant metastasis and consequently poor prognosis. To metastasize, breast cancer cells must detach from the main tumour mass and resist anoikis, a programmed cell death induced by lack of cell-extracellular matrix communication. Although cancer cells must detach to metastasize in vivo, the viability of floating cancer cells in vitro is rarely investigated. Here we show that co-treatment of anoikis-resistant MDA-MB-231 cells with metformin and 2-deoxy-D-glucose (2-DG) increased the percentage of floating cells, of which about 95% were viable. Floating cells resumed their proliferation once they were reseeded in the pharmacological compound-free medium. Similar effects on detachment were observed on anoikis-prone MCF-7 cells. Co-treatment of MDA-MB-231 cells with metformin and 2-DG induced a strong activation of AMP-activated protein kinase (AMPK), which was reduced by AMPK inhibitor compound C that prevented detachment of MDA-MB-231 cells. However, direct AMPK activators A-769662 and AICAR did not have any major effect on the percentage of floating MDA-MB-231 cells, indicating that AMPK activation is necessary but not sufficient for triggering detachment of cancer cells. Our results demonstrate that separate analysis of floating and attached cancer cells might be important for evaluation of anti-cancer agents.
Collapse
Affiliation(s)
- Maruša Bizjak
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Malavašič
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dolinar
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia.,Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jelka Pohar
- Department of Synthetic Biology and Immunology, National institute of Chemistry, Ljubljana, Slovenia.,Centre of Excellence EN-FIST, Ljubljana, Slovenia
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Pavlin
- Group for nano and biotechnological applications, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia. .,Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
33
|
Ji L, Wu HT, Qin XY, Lan R. Dissecting carboxypeptidase E: properties, functions and pathophysiological roles in disease. Endocr Connect 2017; 6:R18-R38. [PMID: 28348001 PMCID: PMC5434747 DOI: 10.1530/ec-17-0020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023]
Abstract
Since discovery in 1982, carboxypeptidase E (CPE) has been shown to be involved in the biosynthesis of a wide range of neuropeptides and peptide hormones in endocrine tissues, and in the nervous system. This protein is produced from pro-CPE and exists in soluble and membrane forms. Membrane CPE mediates the targeting of prohormones to the regulated secretory pathway, while soluble CPE acts as an exopeptidase and cleaves C-terminal basic residues from peptide intermediates to generate bioactive peptides. CPE also participates in protein internalization, vesicle transport and regulation of signaling pathways. Therefore, in two types of CPE mutant mice, Cpefat/Cpefat and Cpe knockout, loss of normal CPE leads to a lot of disorders, including diabetes, hyperproinsulinemia, low bone mineral density and deficits in learning and memory. In addition, the potential roles of CPE and ΔN-CPE, an N-terminal truncated form, in tumorigenesis and diagnosis were also addressed. Herein, we focus on dissecting the pathophysiological roles of CPE in the endocrine and nervous systems, and related diseases.
Collapse
Affiliation(s)
- Lin Ji
- Department of Cell Biology & Medical GeneticsSchool of Medicine, Shenzhen University, Shenzhen, China
| | - Huan-Tong Wu
- Beijing Engineering Research Center of Food Environment and HealthCollege of Life & Environmental Sciences, Minzu University of China, Beijing, China
| | - Xiao-Yan Qin
- Beijing Engineering Research Center of Food Environment and HealthCollege of Life & Environmental Sciences, Minzu University of China, Beijing, China
| | - Rongfeng Lan
- Department of Cell Biology & Medical GeneticsSchool of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
34
|
Katakowski M, Charteris N, Chopp M, Khain E. Density-Dependent Regulation of Glioma Cell Proliferation and Invasion Mediated by miR-9. CANCER MICROENVIRONMENT 2016; 9:149-159. [PMID: 27975329 DOI: 10.1007/s12307-016-0190-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/05/2016] [Indexed: 01/11/2023]
Abstract
The phenotypic axis of invasion and proliferation in malignant glioma cells is a well-documented phenomenon. Invasive glioma cells exhibit a decreased proliferation rate and a resistance to apoptosis, and invasive tumor cells dispersed in brain subsequently revert to proliferation and contribute to secondary tumor formation. One miRNA can affect dozens of mRNAs, and some miRNAs are potent oncogenes. Multiple miRNAs are implicated in glioma malignancy, and several of which have been identified to regulate tumor cell motility and division. Using rat 9 L gliosarcoma and human U87 glioblastoma cell lines, we investigated miRNAs associated with the switch between glioma cell invasion and proliferation. Using micro-dissection of 9 L glioma tumor xenografts in rat brain, we identified disparate expression of miR-9 between cells within the periphery of the primary tumor, and those comprising tumor islets within the invasive zone. Modifying miR-9 expression in in vitro assays, we report that miR-9 controls the axis of glioma cell invasion/proliferation, and that its contribution to invasion or proliferation is biphasic and dependent upon local tumor cell density. In addition, immunohistochemistry revealed elevated hypoxia inducible factor 1 alpha (HIF-1α) in the invasive zone as compared to the primary tumor periphery. We also found that hypoxia promotes miR-9 expression in glioma cells. Based upon these findings, we propose a hypothesis for the contribution of miR-9 to the dynamics glioma invasion and satellite tumor formation in brain adjacent to tumor.
Collapse
Affiliation(s)
- Mark Katakowski
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Evgeniy Khain
- Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
35
|
Alfonso JCL, Köhn-Luque A, Stylianopoulos T, Feuerhake F, Deutsch A, Hatzikirou H. Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights. Sci Rep 2016; 6:37283. [PMID: 27876890 PMCID: PMC5120360 DOI: 10.1038/srep37283] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022] Open
Abstract
Gliomas are highly invasive brain tumours characterised by poor prognosis and limited response to therapy. There is an ongoing debate on the therapeutic potential of vaso-modulatory interventions against glioma invasion. Prominent vasculature-targeting therapies involve tumour blood vessel deterioration and normalisation. The former aims at tumour infarction and nutrient deprivation induced by blood vessel occlusion/collapse. In contrast, the therapeutic intention of normalising the abnormal tumour vasculature is to improve the efficacy of conventional treatment modalities. Although these strategies have shown therapeutic potential, it remains unclear why they both often fail to control glioma growth. To shed some light on this issue, we propose a mathematical model based on the migration/proliferation dichotomy of glioma cells in order to investigate why vaso-modulatory interventions have shown limited success in terms of tumour clearance. We found the existence of a critical cell proliferation/diffusion ratio that separates glioma responses to vaso-modulatory interventions into two distinct regimes. While for tumours, belonging to one regime, vascular modulations reduce the front speed and increase the infiltration width, for those in the other regime, the invasion speed increases and infiltration width decreases. We discuss how these in silico findings can be used to guide individualised vaso-modulatory approaches to improve treatment success rates.
Collapse
Affiliation(s)
- J C L Alfonso
- Braunschweig Integrated Centre of Systems Biology and Helmholtz Center for Infectious Research, Braunschweig, Germany.,Center for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - A Köhn-Luque
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Norway.,BigInsight, Centre for Research-based Innovation (SFI), Oslo, Norway
| | - T Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - F Feuerhake
- Institute of Pathology, Medical School of Hannover, Germany.,Institute of Neuropathology, University Clinic Freiburg, Germany
| | - A Deutsch
- Center for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - H Hatzikirou
- Braunschweig Integrated Centre of Systems Biology and Helmholtz Center for Infectious Research, Braunschweig, Germany
| |
Collapse
|
36
|
Woolf EC, Syed N, Scheck AC. Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy. Front Mol Neurosci 2016; 9:122. [PMID: 27899882 PMCID: PMC5110522 DOI: 10.3389/fnmol.2016.00122] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/31/2016] [Indexed: 12/18/2022] Open
Abstract
Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma.
Collapse
Affiliation(s)
- Eric C Woolf
- Neuro-Oncology Research, Barrow Brain Tumor Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical CenterPhoenix, AZ, USA; School of Life Sciences, Arizona State UniversityTempe, AZ, USA
| | - Nelofer Syed
- The John Fulcher Molecular Neuro-Oncology Laboratory, Division of Brain Sciences, Imperial College London London, UK
| | - Adrienne C Scheck
- Neuro-Oncology Research, Barrow Brain Tumor Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical CenterPhoenix, AZ, USA; School of Life Sciences, Arizona State UniversityTempe, AZ, USA
| |
Collapse
|
37
|
Zinc and zinc-containing biomolecules in childhood brain tumors. J Mol Med (Berl) 2016; 94:1199-1215. [PMID: 27638340 DOI: 10.1007/s00109-016-1454-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
Abstract
Zinc ions are essential cofactors of a wide range of enzymes, transcription factors, and other regulatory proteins. Moreover, zinc is also involved in cellular signaling and enzymes inhibition. Zinc dysregulation, deficiency, over-supply, and imbalance in zinc ion transporters regulation are connected with various diseases including cancer. A zinc ion pool is maintained by two types of proteins: (i) zinc-binding proteins, which act as a buffer and intracellular donors of zinc and (ii) zinc transporters responsible for zinc fluxes into/from cells and organelles. The decreased serum zinc ion levels have been identified in patients suffering from various cancer diseases, including head and neck tumors and breast, prostate, liver, and lung cancer. On the contrary, increased zinc ion levels have been found in breast cancer and other malignant tissues. Zinc metalloproteomes of a majority of tumors including brain ones are still not yet fully understood. Current knowledge show that zinc ion levels and detection of certain zinc-containing proteins may be utilized for diagnostic and prognostic purposes. In addition, these proteins can also be promising therapeutic targets. The aim of the present work is an overview of the importance of zinc ions, zinc transporters, and zinc-containing proteins in brain tumors, which are, after leukemia, the second most common type of childhood cancer and the second leading cause of death in children after accidents.
Collapse
|
38
|
Kahlert UD, Mooney SM, Natsumeda M, Steiger HJ, Maciaczyk J. Targeting cancer stem-like cells in glioblastoma and colorectal cancer through metabolic pathways. Int J Cancer 2016; 140:10-22. [PMID: 27389307 DOI: 10.1002/ijc.30259] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022]
Abstract
Cancer stem-like cells (CSCs) are thought to be the main cause of tumor occurrence, progression and therapeutic resistance. Strong research efforts in the last decade have led to the development of several tailored approaches to target CSCs with some very promising clinical trials underway; however, until now no anti-CSC therapy has been approved for clinical use. Given the recent improvement in our understanding of how onco-proteins can manipulate cellular metabolic networks to promote tumorigenesis, cancer metabolism research may well lead to innovative strategies to identify novel regulators and downstream mediators of CSC maintenance. Interfering with distinct stages of CSC-associated metabolics may elucidate novel, more efficient strategies to target this highly malignant cell population. Here recent discoveries regarding the metabolic properties attributed to CSCs in glioblastoma (GBM) and malignant colorectal cancer (CRC) were summarized. The association between stem cell markers, the response to hypoxia and other environmental stresses including therapeutic insults as well as developmentally conserved signaling pathways with alterations in cellular bioenergetic networks were also discussed. The recent developments in metabolic imaging to identify CSCs were also summarized. This summary should comprehensively update basic and clinical scientists on the metabolic traits of CSCs in GBM and malignant CRC.
Collapse
Affiliation(s)
- U D Kahlert
- Department of Neurosurgery, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| | - S M Mooney
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - M Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - H-J Steiger
- Department of Neurosurgery, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| | - J Maciaczyk
- Department of Neurosurgery, Heinrich-Heine University Medical Center, Düsseldorf, Germany
| |
Collapse
|
39
|
Carboxypeptidase E (CPE) inhibits the secretion and activity of Wnt3a. Oncogene 2016; 35:6416-6428. [DOI: 10.1038/onc.2016.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/26/2016] [Accepted: 04/08/2016] [Indexed: 12/19/2022]
|
40
|
Fan S, Li X, Li L, Wang L, Du Z, Yang Y, Zhao J, Li Y. Silencing of carboxypeptidase E inhibits cell proliferation, tumorigenicity, and metastasis of osteosarcoma cells. Onco Targets Ther 2016; 9:2795-803. [PMID: 27274275 PMCID: PMC4869623 DOI: 10.2147/ott.s98991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Carboxypeptidase E (CPE), a prohormone processing enzyme, has been implicated in the progression of multiple malignancies. However, the biological role and molecular mechanisms of CPE in osteosarcoma remain elusive. In this study, we assessed the effects of CPE on cell proliferation, tumorigenicity, migration, and invasion in osteosarcoma. Our results showed that silencing of CPE significantly inhibited cell proliferation, caused cell cycle arrest at G0/G1 phase, decreased the expression levels of cell cycle protein, cyclin D1, and inhibited tumorigenicity in vivo. Additionally, CPE downregulation repressed the migratory and invasive capacities of osteosarcoma cells in vitro. Furthermore, overexpression of CPE-ΔN (a splice variant of CPE) enhanced the cell growth, migration, and invasion of osteosarcoma cells. It is possible that both CPE forms are involved in the tumorigenesis and development of osteosarcoma, and therefore CPE may provide a promising biological target for osteosarcoma therapy.
Collapse
Affiliation(s)
- Shuli Fan
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xu Li
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Leiming Li
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Liguo Wang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zhangzhen Du
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yan Yang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jiansong Zhao
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yan Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
41
|
Kathagen-Buhmann A, Schulte A, Weller J, Holz M, Herold-Mende C, Glass R, Lamszus K. Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation. Neuro Oncol 2016; 18:1219-29. [PMID: 26917237 DOI: 10.1093/neuonc/now024] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/29/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The dichotomy between glioblastoma cell migration and proliferation is regulated by various parameters including oxygen tension. In glioblastoma stem-like cells, hypoxia induces downregulation of pentose phosphate pathway (PPP) enzymes and a flux shift towards glycolysis. We investigated whether the 2 parallel glucose metabolic pathways are intrinsically linked with cell function and whether these pathways are mechanistically involved in regulating functional programs. METHODS Enzyme expression, migration, and proliferation under hypoxia were studied in multiple cell types. Rapidly and slowly dividing or migrating glioblastoma cells were separated, and enzyme profiles were compared. Glucose-6-phosphate dehydrogenase (G6PD) and Aldolase C (ALDOC), the most strongly inversely regulated PPP and glycolysis enzymes, were knocked down by short hairpin RNA. RESULTS Hypoxia caused downregulation of PPP enzymes and upregulation of glycolysis enzymes in a broad spectrum of cancer and nonneoplastic cells and consistently stimulated migration while reducing proliferation. PPP enzyme expression was increased in rapidly dividing glioblastoma cells, whereas glycolysis enzymes were decreased. Conversely, glycolysis enzymes were elevated in migrating cells, whereas PPP enzymes were diminished. Knockdown of G6PD reduced glioblastoma cell proliferation, whereas ALDOC knockdown decreased migration. Enzyme inhibitors had similar effects. G6PD knockdown in a highly proliferative but noninvasive glioblastoma cell line resulted in prolonged survival of mice with intracerebral xenografts, whereas ALDOC knockdown shortened survival. In a highly invasive glioblastoma xenograft model, tumor burden was unchanged by either knockdown. CONCLUSIONS Cell function and metabolic state are coupled independently of hypoxia, and glucose metabolic pathways are causatively involved in regulating "go or grow" cellular programs.
Collapse
Affiliation(s)
- Annegret Kathagen-Buhmann
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.K.-B., A.S., J.W., M.H., K.L.); Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany (C.H.-M.); Department of Neurosurgery, Klinikum Grosshadern, Ludwigs-Maximilians-University, Munich, Germany (R.G.)
| | - Alexander Schulte
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.K.-B., A.S., J.W., M.H., K.L.); Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany (C.H.-M.); Department of Neurosurgery, Klinikum Grosshadern, Ludwigs-Maximilians-University, Munich, Germany (R.G.)
| | - Jonathan Weller
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.K.-B., A.S., J.W., M.H., K.L.); Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany (C.H.-M.); Department of Neurosurgery, Klinikum Grosshadern, Ludwigs-Maximilians-University, Munich, Germany (R.G.)
| | - Mareike Holz
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.K.-B., A.S., J.W., M.H., K.L.); Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany (C.H.-M.); Department of Neurosurgery, Klinikum Grosshadern, Ludwigs-Maximilians-University, Munich, Germany (R.G.)
| | - Christel Herold-Mende
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.K.-B., A.S., J.W., M.H., K.L.); Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany (C.H.-M.); Department of Neurosurgery, Klinikum Grosshadern, Ludwigs-Maximilians-University, Munich, Germany (R.G.)
| | - Rainer Glass
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.K.-B., A.S., J.W., M.H., K.L.); Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany (C.H.-M.); Department of Neurosurgery, Klinikum Grosshadern, Ludwigs-Maximilians-University, Munich, Germany (R.G.)
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.K.-B., A.S., J.W., M.H., K.L.); Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany (C.H.-M.); Department of Neurosurgery, Klinikum Grosshadern, Ludwigs-Maximilians-University, Munich, Germany (R.G.)
| |
Collapse
|
42
|
Huang SF, Wu HDI, Chen YT, Murthy SRK, Chiu YT, Chang Y, Chang IC, Yang X, Loh YP. Carboxypeptidase E is a prediction marker for tumor recurrence in early-stage hepatocellular carcinoma. Tumour Biol 2016; 37:9745-53. [PMID: 26803519 DOI: 10.1007/s13277-016-4814-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/06/2016] [Indexed: 11/28/2022] Open
Abstract
Tumor recurrence and metastasis are the major causes of death for hepatocellular carcinoma (HCC) patients who are able to receive curative resection. Identifying the predicting biomarkers for tumor recurrence would improve their survival. RNA extracted from fresh frozen tumors and adjacent non-tumor liver tissues of 120 HCC patients were obtained from Taiwan Liver Cancer Network (TLCN) in year 2010 for determination of the carboxypeptidase E (CPE) expression level (including its splicing mutant CPE-ΔN) in the tumor tissue (T) and paired non-tumor liver tissue (N) by real-time quantitative polymerase chain reaction. All patients were male, had chronic hepatitis B virus infection, were in the early pathology stage, and received curative resection. The T/N ratio of the CPE expression level was correlated with the updated survival data from TLCN in 2015. The CPE expression level in the 120 HCC patients was divided into three groups according to the T/N ratio: <1, ≥1 and ≤2, and >2, respectively. By multivariate analyses, the recurrence-free survival (RFS) was only significantly associated with the pathology stage and the CPE expression level. For overall survival (OS), only the CPE expression level was the significant prognostic factor. The CPE expression level was also significantly correlated with the tumor recurrence for both stage I (p = 0.0106) and stage II patients (p = 0.0006). The CPE mRNA expression level in HCC can be a useful biomarker for predicting tumor recurrence in HCC patients who are in the early pathology stage and able to receive curative resection.
Collapse
Affiliation(s)
- Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhuna, Miaoli, 350, Taiwan. .,Department of Anatomical Pathology, Chung-Shan Medical University Hospital, Taichung, Taiwan.
| | - Hong-Dar Isaac Wu
- Department of Applied Mathematics and Institute of Statistics, National Chung-Hsing University, Taichung, Taiwan
| | - Ya-Ting Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhuna, Miaoli, 350, Taiwan
| | - Saravana R K Murthy
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 49, Rm. 6A-10, 49, Convent Drive, Bethesda, MD, 20892, USA
| | - Yu-Ting Chiu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhuna, Miaoli, 350, Taiwan
| | - Yu Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhuna, Miaoli, 350, Taiwan
| | - Il-Chi Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhuna, Miaoli, 350, Taiwan
| | - Xuyu Yang
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 49, Rm. 6A-10, 49, Convent Drive, Bethesda, MD, 20892, USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 49, Rm. 6A-10, 49, Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
43
|
Chronophin is a glial tumor modifier involved in the regulation of glioblastoma growth and invasiveness. Oncogene 2015; 35:3163-77. [DOI: 10.1038/onc.2015.376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/30/2015] [Accepted: 09/04/2015] [Indexed: 02/02/2023]
|
44
|
Kempf H, Bleicher M, Meyer-Hermann M. Spatio-Temporal Dynamics of Hypoxia during Radiotherapy. PLoS One 2015; 10:e0133357. [PMID: 26273841 PMCID: PMC4537194 DOI: 10.1371/journal.pone.0133357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/26/2015] [Indexed: 12/27/2022] Open
Abstract
Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal oxygenation dynamics in tumours, the precise oxygen distribution map is rarely available for treatment planing. We employ an agent-based in silico tumour spheroid model in order to study the complex, localized and fast oxygen dynamics in tumour micro-regions which are induced by radiotherapy. A lattice-free, 3D, agent-based approach for cell representation is coupled with a high-resolution diffusion solver that includes a tissue density-dependent diffusion coefficient. This allows us to assess the space- and time-resolved reoxygenation response of a small subvolume of tumour tissue in response to radiotherapy. In response to irradiation the tumour nodule exhibits characteristic reoxygenation and re-depletion dynamics which we resolve with high spatio-temporal resolution. The reoxygenation follows specific timings, which should be respected in treatment in order to maximise the use of the oxygen enhancement effects. Oxygen dynamics within the tumour create windows of opportunity for the use of adjuvant chemotherapeutica and hypoxia-activated drugs. Overall, we show that by using modelling it is possible to follow the oxygenation dynamics beyond common resolution limits and predict beneficial strategies for therapy and in vitro verification. Models of cell cycle and oxygen dynamics in tumours should in the future be combined with imaging techniques, to allow for a systematic experimental study of possible improved schedules and to ultimately extend the reach of oxygenation monitoring available in clinical treatment.
Collapse
Affiliation(s)
- Harald Kempf
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Marcus Bleicher
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
45
|
Ansari KI, Ogawa D, Rooj AK, Lawler SE, Krichevsky AM, Johnson MD, Chiocca EA, Bronisz A, Godlewski J. Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor. Cell Rep 2015; 11:902-909. [PMID: 25937278 DOI: 10.1016/j.celrep.2015.04.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/21/2015] [Accepted: 04/06/2015] [Indexed: 01/11/2023] Open
Abstract
In aggressive, rapidly growing solid tumors such as glioblastoma multiforme (GBM), cancer cells face frequent dynamic changes in their microenvironment, including the availability of glucose and other nutrients. These challenges require that tumor cells have the ability to adapt in order to survive periods of nutrient/energy starvation. We have identified a reciprocal negative feedback loop mechanism in which the levels of microRNA-451 (miR-451) are negatively regulated through the phosphorylation and inactivation of its direct transcriptional activator OCT1 by 5' AMP-activated protein kinase (AMPK), which is activated by glucose depletion-induced metabolic stress. Conversely, in a glucose-rich environment, unrestrained expression of miR-451 suppresses AMPK pathway activity. These findings uncover miR-451 as a major effector of glucose-regulated AMPK signaling, allowing tumor cell adaptation to variations in nutrient availability in the tumor microenvironment.
Collapse
Affiliation(s)
- Khairul I Ansari
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daisuke Ogawa
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurological Surgery, Kagawa University Hospital, Miki-cho, Kagawa 761-0793, Japan
| | - Arun K Rooj
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sean E Lawler
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna M Krichevsky
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mark D Johnson
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Agnieszka Bronisz
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jakub Godlewski
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Kahlert UD, Suwala AK, Raabe EH, Siebzehnrubl FA, Suarez MJ, Orr BA, Bar EE, Maciaczyk J, Eberhart CG. ZEB1 Promotes Invasion in Human Fetal Neural Stem Cells and Hypoxic Glioma Neurospheres. Brain Pathol 2015; 25:724-32. [PMID: 25521330 DOI: 10.1111/bpa.12240] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/12/2014] [Indexed: 12/16/2022] Open
Abstract
Diffuse spread through brain parenchyma and the presence of hypoxic foci rimmed by neoplastic cells are two cardinal features of glioblastoma, and low oxygen is thought to drive movement of malignant gliomas in the core of the lesions. Transcription factors associated with epithelial-to-mesenchymal transition (EMT) have been linked to this invasion, and we found that hypoxia increased in vitro invasion up to fourfold in glioblastoma neurosphere lines and induced the expression of ZEB1. Immunohistochemical assessment of 295 surgical specimens consisting of various types of pediatric and adult brain cancers showed that ZEB1 expression was significantly higher in infiltrative lesions than less invasive tumors such as pilocytic astrocytoma and ependymoma. ZEB1 protein was also present in human fetal periventricular stem and progenitor cells and ZEB1 inhibition impaired migration of in vitro propagated human neural stem cells. The induction of ZEB1 protein in hypoxic glioblastoma neurospheres could be partially blocked by the HIF1alpha inhibitor digoxin. Targeting ZEB1 blocked hypoxia-augmented invasion of glioblastoma cells in addition to slowing them in normoxia. These data support the role for ZEB1 in invasive and high-grade brain tumors and suggest its key role in promoting invasion in the hypoxic tumor core as well as in the periphery.
Collapse
Affiliation(s)
- Ulf D Kahlert
- Department of Pathology, Division of Neuropathology, Johns Hopkins Hospital, Baltimore, MD.,Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Abigail K Suwala
- Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Eric H Raabe
- Department of Pathology, Division of Neuropathology, Johns Hopkins Hospital, Baltimore, MD
| | | | - Maria J Suarez
- Department of Pathology, Division of Neuropathology, Johns Hopkins Hospital, Baltimore, MD
| | - Brent A Orr
- Anatomical Pathology, St. Jude Children Research Hospital
| | - Eli E Bar
- Department of Neurosurgery, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Jaroslaw Maciaczyk
- Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Charles G Eberhart
- Department of Pathology, Division of Neuropathology, Johns Hopkins Hospital, Baltimore, MD
| |
Collapse
|
47
|
Scribner E, Saut O, Province P, Bag A, Colin T, Fathallah-Shaykh HM. Effects of anti-angiogenesis on glioblastoma growth and migration: model to clinical predictions. PLoS One 2014; 9:e115018. [PMID: 25506702 PMCID: PMC4266618 DOI: 10.1371/journal.pone.0115018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/17/2014] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) causes significant neurological morbidity and short survival times. Brain invasion by GBM is associated with poor prognosis. Recent clinical trials of bevacizumab in newly-diagnosed GBM found no beneficial effects on overall survival times; however, the baseline health-related quality of life and performance status were maintained longer in the bevacizumab group and the glucocorticoid requirement was lower. Here, we construct a clinical-scale model of GBM whose predictions uncover a new pattern of recurrence in 11/70 bevacizumab-treated patients. The findings support an exception to the Folkman hypothesis: GBM grows in the absence of angiogenesis by a cycle of proliferation and brain invasion that expands necrosis. Furthermore, necrosis is positively correlated with brain invasion in 26 newly-diagnosed GBM. The unintuitive results explain the unusual clinical effects of bevacizumab and suggest new hypotheses on the dynamic clinical effects of migration by active transport, a mechanism of hypoxia-driven brain invasion.
Collapse
Affiliation(s)
- Elizabeth Scribner
- Department of Mathematics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Olivier Saut
- Department of Mathematics, University of Bordeaux, Talence, France
| | - Paula Province
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Asim Bag
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Thierry Colin
- Department of Mathematics, University of Bordeaux, Talence, France
| | - Hassan M. Fathallah-Shaykh
- Department of Mathematics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
48
|
carboxypeptidase E-ΔN, a neuroprotein transiently expressed during development protects embryonic neurons against glutamate neurotoxicity. PLoS One 2014; 9:e112996. [PMID: 25426952 PMCID: PMC4245097 DOI: 10.1371/journal.pone.0112996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/17/2014] [Indexed: 12/04/2022] Open
Abstract
Neuroprotective proteins expressed in the fetus play a critical role during early embryonic neurodevelopment, especially during maternal exposure to alcohol and drugs that cause stress, glutamate neuroexcitotoxicity, and damage to the fetal brain, if prolonged. We have identified a novel protein, carboxypeptidase E-ΔN (CPE-ΔN), which is a splice variant of CPE that has neuroprotective effects on embryonic neurons. CPE-ΔN is transiently expressed in mouse embryos from embryonic day 5.5 to postnatal day 1. It is expressed in embryonic neurons, but not in 3 week or older mouse brains, suggesting a function primarily in utero. CPE-ΔN expression was up-regulated in embryonic hippocampal neurons in response to dexamethasone treatment. CPE-ΔN transduced into rat embryonic cortical and hippocampal neurons protected them from glutamate- and H2O2-induced cell death. When transduced into embryonic cortical neurons, CPE-ΔN was found in the nucleus and enhanced the transcription of FGF2 mRNA. Embryonic cortical neurons challenged with glutamate resulted in attenuated FGF2 levels and cell death, but CPE-ΔN transduced neurons treated in the same manner showed increased FGF2 expression and normal viability. This neuroprotective effect of CPE-ΔN was mediated by secreted FGF2. Through receptor signaling, FGF2 activated the AKT and ERK signaling pathways, which in turn increased BCL-2 expression. This led to inhibition of caspase-3 activity and cell survival.
Collapse
|
49
|
Expression analysis of all protease genes reveals cathepsin K to be overexpressed in glioblastoma. PLoS One 2014; 9:e111819. [PMID: 25356585 PMCID: PMC4214761 DOI: 10.1371/journal.pone.0111819] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/01/2014] [Indexed: 01/26/2023] Open
Abstract
Background Cancer genome and transcriptome analyses advanced our understanding of cancer biology. We performed transcriptome analysis of all known genes of peptidases also called proteases and their endogenous inhibitors in glioblastoma multiforme (GBM), which is one of the most aggressive and deadly types of brain cancers, where unbalanced proteolysis is associated with tumor progression. Methods Comparisons were performed between the transcriptomics of primary GBM tumors and unmatched non-malignant brain tissue, and between GBM cell lines (U87-MG and U373) and a control human astrocyte cell line (NHA). Publicly-available data sets and our own datasets were integrated and normalized using bioinformatics tools to reveal protease and protease inhibitor genes with deregulated expression in both malignant versus non-malignant tissues and cells. Results Of the 311 protease genes identified to be differentially expressed in both GBM tissues and cells, 5 genes were highly overexpressed, 2 genes coding for non-peptidase homologues transferrin receptor (TFRC) and G protein-coupled receptor 56 (GPR56), as well as 3 genes coding for the proteases endoplasmic reticulum aminopeptidase 2 (ERAP2), glutamine-fructose-6-phosphate transaminase 2 (GFPT2) and cathepsin K (CTSK), whereas one gene, that of the serine protease carboxypeptidase E (CPE) was strongly reduced in expression. Seventy five protease inhibitor genes were differentially expressed, of which 3 genes were highly overexpressed, the genes coding for stefin B (CSTB), peptidase inhibitor 3 (PI3 also named elafin) and CD74. Seven out of 8 genes (except CSTB) were validated using RT-qPCR in GBM cell lines. CTSK overexpression was validated using RT-qPCR in GBM tissues as well. Cathepsin K immunohistochemical staining and western blotting showed that only proteolytically inactive proforms of cathepsin K were overexpressed in GBM tissues and cells. Conclusions The presence of high levels of inactive proforms of cathepsin K in GBM tissues and cells indicate that in GBM the proteolytic/collagenolytic role is not its primary function but it plays rather a different yet unknown role.
Collapse
|
50
|
Waldman YY, Geiger T, Ruppin E. A genome-wide systematic analysis reveals different and predictive proliferation expression signatures of cancerous vs. non-cancerous cells. PLoS Genet 2013; 9:e1003806. [PMID: 24068970 PMCID: PMC3778010 DOI: 10.1371/journal.pgen.1003806] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023] Open
Abstract
Understanding cell proliferation mechanisms has been a long-lasting goal of the scientific community and specifically of cancer researchers. Previous genome-scale studies of cancer proliferation determinants have mainly relied on knockdown screens aimed to gauge their effects on cancer growth. This powerful approach has several limitations such as off-target effects, partial knockdown, and masking effects due to functional backups. Here we employ a complementary approach and assign each gene a cancer Proliferation Index (cPI) that quantifies the association between its expression levels and growth rate measurements across 60 cancer cell lines. Reassuringly, genes found essential in cancer gene knockdown screens exhibit significant positive cPI values, while tumor suppressors exhibit significant negative cPI values. Cell cycle, DNA replication, splicing and protein production related processes are positively associated with cancer proliferation, while cellular migration is negatively associated with it – in accordance with the well known “go or grow” dichotomy. A parallel analysis of genes' non-cancerous proliferation indices (nPI) across 224 lymphoblastoid cell lines reveals surprisingly marked differences between cancerous and non-cancerous proliferation. These differences highlight genes in the translation and spliceosome machineries as selective cancer proliferation-associated proteins. A cross species comparison reveals that cancer proliferation resembles that of microorganisms while non-cancerous proliferation does not. Furthermore, combining cancerous and non-cancerous proliferation signatures leads to enhanced prediction of patient outcome and gene essentiality in cancer. Overall, these results point to an inherent difference between cancerous and non-cancerous proliferation determinants, whose understanding may contribute to the future development of novel cancer-specific anti-proliferative drugs. One of the hallmarks of cancer is uncontrolled cellular proliferation, and therefore many anti-cancer drugs aim to disrupt cancer proliferation. However, some of these drugs (e.g., chemotherapeutic agents) affect normal proliferating cells as well, resulting in undesirable side effects. Understanding the differences between cancerous and non-cancerous proliferation can help us design new selective drugs that kill cancer cells without harming normal cells. In this work, we use genome scale gene expression and growth rate measurements across 60 cancer cell lines (NCI-60) to uncover genetic determinants of cancerous proliferation. In parallel, gene expression and growth rate measurements of non-cancerous cell lines allow us to uncover determinants of non-cancerous proliferation. Notably, we find marked differences between the cancerous and non-cancerous proliferation. The two proliferation signatures can be used jointly to enhance the prediction of patient outcome in cancer. Notably, we find that certain genes in the translation and spliceosome machineries are involved in cancerous proliferation but not in non-cancerous proliferation, highlighting them as putative selective anti-cancer drug targets.
Collapse
Affiliation(s)
- Yedael Y. Waldman
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (YYW); (ER)
| | - Tamar Geiger
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Ruppin
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (YYW); (ER)
| |
Collapse
|