1
|
Zheng Y, Zhou Z, Liu M, Chen Z. Targeting selective autophagy in CNS disorders by small-molecule compounds. Pharmacol Ther 2024; 263:108729. [PMID: 39401531 DOI: 10.1016/j.pharmthera.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024]
Abstract
Autophagy functions as the primary cellular mechanism for clearing unwanted intracellular contents. Emerging evidence suggests that the selective elimination of intracellular organelles through autophagy, compared to the increased bulk autophagic flux, is crucial for the pathological progression of central nervous system (CNS) disorders. Notably, autophagic removal of mitochondria, known as mitophagy, is well-understood in an unhealthy brain. Accumulated data indicate that selective autophagy of other substrates, including protein aggregates, liposomes, and endoplasmic reticulum, plays distinctive roles in various pathological stages. Despite variations in substrates, the molecular mechanisms governing selective autophagy can be broadly categorized into two types: ubiquitin-dependent and -independent pathways, both of which can be subjected to regulation by small-molecule compounds. Notably, natural products provide the remarkable possibility for future structural optimization to regulate the highly selective autophagic clearance of diverse substrates. In this context, we emphasize the selectivity of autophagy in regulating CNS disorders and provide an overview of chemical compounds capable of modulating selective autophagy in these disorders, along with the underlying mechanisms. Further exploration of the functions of these compounds will in turn advance our understanding of autophagic contributions to brain disorders and illuminate precise therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
2
|
Ferrari V, Tedesco B, Cozzi M, Chierichetti M, Casarotto E, Pramaggiore P, Cornaggia L, Mohamed A, Patelli G, Piccolella M, Cristofani R, Crippa V, Galbiati M, Poletti A, Rusmini P. Lysosome quality control in health and neurodegenerative diseases. Cell Mol Biol Lett 2024; 29:116. [PMID: 39237893 PMCID: PMC11378602 DOI: 10.1186/s11658-024-00633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Lysosomes are acidic organelles involved in crucial intracellular functions, including the degradation of organelles and protein, membrane repair, phagocytosis, endocytosis, and nutrient sensing. Given these key roles of lysosomes, maintaining their homeostasis is essential for cell viability. Thus, to preserve lysosome integrity and functionality, cells have developed a complex intracellular system, called lysosome quality control (LQC). Several stressors may affect the integrity of lysosomes, causing Lysosomal membrane permeabilization (LMP), in which membrane rupture results in the leakage of luminal hydrolase enzymes into the cytosol. After sensing the damage, LQC either activates lysosome repair, or induces the degradation of the ruptured lysosomes through autophagy. In addition, LQC stimulates the de novo biogenesis of functional lysosomes and lysosome exocytosis. Alterations in LQC give rise to deleterious consequences for cellular homeostasis. Specifically, the persistence of impaired lysosomes or the malfunctioning of lysosomal processes leads to cellular toxicity and death, thereby contributing to the pathogenesis of different disorders, including neurodegenerative diseases (NDs). Recently, several pieces of evidence have underlined the importance of the role of lysosomes in NDs. In this review, we describe the elements of the LQC system, how they cooperate to maintain lysosome homeostasis, and their implication in the pathogenesis of different NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Laura Cornaggia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Ali Mohamed
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Guglielmo Patelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy.
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| |
Collapse
|
3
|
Gammaldi N, Doccini S, Bernardi S, Marchese M, Cecchini M, Ceravolo R, Rapposelli S, Ratto GM, Rocchiccioli S, Pezzini F, Santorelli FM. Dem-Aging: autophagy-related pathologies and the "two faces of dementia". Neurogenetics 2024; 25:39-46. [PMID: 38117343 DOI: 10.1007/s10048-023-00739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Neuronal ceroid lipofuscinosis (NCL) is an umbrella term referring to the most frequent childhood-onset neurodegenerative diseases, which are also the main cause of childhood dementia. Although the molecular mechanisms underlying the NCLs remain elusive, evidence is increasingly pointing to shared disease pathways and common clinical features across the disease forms. The characterization of pathological mechanisms, disease modifiers, and biomarkers might facilitate the development of treatment strategies.The DEM-AGING project aims to define molecular signatures in NCL and expedite biomarker discovery with a view to identifying novel targets for monitoring disease status and progression and accelerating clinical trial readiness in this field. In this study, we fused multiomic assessments in established NCL models with similar data on the more common late-onset neurodegenerative conditions in order to test the hypothesis of shared molecular fingerprints critical to the underlying pathological mechanisms. Our aim, ultimately, is to combine data analysis, cell models, and omic strategies in an effort to trace new routes to therapies that might readily be applied in the most common forms of dementia.
Collapse
Affiliation(s)
- N Gammaldi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - S Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy.
| | - S Bernardi
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - M Marchese
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - M Cecchini
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute-National Research Council (CNR) and Scuola Normale Superiore, Pisa, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - R Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - G M Ratto
- National Enterprise for nanoScience and nanoTechnology (NEST), Nanoscience Institute-National Research Council (CNR) and Scuola Normale Superiore, Pisa, Italy
| | - S Rocchiccioli
- Clinical Physiology-National Research Council (IFC-CNR), Pisa, Italy
| | - F Pezzini
- Department of Surgery, Dentistry, Pediatrics and Gynecology (Child Neurology and Psychiatry), University of Verona, Verona, Italy
| | - F M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
4
|
Gammaldi N, Pezzini F, Michelucci E, Di Giorgi N, Simonati A, Rocchiccioli S, Santorelli FM, Doccini S. Integrative human and murine multi-omics: Highlighting shared biomarkers in the neuronal ceroid lipofuscinoses. Neurobiol Dis 2023; 189:106349. [PMID: 37952681 DOI: 10.1016/j.nbd.2023.106349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative disorders whose molecular mechanisms remain largely unknown. Omics approaches are among the methods that generate new information on modifying factors and molecular signatures. Moreover, omics data integration can address the need to progressively expand knowledge around the disease and pinpoint specific proteins to promote as candidate biomarkers. In this work, we integrated a total of 62 proteomic and transcriptomic datasets originating from humans and mice, employing a new approach able to define dysregulated processes across species, stages and NCL forms. Moreover, we selected a pool of differentially expressed proteins and genes as species- and form-related biomarkers of disease status/progression and evaluated local and spatial differences in most affected brain regions. Our results offer promising targets for potential new therapeutic strategies and reinforce the hypothesis of a connection between NCLs and other forms of dementia, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- N Gammaldi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy; Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation - Pisa, Italy
| | - F Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - E Michelucci
- Clinical Physiology-National Research Council (IFC-CNR), Pisa, Italy
| | - N Di Giorgi
- Clinical Physiology-National Research Council (IFC-CNR), Pisa, Italy
| | - A Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - S Rocchiccioli
- Clinical Physiology-National Research Council (IFC-CNR), Pisa, Italy
| | - F M Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation - Pisa, Italy
| | - S Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation - Pisa, Italy.
| |
Collapse
|
5
|
Yu C, Ryan J, Orchard SG, Robb C, Woods RL, Wolfe R, Renton AE, Goate AM, Brodtmann A, Shah RC, Chong TTJ, Sheets K, Kyndt C, Sood A, Storey E, Murray AM, McNeil JJ, Lacaze P. Validation of newly derived polygenic risk scores for dementia in a prospective study of older individuals. Alzheimers Dement 2023; 19:5333-5342. [PMID: 37177856 PMCID: PMC10640662 DOI: 10.1002/alz.13113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023]
Abstract
INTRODUCTION Recent genome-wide association studies identified new dementia-associated variants. We assessed the performance of updated polygenic risk scores (PRSs) using these variants in an independent cohort. METHODS We used Cox models and area under the curve (AUC) to validate new PRSs (PRS-83SNP, PRS-SBayesR, and PRS-CS) compared with an older PRS-23SNP in 12,031 initially-healthy participants ≥70 years of age. Dementia was rigorously adjudicated according to Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria. RESULTS PRS-83SNP, PRS-SBayesR, and PRS-CS were associated with incident dementia, with fully adjusted (including apolipoprotein E [APOE] ε4) hazard ratios per standard deviation (SD) of 1.35 (1.23-1.47), 1.37 (1.25-1.50), and 1.42 (1.30-1.56), respectively. The AUC of a model containing conventional/non-genetic factors and APOE was 74.7%. This was improved to 75.7% (p = 0.007), 76% (p = 0.004), and 76.1% (p = 0.003) with addition of PRS-83SNP, PRS-SBayesR, and PRS-CS, respectively. The PRS-23SNP did not improve AUC (74.7%, p = 0.95). CONCLUSION New PRSs for dementia significantly improve risk-prediction performance, but still account for less risk than APOE genotype overall.
Collapse
Affiliation(s)
- Chenglong Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Suzanne G. Orchard
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Catherine Robb
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Robyn L. Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Rory Wolfe
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Alan E. Renton
- Department Genetics and Genomic Sciences and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alison M. Goate
- Department Genetics and Genomic Sciences and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amy Brodtmann
- Cognitive Health Initiative, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Raj C. Shah
- Department of Family & Preventive Medicine and the Rush Alzheimer’s Disease Center, Chicago, Illinois, USA
| | - Trevor T.-J. Chong
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Clinical Neurosciences, St. Vincent’s Hospital, Melbourne, Victoria, Australia
| | - Kerry Sheets
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Geriatrics, Hennepin Healthcare, Minneapolis, Minnesota, USA
| | - Christopher Kyndt
- Department of Neurology, Melbourne Health, Parkville, Victoria, Australia
- Department of Neuroscience, Eastern Health, Box Hill, Victoria, Australia
| | - Ajay Sood
- Department of Neurology and the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Elsdon Storey
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Anne M. Murray
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Division of Geriatrics, Hennepin Healthcare, Minneapolis, Minnesota, USA
- Berman Center for Outcomes and Clinical Research, Hennepin Healthcare Research Institute, Hennepin Healthcare, and University of Minnesota, Minneapolis, Minnesota, USA
| | - John J. McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Paul Lacaze
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Ogonowski N, Santamaria-Garcia H, Baez S, Lopez A, Laserna A, Garcia-Cifuentes E, Ayala-Ramirez P, Zarante I, Suarez-Obando F, Reyes P, Kauffman M, Cochran N, Schulte M, Sirkis DW, Spina S, Yokoyama JS, Miller BL, Kosik KS, Matallana D, Ibáñez A. Frontotemporal dementia presentation in patients with heterozygous p.H157Y variant of TREM2. J Med Genet 2023; 60:894-904. [PMID: 36813542 PMCID: PMC10447405 DOI: 10.1136/jmg-2022-108627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND The triggering receptor expressed on myeloid cell 2 (TREM2) is a major regulator of neuroinflammatory processes in neurodegeneration. To date, the p.H157Y variant of TREM2 has been reported only in patients with Alzheimer's disease. Here, we report three patients with frontotemporal dementia (FTD) from three unrelated families with heterozygous p.H157Y variant of TREM2: two patients from Colombian families (study 1) and a third Mexican origin case from the USA (study 2). METHODS To determine if the p.H157Y variant might be associated with a specific FTD presentation, we compared in each study the cases with age-matched, sex-matched and education-matched groups-a healthy control group (HC) and a group with FTD with neither TREM2 mutations nor family antecedents (Ng-FTD and Ng-FTD-MND). RESULTS The two Colombian cases presented with early behavioural changes, greater impairments in general cognition and executive function compared with both HC and Ng-FTD groups. These patients also exhibited brain atrophy in areas characteristic of FTD. Furthermore, TREM2 cases showed increased atrophy compared with Ng-FTD in frontal, temporal, parietal, precuneus, basal ganglia, parahippocampal/hippocampal and cerebellar regions. The Mexican case presented with FTD and motor neuron disease (MND), showing grey matter reduction in basal ganglia and thalamus, and extensive TDP-43 type B pathology. CONCLUSION In all TREM2 cases, multiple atrophy peaks overlapped with the maximum peaks of TREM2 gene expression in crucial brain regions including frontal, temporal, thalamic and basal ganglia areas. These results provide the first report of an FTD presentation potentially associated with the p.H157Y variant with exacerbated neurocognitive impairments.
Collapse
Affiliation(s)
- Natalia Ogonowski
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Adolfo Ibanez University, Santiago, Chile, Santiago de Chile, Chile
| | - Hernando Santamaria-Garcia
- Global Brain Health Institute (GBHI), University California San Francisco (UCSF), San Francisco, California, USA
- Pontificia Universidad Javeriana. Ph.D Program of Neuroscience, Bogotá, Colombia
- Hospital Universitario San Ignacio. Centro de Memoria y Cognición Intellectus, Bogotá, Colombia
| | | | - Andrea Lopez
- Hospital Universitario de la Fundación Santa Fe de Bogotá, Bogota, Colombia
- Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrés Laserna
- Pontificia Universidad Javeriana, Bogota, Colombia
- University of Rochester Medical Center. Department of Anesthesiology and Perioperative Medicine. of Anesthesiology and Perioperative Medicine, Rochester, NY, New York, USA
| | - Elkin Garcia-Cifuentes
- Pontificia Universidad Javeriana, Bogota, Colombia
- Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Paola Ayala-Ramirez
- Human Genomics Institute, Pontificia Universidad Javeriana, Bogota, Colombia
| | | | | | - Pablo Reyes
- Pontificia Universidad Javeriana, Bogota, Colombia
| | - Marcelo Kauffman
- Hospital General de Agudos Jose Maria Ramos Mejia Consultorio y Laboratorio de Neurogenetica, Buenos Aires, Argentina
- Universidad Austral. IIMT-FCB. Conicet, Buenos Aires, Argentina
| | | | | | - Daniel W Sirkis
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Weil Institute of Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | - Salvatore Spina
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Jennifer S Yokoyama
- Department of Neurology, University of California, San Francisco, San Francisco, California, USA
- Weil Institute of Neuroscience, University of California, San Francisco, San Francisco, California, USA
| | | | - Kenneth S Kosik
- University of California Santa Barbara, Santa Barbara, California, USA
| | - Diana Matallana
- Pontificia Universidad Javeriana, Bogota, Colombia
- Hospital Universitario Fundación Santa Fe, Bogotá, Colombia
| | - Agustín Ibáñez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Adolfo Ibanez University, Santiago, Chile, Santiago de Chile, Chile
- Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Cognitive Neuroscience Center (CNC), Universidad de San Andres & CONICET, Buenos Aires, Argentina
| |
Collapse
|
7
|
Klein M, Hermey G. Converging links between adult-onset neurodegenerative Alzheimer's disease and early life neurodegenerative neuronal ceroid lipofuscinosis? Neural Regen Res 2023; 18:1463-1471. [PMID: 36571343 PMCID: PMC10075119 DOI: 10.4103/1673-5374.361544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Evidence from genetics and from analyzing cellular and animal models have converged to suggest links between neurodegenerative disorders of early and late life. Here, we summarize emerging links between the most common late life neurodegenerative disease, Alzheimer's disease, and the most common early life neurodegenerative diseases, neuronal ceroid lipofuscinoses. Genetic studies reported an overlap of clinically diagnosed Alzheimer's disease and mutations in genes known to cause neuronal ceroid lipofuscinoses. Accumulating data strongly suggest dysfunction of intracellular trafficking mechanisms and the autophagy-endolysosome system in both types of neurodegenerative disorders. This suggests shared cytopathological processes underlying these different types of neurodegenerative diseases. A better understanding of the common mechanisms underlying the different diseases is important as this might lead to the identification of novel targets for therapeutic concepts, the transfer of therapeutic strategies from one disease to the other and therapeutic approaches tailored to patients with specific mutations. Here, we review dysfunctions of the endolysosomal autophagy pathway in Alzheimer's disease and neuronal ceroid lipofuscinoses and summarize emerging etiologic and genetic overlaps.
Collapse
Affiliation(s)
- Marcel Klein
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Linear Diagnostic Procedure Elicited by Clinical Genetics and Validated by mRNA Analysis in Neuronal Ceroid Lipofuscinosis 7 Associated with a Novel Non-Canonical Splice Site Variant in MFSD8. Genes (Basel) 2023; 14:genes14020245. [PMID: 36833170 PMCID: PMC9956376 DOI: 10.3390/genes14020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Neuronal ceroid lipofuscinoses (CNL) are lysosomal storage diseases that represent the most common cause of dementia in children. To date, 13 autosomal recessive (AR) and 1 autosomal dominant (AD) gene have been characterized. Biallelic variants in MFSD8 cause CLN7 type, with nearly 50 pathogenic variants, mainly truncating and missense, reported so far. Splice site variants require functional validation. We detected a novel homozygous non-canonical splice-site variant in MFSD8 in a 5-year-old girl who presented with progressive neurocognitive impairment and microcephaly. The diagnostic procedure was elicited by clinical genetics first, and then confirmed by cDNA sequencing and brain imaging. Inferred by the common geographic origin of the parents, an autosomal recessive inheritance was hypothesized, and SNP-array was performed as the first-line genetic test. Only three AR genes lying within the observed 24 Mb regions of homozygosity were consistent with the clinical phenotype, including EXOSC9, SPATA5 and MFSD8. The cerebral and cerebellar atrophy detected in the meantime by MRI, along with the suspicion of accumulation of ceroid lipopigment in neurons, prompted us to perform targeted MFSD8 sequencing. Following the detection of a splice site variant of uncertain significance, skipping of exon 8 was demonstrated by cDNA sequencing, and the variant was redefined as pathogenic.
Collapse
|
9
|
Kirola L, Mukherjee A, Mutsuddi M. Recent Updates on the Genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Mol Neurobiol 2022; 59:5673-5694. [PMID: 35768750 DOI: 10.1007/s12035-022-02934-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) primarily affect the motor and frontotemporal areas of the brain, respectively. These disorders share clinical, genetic, and pathological similarities, and approximately 10-15% of ALS-FTD cases are considered to be multisystemic. ALS-FTD overlaps have been linked to families carrying an expansion in the intron of C9orf72 along with inclusions of TDP-43 in the brain. Other overlapping genes (VCP, FUS, SQSTM1, TBK1, CHCHD10) are also involved in similar functions that include RNA processing, autophagy, proteasome response, protein aggregation, and intracellular trafficking. Recent advances in genome sequencing have identified new genes that are involved in these disorders (TBK1, CCNF, GLT8D1, KIF5A, NEK1, C21orf2, TBP, CTSF, MFSD8, DNAJC7). Additional risk factors and modifiers have been also identified in genome-wide association studies and array-based studies. However, the newly identified genes show higher disease frequencies in combination with known genes that are implicated in pathogenesis, thus indicating probable digenetic/polygenic inheritance models, along with epistatic interactions. Studies suggest that these genes play a pleiotropic effect on ALS-FTD and other diseases such as Alzheimer's disease, Ataxia, and Parkinsonism. Besides, there have been numerous improvements in the genotype-phenotype correlations as well as clinical trials on stem cell and gene-based therapies. This review discusses the possible genetic models of ALS and FTD, the latest therapeutics, and signaling pathways involved in ALS-FTD.
Collapse
Affiliation(s)
- Laxmi Kirola
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
10
|
Nagy ZF, Pál M, Salamon A, Zodanu GKE, Füstös D, Klivényi P, Széll M. Re-analysis of the Hungarian amyotrophic lateral sclerosis population and evaluation of novel ALS genetic risk variants. Neurobiol Aging 2022; 116:1-11. [DOI: 10.1016/j.neurobiolaging.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/08/2022] [Accepted: 04/02/2022] [Indexed: 11/29/2022]
|
11
|
Simonati A, Williams RE. Neuronal Ceroid Lipofuscinosis: The Multifaceted Approach to the Clinical Issues, an Overview. Front Neurol 2022; 13:811686. [PMID: 35359645 PMCID: PMC8961688 DOI: 10.3389/fneur.2022.811686] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 01/04/2023] Open
Abstract
The main aim of this review is to summarize the current state-of-art in the field of childhood Neuronal Ceroid Lipofuscinosis (NCL), a group of rare neurodegenerative disorders. These are genetic diseases associated with the formation of toxic endo-lysosomal storage. Following a brief historical review of the evolution of NCL definition, a clinically-oriented approach is used describing how the early symptoms and signs affecting motor, visual, cognitive domains, and including seizures, may lead clinicians to a rapid molecular diagnosis, avoiding the long diagnostic odyssey commonly observed. We go on to focus on recent advances in NCL research and summarize contributions to knowledge of the pathogenic mechanisms underlying NCL. We describe the large variety of experimental models which have aided this research, as well as the most recent technological developments which have shed light on the main mechanisms involved in the cellular pathology, such as apoptosis and autophagy. The search for innovative therapies is described. Translation of experimental data into therapeutic approaches is being established for several of the NCLs, and one drug is now commercially available. Lastly, we show the importance of palliative care and symptomatic treatments which are still the main therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro Simonati
- Departments of Surgery, Dentistry, Paediatrics, and Gynaecology, School of Medicine, University of Verona, Verona, Italy
- Department of Clinical Neuroscience, AOUI-VR, Verona, Italy
- *Correspondence: Alessandro Simonati
| | - Ruth E. Williams
- Department of Children's Neuroscience, Evelina London Children's Hospital, London, United Kingdom
- Ruth E. Williams
| |
Collapse
|
12
|
O'Day DH, Huber RJ. Calmodulin binding proteins and neuroinflammation in multiple neurodegenerative diseases. BMC Neurosci 2022; 23:10. [PMID: 35246032 PMCID: PMC8896083 DOI: 10.1186/s12868-022-00695-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
Calcium dysregulation (“Calcium Hypothesis”) is an early and critical event in Alzheimer’s and other neurodegenerative diseases. Calcium binds to and regulates the small regulatory protein calmodulin that in turn binds to and regulates several hundred calmodulin binding proteins. Initial and continued research has shown that many calmodulin binding proteins mediate multiple events during the onset and progression of Alzheimer’s disease, thus establishing the “Calmodulin Hypothesis”. To gain insight into the general applicability of this hypothesis, the involvement of calmodulin in neuroinflammation in Alzheimer’s, amyotrophic lateral sclerosis, Huntington’s disease, Parkinson’s disease, frontotemporal dementia, and other dementias was explored. After a literature search for calmodulin binding, 11 different neuroinflammatory proteins (TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, ABCA1, CH3L1/YKL-40 and NLRP3) were scanned for calmodulin binding domains using the Calmodulin Target Database. This analysis revealed the presence of at least one binding domain within which visual scanning demonstrated the presence of valid binding motifs. Coupled with previous research that identified 13 other neuroinflammation linked proteins (BACE1, BIN1, CaMKII, PP2B, PMCA, NOS, NMDAR, AchR, Ado A2AR, Aβ, APOE, SNCA, TMEM175), this work shows that at least 24 critical proteins involved in neuroinflammation are putative or proven calmodulin binding proteins. Many of these proteins are linked to multiple neurodegenerative diseases indicating that calmodulin binding proteins lie at the heart of neuroinflammatory events associated with multiple neurodegenerative diseases. Since many calmodulin-based pharmaceuticals have been successfully used to treat Huntington’s and other neurodegenerative diseases, these findings argue for their immediate therapeutic implementation.
Collapse
Affiliation(s)
- Danton H O'Day
- Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.,Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada.
| |
Collapse
|
13
|
Kim WD, Wilson-Smillie MLDM, Thanabalasingam A, Lefrancois S, Cotman SL, Huber RJ. Autophagy in the Neuronal Ceroid Lipofuscinoses (Batten Disease). Front Cell Dev Biol 2022; 10:812728. [PMID: 35252181 PMCID: PMC8888908 DOI: 10.3389/fcell.2022.812728] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also referred to as Batten disease, are a family of neurodegenerative diseases that affect all age groups and ethnicities around the globe. At least a dozen NCL subtypes have been identified that are each linked to a mutation in a distinct ceroid lipofuscinosis neuronal (CLN) gene. Mutations in CLN genes cause the accumulation of autofluorescent lipoprotein aggregates, called ceroid lipofuscin, in neurons and other cell types outside the central nervous system. The mechanisms regulating the accumulation of this material are not entirely known. The CLN genes encode cytosolic, lysosomal, and integral membrane proteins that are associated with a variety of cellular processes, and accumulated evidence suggests they participate in shared or convergent biological pathways. Research across a variety of non-mammalian and mammalian model systems clearly supports an effect of CLN gene mutations on autophagy, suggesting that autophagy plays an essential role in the development and progression of the NCLs. In this review, we summarize research linking the autophagy pathway to the NCLs to guide future work that further elucidates the contribution of altered autophagy to NCL pathology.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aruban Thanabalasingam
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique, Laval, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre D'Excellence en Recherche sur Les Maladies Orphelines–Fondation Courtois (CERMO-FC), Université Du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Susan L. Cotman
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, United States
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
14
|
Francelle L, Mazzulli JR. Neuroinflammation in aucher disease, neuronal ceroid lipofuscinosis, and commonalities with Parkinson’s disease. Brain Res 2022; 1780:147798. [PMID: 35063468 PMCID: PMC9126024 DOI: 10.1016/j.brainres.2022.147798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Lysosomal storage diseases (LSDs) are rare genetic disorders caused by a disruption in cellular clearance, resulting in pathological storage of undegraded lysosomal substrates. Recent clinical and genetic studies have uncovered links between multiple LSDs and common neurodegenerative diseases such as Parkinson's disease (PD). Here, we review recent literature describing the role of glia cells and neuroinflammation in PD and LSDs, including Gaucher disease (GD) and neuronal ceroid lipofuscinosis (NCL), and highlight converging inflammation pathways that lead to neuron loss. Recent data indicates that lysosomal dysfunction and accumulation of storage materials can initiate the activation of glial cells, through interaction with cell surface or cytosolic pattern recognition receptors that detect pathogenic aggregates of cellular debris. Activated glia cells could act to protect neurons through the elimination of toxic protein or lipid aggregates early in the disease process. However prolonged glial activation that occurs over several decades in chronic-age related neurodegeneration could induce the inappropriate elimination of synapses, leading to neuron loss. These studies provide mechanistic insight into the relationship between lysosomal dysfunction and glial activation, and offer novel therapeutic pathways for the treatment of PD and LSDs focused on reducing neuroinflammation and mitigating cell loss.
Collapse
|
15
|
Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: Lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis 2021; 154:105360. [PMID: 33812000 PMCID: PMC8113138 DOI: 10.1016/j.nbd.2021.105360] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative disorders that are thought to exist on a clinical and pathological spectrum. FTD and ALS are linked by shared genetic causes (e.g. C9orf72 hexanucleotide repeat expansions) and neuropathology, such as inclusions of ubiquitinated, misfolded proteins (e.g. TAR DNA-binding protein 43; TDP-43) in the CNS. Furthermore, some genes that cause FTD or ALS when mutated encode proteins that localize to the lysosome or modulate endosome-lysosome function, including lysosomal fusion, cargo trafficking, lysosomal acidification, autophagy, or TFEB activity. In this review, we summarize evidence that lysosomal dysfunction, caused by genetic mutations (e.g. C9orf72, GRN, MAPT, TMEM106B) or toxic-gain of function (e.g. aggregation of TDP-43 or tau), is an important pathogenic disease mechanism in FTD and ALS. Further studies into the normal function of many of these proteins are required and will help uncover the mechanisms that cause lysosomal dysfunction in FTD and ALS. Mutations or polymorphisms in genes that encode proteins important for endosome-lysosome function also occur in other age-dependent neurodegenerative diseases, including Alzheimer's (e.g. APOE, PSEN1, APP) and Parkinson's (e.g. GBA, LRRK2, ATP13A2) disease. A more complete understanding of the common and unique features of lysosome dysfunction across the spectrum of neurodegeneration will help guide the development of therapies for these devastating diseases.
Collapse
Affiliation(s)
- Jessica Root
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Paola Merino
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Austin Nuckols
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Michelle Johnson
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Emory University, School of Medicine, Atlanta 30322, Georgia; Center for Neurodegenerative Disease, Emory University, School of Medicine, Atlanta 30322, Georgia; Department of Neurology, Emory University, School of Medicine, Atlanta 30322, Georgia.
| |
Collapse
|
16
|
Vieira SRL, Morris HR. Neurodegenerative Disease Risk in Carriers of Autosomal Recessive Disease. Front Neurol 2021; 12:679927. [PMID: 34149605 PMCID: PMC8211888 DOI: 10.3389/fneur.2021.679927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 01/19/2023] Open
Abstract
Genetics has driven significant discoveries in the field of neurodegenerative diseases (NDDs). An emerging theme in neurodegeneration warrants an urgent and comprehensive update: that carrier status of early-onset autosomal recessive (AR) disease, typically considered benign, is associated with an increased risk of a spectrum of late-onset NDDs. Glucosylceramidase beta (GBA1) gene mutations, responsible for the AR lysosomal storage disorder Gaucher disease, are a prominent example of this principle, having been identified as an important genetic risk factor for Parkinson disease. Genetic analyses have revealed further examples, notably GRN, TREM2, EIF2AK3, and several other LSD and mitochondria function genes. In this Review, we discuss the evidence supporting the strikingly distinct allele-dependent clinical phenotypes observed in carriers of such gene mutations and its impact on the wider field of neurodegeneration.
Collapse
Affiliation(s)
| | - Huw R. Morris
- Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
17
|
Basak I, Wicky HE, McDonald KO, Xu JB, Palmer JE, Best HL, Lefrancois S, Lee SY, Schoderboeck L, Hughes SM. A lysosomal enigma CLN5 and its significance in understanding neuronal ceroid lipofuscinosis. Cell Mol Life Sci 2021; 78:4735-4763. [PMID: 33792748 PMCID: PMC8195759 DOI: 10.1007/s00018-021-03813-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/09/2023]
Abstract
Neuronal Ceroid Lipofuscinosis (NCL), also known as Batten disease, is an incurable childhood brain disease. The thirteen forms of NCL are caused by mutations in thirteen CLN genes. Mutations in one CLN gene, CLN5, cause variant late-infantile NCL, with an age of onset between 4 and 7 years. The CLN5 protein is ubiquitously expressed in the majority of tissues studied and in the brain, CLN5 shows both neuronal and glial cell expression. Mutations in CLN5 are associated with the accumulation of autofluorescent storage material in lysosomes, the recycling units of the cell, in the brain and peripheral tissues. CLN5 resides in the lysosome and its function is still elusive. Initial studies suggested CLN5 was a transmembrane protein, which was later revealed to be processed into a soluble form. Multiple glycosylation sites have been reported, which may dictate its localisation and function. CLN5 interacts with several CLN proteins, and other lysosomal proteins, making it an important candidate to understand lysosomal biology. The existing knowledge on CLN5 biology stems from studies using several model organisms, including mice, sheep, cattle, dogs, social amoeba and cell cultures. Each model organism has its advantages and limitations, making it crucial to adopt a combinatorial approach, using both human cells and model organisms, to understand CLN5 pathologies and design drug therapies. In this comprehensive review, we have summarised and critiqued existing literature on CLN5 and have discussed the missing pieces of the puzzle that need to be addressed to develop an efficient therapy for CLN5 Batten disease.
Collapse
Affiliation(s)
- I Basak
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - H E Wicky
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - K O McDonald
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - J B Xu
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - J E Palmer
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - H L Best
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Wales, CF10 3AX, United Kingdom
| | - S Lefrancois
- Centre INRS-Institut Armand-Frappier, INRS, Laval, H7V 1B7, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, H3A 2B2, Canada
| | - S Y Lee
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - L Schoderboeck
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand
| | - S M Hughes
- Neurodegenerative and Lysosomal Disease Laboratory, Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, 710 Cumberland Street, Dunedin, 9016, New Zealand.
| |
Collapse
|
18
|
Rini J, Asken B, Geier E, Rankin K, Kramer J, Boxer A, Miller B, Yokoyama J, Spina S. Genetic pleiotropy and the shared pathological features of corticobasal degeneration and progressive supranuclear palsy: a case report and a review of the literature. Neurocase 2021; 27:120-128. [PMID: 33754963 PMCID: PMC8137543 DOI: 10.1080/13554794.2021.1879869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Though distinct pathological entities, corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) share multiple biochemical and genetic features suggesting overlapping pathophysiology. We report the case of a patient with an 18-year clinical course consistent with behavioral variant frontotemporal dementia. The neuropathological assessment revealed unclassifiable frontotemporal lobar degeneration with tau-immunoreactive inclusions sharing features of both CBD and PSP. Whole-genome sequencing revealed a unique combination of pleiotropic genetic risk variants associated with both PSP and CBD. These findings support the observation that CBD and PSP share genetic co-expression networks that influence neurodegenerative pathogenesis common to 4R tauopathies.
Collapse
Affiliation(s)
- James Rini
- Memory and Aging Center, University of California, San Francisco, CA, United States.,Global Brain Health Institute, University of California, San Francisco, CA, United States
| | - Breton Asken
- Memory and Aging Center, University of California, San Francisco, CA, United States.,Global Brain Health Institute, University of California, San Francisco, CA, United States
| | - Ethan Geier
- Memory and Aging Center, University of California, San Francisco, CA, United States.,Global Brain Health Institute, University of California, San Francisco, CA, United States
| | - Katherine Rankin
- Memory and Aging Center, University of California, San Francisco, CA, United States.,Global Brain Health Institute, University of California, San Francisco, CA, United States
| | - Joel Kramer
- Memory and Aging Center, University of California, San Francisco, CA, United States.,Global Brain Health Institute, University of California, San Francisco, CA, United States
| | - Adam Boxer
- Memory and Aging Center, University of California, San Francisco, CA, United States.,Global Brain Health Institute, University of California, San Francisco, CA, United States
| | - Bruce Miller
- Memory and Aging Center, University of California, San Francisco, CA, United States.,Global Brain Health Institute, University of California, San Francisco, CA, United States
| | - Jennifer Yokoyama
- Memory and Aging Center, University of California, San Francisco, CA, United States.,Global Brain Health Institute, University of California, San Francisco, CA, United States
| | - Salvatore Spina
- Memory and Aging Center, University of California, San Francisco, CA, United States.,Global Brain Health Institute, University of California, San Francisco, CA, United States
| |
Collapse
|
19
|
Johnson AE, Orr BO, Fetter RD, Moughamian AJ, Primeaux LA, Geier EG, Yokoyama JS, Miller BL, Davis GW. SVIP is a molecular determinant of lysosomal dynamic stability, neurodegeneration and lifespan. Nat Commun 2021; 12:513. [PMID: 33479240 PMCID: PMC7820495 DOI: 10.1038/s41467-020-20796-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Missense mutations in Valosin-Containing Protein (VCP) are linked to diverse degenerative diseases including IBMPFD, amyotrophic lateral sclerosis (ALS), muscular dystrophy and Parkinson's disease. Here, we characterize a VCP-binding co-factor (SVIP) that specifically recruits VCP to lysosomes. SVIP is essential for lysosomal dynamic stability and autophagosomal-lysosomal fusion. SVIP mutations cause muscle wasting and neuromuscular degeneration while muscle-specific SVIP over-expression increases lysosomal abundance and is sufficient to extend lifespan in a context, stress-dependent manner. We also establish multiple links between SVIP and VCP-dependent disease in our Drosophila model system. A biochemical screen identifies a disease-causing VCP mutation that prevents SVIP binding. Conversely, over-expression of an SVIP mutation that prevents VCP binding is deleterious. Finally, we identify a human SVIP mutation and confirm the pathogenicity of this mutation in our Drosophila model. We propose a model for VCP disease based on the differential, co-factor-dependent recruitment of VCP to intracellular organelles.
Collapse
Affiliation(s)
- Alyssa E Johnson
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Brian O Orr
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Richard D Fetter
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Armen J Moughamian
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Logan A Primeaux
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Ethan G Geier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Jennifer S Yokoyama
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
20
|
Huang L, Liu Z, Yuan Y, Shen L, Jiang H, Tang B, Wang J, Lei L. Mutation analysis of MFSD8 in an amyotrophic lateral sclerosis cohort from mainland China. Eur J Neurosci 2020; 53:1197-1206. [PMID: 33226711 DOI: 10.1111/ejn.15058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022]
Abstract
Recent studies have suggested that rare variants in MFSD8 contribute to risk for frontotemporal dementia (FTD). Considering the common underlying pathogenesis and the shared genetic risk between amyotrophic lateral sclerosis (ALS) and FTD, we screened the coding region of MFSD8 in 551 unrelated patients with ALS (510 unrelated sporadic ALS and 41 familial ALS probands) from mainland China by whole-exome sequencing to assess its mutation frequency in patients with ALS and evaluate its association. Two rare deleterious variants, c.343G>A (p. V115M) and c.695T>C (p.L232P), were identified in this study. The variant c.695T>C (p.L232P) has not been previously reported and the carrier of this variant exhibits a relatively younger age of disease onset. Our studies provide some independent evidence showing that the rare variant p.L232P in MFSD8 might be a candidate risk factor for ALS. However, the relatively small sample size and the lack of patient-derived cells limit the power of the genetic exploration of this study, further robust multicenter studies with larger sizes and biological experiments with patient-derived cells are needed to elucidate the pathogenesis of the rare variant in MFSD8 in ALS.
Collapse
Affiliation(s)
- Ling Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifang Lei
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
21
|
Cochran JN, Geier EG, Bonham LW, Newberry JS, Amaral MD, Thompson ML, Lasseigne BN, Karydas AM, Roberson ED, Cooper GM, Rabinovici GD, Miller BL, Myers RM, Yokoyama JS. Non-coding and Loss-of-Function Coding Variants in TET2 are Associated with Multiple Neurodegenerative Diseases. Am J Hum Genet 2020; 106:632-645. [PMID: 32330418 PMCID: PMC7212268 DOI: 10.1016/j.ajhg.2020.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
We conducted genome sequencing to search for rare variation contributing to early-onset Alzheimer's disease (EOAD) and frontotemporal dementia (FTD). Discovery analysis was conducted on 435 cases and 671 controls of European ancestry. Burden testing for rare variation associated with disease was conducted using filters based on variant rarity (less than one in 10,000 or private), computational prediction of deleteriousness (CADD) (10 or 15 thresholds), and molecular function (protein loss-of-function [LoF] only, coding alteration only, or coding plus non-coding variants in experimentally predicted regulatory regions). Replication analysis was conducted on 16,434 independent cases and 15,587 independent controls. Rare variants in TET2 were enriched in the discovery combined EOAD and FTD cohort (p = 4.6 × 10-8, genome-wide corrected p = 0.0026). Most of these variants were canonical LoF or non-coding in predicted regulatory regions. This enrichment replicated across several cohorts of Alzheimer's disease (AD) and FTD (replication only p = 0.0029). The combined analysis odds ratio was 2.3 (95% confidence interval [CI] 1.6-3.4) for AD and FTD. The odds ratio for qualifying non-coding variants considered independently from coding variants was 3.7 (95% CI 1.7-9.4). For LoF variants, the combined odds ratio (for AD, FTD, and amyotrophic lateral sclerosis, which shares clinicopathological overlap with FTD) was 3.1 (95% CI 1.9-5.2). TET2 catalyzes DNA demethylation. Given well-defined changes in DNA methylation that occur during aging, rare variation in TET2 may confer risk for neurodegeneration by altering the homeostasis of key aging-related processes. Additionally, our study emphasizes the relevance of non-coding variation in genetic studies of complex disease.
Collapse
Affiliation(s)
- J Nicholas Cochran
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Ethan G Geier
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, United States
| | - J Scott Newberry
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Michelle D Amaral
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Michelle L Thompson
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Brittany N Lasseigne
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Anna M Karydas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, United States; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, United States; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, United States.
| |
Collapse
|
22
|
Cochran JN, McKinley EC, Cochran M, Amaral MD, Moyers BA, Lasseigne BN, Gray DE, Lawlor JMJ, Prokop JW, Geier EG, Holt JM, Thompson ML, Newberry JS, Yokoyama JS, Worthey EA, Geldmacher DS, Love MN, Cooper GM, Myers RM, Roberson ED. Genome sequencing for early-onset or atypical dementia: high diagnostic yield and frequent observation of multiple contributory alleles. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003491. [PMID: 31836585 PMCID: PMC6913143 DOI: 10.1101/mcs.a003491] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
We assessed the results of genome sequencing for early-onset dementia. Participants were selected from a memory disorders clinic. Genome sequencing was performed along with C9orf72 repeat expansion testing. All returned sequencing results were Sanger-validated. Prior clinical diagnoses included Alzheimer's disease, frontotemporal dementia, and unspecified dementia. The mean age of onset was 54 (41–76). Fifty percent of patients had a strong family history, 37.5% had some, and 12.5% had no known family history. Nine of 32 patients (28%) had a variant defined as pathogenic or likely pathogenic (P/LP) by American College of Medical Genetics and Genomics standards, including variants in APP, C9orf72, CSF1R, and MAPT. Nine patients (including three with P/LP variants) harbored established risk alleles with moderate penetrance (odds ratios of ∼2–5) in ABCA7, AKAP9, GBA, PLD3, SORL1, and TREM2. All six patients harboring these moderate penetrance variants but not P/LP variants also had one or two APOE ε4 alleles. One patient had two APOE ε4 alleles with no other established contributors. In total, 16 patients (50%) harbored one or more genetic variants likely to explain symptoms. We identified variants of uncertain significance (VUSs) in ABI3, ADAM10, ARSA, GRID2IP, MME, NOTCH3, PLCD1, PSEN1, TM2D3, TNK1, TTC3, and VPS13C, also often along with other variants. In summary, genome sequencing for early-onset dementia frequently identified multiple established or possible contributory alleles. These observations add support for an oligogenic model for early-onset dementia.
Collapse
Affiliation(s)
| | - Emily C McKinley
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Meagan Cochran
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Michelle D Amaral
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Bryan A Moyers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - David E Gray
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - James M J Lawlor
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Jeremy W Prokop
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA.,Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan 48824, USA
| | - Ethan G Geier
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California 94158, USA
| | - James M Holt
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - J Scott Newberry
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Jennifer S Yokoyama
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California 94158, USA
| | | | - David S Geldmacher
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Marissa Natelson Love
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| |
Collapse
|
23
|
Tau and TDP-43 proteinopathies: kindred pathologic cascades and genetic pleiotropy. J Transl Med 2019; 99:993-1007. [PMID: 30742063 PMCID: PMC6609463 DOI: 10.1038/s41374-019-0196-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
We review the literature on Tau and TDP-43 proteinopathies in aged human brains and the relevant underlying pathogenetic cascades. Complex interacting pathways are implicated in Alzheimer's disease and related dementias (ADRD), wherein multiple proteins tend to misfold in a manner that is "reactive," but, subsequently, each proteinopathy may contribute strongly to the clinical symptoms. Tau proteinopathy exists in brains of individuals across a broad spectrum of primary underlying conditions-e.g., developmental, traumatic, and inflammatory/infectious diseases. TDP-43 proteinopathy is also expressed in a wide range of clinical disorders. Although TDP-43 proteinopathy was first described in the central nervous system of patients with amyotrophic lateral sclerosis (ALS) and in subtypes of frontotemporal dementia (FTD/FTLD), TDP-43 proteinopathy is also present in chronic traumatic encephalopathy, cognitively impaired persons in advanced age with hippocampal sclerosis, Huntington's disease, and other diseases. We list known Tau and TDP-43 proteinopathies. There is also evidence of cellular co-localization between Tau and TDP-43 misfolded proteins, suggesting common pathways or protein interactions facilitating misfolding in one protein by the other. Multiple pleiotropic gene variants can alter risk for Tau or TDP-43 pathologies, and certain gene variants (e.g., APOE ε4, Huntingtin triplet repeats) are associated with increases of both Tau and TDP-43 proteinopathies. Studies of genetic risk factors have provided insights into multiple nodes of the pathologic cascades involved in Tau and TDP-43 proteinopathies. Variants from a specific gene can be either a low-penetrant risk factor for a group of diseases, or alternatively, a different variant of the same gene may be a disease-driving allele that is associated with a relatively aggressive and early-onset version of a clinically and pathologically specific disease type. Overall, a complex but enlightening paradigm has emerged, wherein both Tau and TDP-43 proteinopathies are linked to numerous overlapping upstream influences, and both are associated with multiple downstream pathologically- and clinically-defined deleterious effects.
Collapse
|
24
|
Pottier C, Ren Y, Perkerson RB, Baker M, Jenkins GD, van Blitterswijk M, DeJesus-Hernandez M, van Rooij JGJ, Murray ME, Christopher E, McDonnell SK, Fogarty Z, Batzler A, Tian S, Vicente CT, Matchett B, Karydas AM, Hsiung GYR, Seelaar H, Mol MO, Finger EC, Graff C, Öijerstedt L, Neumann M, Heutink P, Synofzik M, Wilke C, Prudlo J, Rizzu P, Simon-Sanchez J, Edbauer D, Roeber S, Diehl-Schmid J, Evers BM, King A, Mesulam MM, Weintraub S, Geula C, Bieniek KF, Petrucelli L, Ahern GL, Reiman EM, Woodruff BK, Caselli RJ, Huey ED, Farlow MR, Grafman J, Mead S, Grinberg LT, Spina S, Grossman M, Irwin DJ, Lee EB, Suh E, Snowden J, Mann D, Ertekin-Taner N, Uitti RJ, Wszolek ZK, Josephs KA, Parisi JE, Knopman DS, Petersen RC, Hodges JR, Piguet O, Geier EG, Yokoyama JS, Rissman RA, Rogaeva E, Keith J, Zinman L, Tartaglia MC, Cairns NJ, Cruchaga C, Ghetti B, Kofler J, Lopez OL, Beach TG, Arzberger T, Herms J, Honig LS, Vonsattel JP, Halliday GM, Kwok JB, White CL, Gearing M, Glass J, Rollinson S, Pickering-Brown S, Rohrer JD, Trojanowski JQ, Van Deerlin V, Bigio EH, Troakes C, Al-Sarraj S, Asmann Y, Miller BL, Graff-Radford NR, Boeve BF, Seeley WW, Mackenzie IRA, van Swieten JC, Dickson DW, Biernacka JM, Rademakers R. Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD. Acta Neuropathol 2019; 137:879-899. [PMID: 30739198 PMCID: PMC6533145 DOI: 10.1007/s00401-019-01962-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole-genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (p value = 4.82e - 08, OR = 2.12), and two known loci: UNC13A, led by rs1297319 (p value = 1.27e - 08, OR = 1.50) and HLA-DQA2 led by rs17219281 (p value = 3.22e - 08, OR = 1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole-genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n ≥ 3) as compared to controls (n = 0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g., DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis.
Collapse
Affiliation(s)
- Cyril Pottier
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Ralph B Perkerson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Matt Baker
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Gregory D Jenkins
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Jeroen G J van Rooij
- Department of Neurology, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Elizabeth Christopher
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Zachary Fogarty
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Anthony Batzler
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Shulan Tian
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Cristina T Vicente
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Billie Matchett
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Anna M Karydas
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Ging-Yuek Robin Hsiung
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Merel O Mol
- Department of Neurology, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Elizabeth C Finger
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 2E2, Canada
| | - Caroline Graff
- Division of Neurogeriatrics, Department NVS, Karolinska Institutet, Visionsgatan 4, J10:20, 171 64, Solna, Sweden
- Theme Aging, Unit for Hereditary Dementias, Karolinska University Hospital, Solna, Sweden
| | - Linn Öijerstedt
- Division of Neurogeriatrics, Department NVS, Karolinska Institutet, Visionsgatan 4, J10:20, 171 64, Solna, Sweden
- Theme Aging, Unit for Hereditary Dementias, Karolinska University Hospital, Solna, Sweden
| | - Manuela Neumann
- German Center for Neurodegenerative Diseases (DZNE), 18147, Rostock, Germany
- Department of Neuropathology, University of Tübingen, 72076, Tübingen, Germany
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), 18147, Rostock, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), 18147, Rostock, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Carlo Wilke
- German Center for Neurodegenerative Diseases (DZNE), 18147, Rostock, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Johannes Prudlo
- German Center for Neurodegenerative Diseases (DZNE), 18147, Rostock, Germany
- Department of Neurology, Rostock University Medical Center, 18147, Rostock, Germany
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases (DZNE), 18147, Rostock, Germany
| | - Javier Simon-Sanchez
- German Center for Neurodegenerative Diseases (DZNE), 18147, Rostock, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Str 17, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str 17, 81377, Munich, Germany
| | - Sigrun Roeber
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Straße 23, 81377, Munich, Germany
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany
| | - Bret M Evers
- Division of Neuropathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9073, USA
| | - Andrew King
- London Neurodegenerative Diseases Brain Bank, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK
| | - M Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL, 60611, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences and Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL, 60611, USA
| | - Kevin F Bieniek
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, 78229, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Geoffrey L Ahern
- Department of Neurology, University of Arizona Health Sciences Center, 1501 North Campbell Avenue, Tucson, AZ, 85724-5023, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, 85006, USA
| | - Bryan K Woodruff
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Richard J Caselli
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Edward D Huey
- Departments of Psychiatry and Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, 630 West 168th St P&S Box 16, New York, NY, 10032, USA
| | - Martin R Farlow
- Indiana University School of Medicine, 355 West 16th Street, GH 4700 Neurology, Indianapolis, IN, 46202, USA
| | - Jordan Grafman
- Department of Physical Medicine and Rehabilitation, Neurology, Cognitive Neurology and Alzheimer's Center, Department of Psychiatry, Feinberg School of Medicine, Northwestern University, 355 E Erie Street, Chicago, IL, 60611-5146, USA
| | - Simon Mead
- MRC Prion Unit at University College London, Institute of Prion Diseases, London, UK
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
- Department of Pathology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David J Irwin
- Penn Frontotemporal Degeneration Center, Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - EunRan Suh
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie Snowden
- Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal Hospital, Salford, UK
| | - David Mann
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Salford Royal Hospital, Salford, UK
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | | | - John R Hodges
- Central Clinical School and Brain and Mind Centre, The University of Sydney, Sydney, 2050, Australia
| | - Olivier Piguet
- School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney, 2050, Australia
| | - Ethan G Geier
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Jennifer S Yokoyama
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Ekaterina Rogaeva
- Krembil Discovery Tower, Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Av, 4th Floor - 4KD481, Toronto, ON, M5T 0S8, Canada
| | - Julia Keith
- Sunnybrook Health Sciences Centre, Toronto, ON, M4N 3M5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, Toronto, ON, M4N 3M5, Canada
| | - Maria Carmela Tartaglia
- Krembil Discovery Tower, Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Av, 4th Floor - 4KD481, Toronto, ON, M5T 0S8, Canada
- Krembil Neuroscience Center, Movement Disorder's Clinic, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON, M5T 2S8, Canada
| | - Nigel J Cairns
- Department of Neurology, Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Knight Alzheimer Disease Research Center, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 635 Barnhill Drive, MS A138, Indianapolis, IN, 46202, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Oscar L Lopez
- Department of Neurology, University of Arizona Health Sciences Center, 1501 North Campbell Avenue, Tucson, AZ, 85724-5023, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Str 17, 81377, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Straße 23, 81377, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University of Munich, Nussbaumstraße 7, 80336, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Str 17, 81377, Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Straße 23, 81377, Munich, Germany
| | - Lawrence S Honig
- Department of Neurology, Taub Institute, and GH Sergievsky Center, Columbia University Irving Medical Center, 630 West 168th St (P&S Unit 16), New York, NY, 10032, USA
| | - Jean Paul Vonsattel
- Department of Pathology and Taub Institute, Columbia University Irving Medical Center, 630 West 168th St, New York, NY, 10032, USA
| | - Glenda M Halliday
- Central Clinical School and Brain and Mind Centre, The University of Sydney, Sydney, 2050, Australia
- UNSW Medicine and NeuRA, Randwick, 2031, Australia
| | - John B Kwok
- Central Clinical School and Brain and Mind Centre, The University of Sydney, Sydney, 2050, Australia
- UNSW Medicine and NeuRA, Randwick, 2031, Australia
| | - Charles L White
- Division of Neuropathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9073, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Jonathan Glass
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Sara Rollinson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stuart Pickering-Brown
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivianna Van Deerlin
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eileen H Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University, Chicago, IL, 60611, USA
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Safa Al-Sarraj
- London Neurodegenerative Diseases Brain Bank, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Department of Clinical Neuropathology, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK
| | - Yan Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | | | | | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
- Department of Pathology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Ian R A Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| |
Collapse
|
25
|
Abstract
Purpose of review In this review we highlight recent advances in the human genetics of frontotemporal dementia (FTD). In addition to providing a broad survey of genes implicated in FTD in the last several years, we also discuss variation in genes implicated in both hereditary leukodystrophies and risk for FTD (e.g., TREM2, TMEM106B, CSF1R, AARS2, NOTCH3). Recent findings Over the past five years, genetic variation in approximately 50 genes has been confirmed or suggested to cause or influence risk for FTD and FTD-spectrum disorders. We first give background and discuss recent findings related to C9ORF72, GRN and MAPT, the genes most commonly implicated in FTD. We then provide a broad overview of other FTD-associated genes and go on to discuss new findings in FTD genetics in East Asian populations, including pathogenic variation in CHCHD10, which may represent a frequent cause of disease in Chinese populations. Finally, we consider recent insights gleaned from genome-wide association and genetic pleiotropy studies. Summary Recent genetic discoveries highlight cellular pathways involving autophagy, the endolysosomal system and neuroinflammation, and reveal an intriguing overlap between genes that confer risk for leukodystrophy and FTD.
Collapse
|