1
|
Zuniga G, Katsumura S, De Mange J, Ramirez P, Atrian F, Morita M, Frost B. Pathogenic tau induces an adaptive elevation in mRNA translation rate at early stages of disease. Aging Cell 2024; 23:e14245. [PMID: 38932463 PMCID: PMC11464109 DOI: 10.1111/acel.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Alterations in the rate and accuracy of messenger RNA (mRNA) translation are associated with aging and several neurodegenerative disorders, including Alzheimer's disease and related tauopathies. We previously reported that error-containing RNA that are normally cleared via nonsense-mediated mRNA decay (NMD), a key RNA surveillance mechanism, are translated in the adult brain of a Drosophila model of tauopathy. In the current study, we find that newly-synthesized peptides and translation machinery accumulate within nuclear envelope invaginations that occur as a consequence of tau pathology, and that the rate of mRNA translation is globally elevated in early stages of disease in adult brains of Drosophila models of tauopathy. Polysome profiling from adult heads of tau transgenic Drosophila reveals the preferential translation of specific mRNA that have been previously linked to neurodegeneration. Unexpectedly, we find that panneuronal elevation of NMD further elevates the global translation rate in tau transgenic Drosophila, as does treatment with rapamycin. As NMD activation and rapamycin both suppress tau-induced neurodegeneration, their shared effect on translation suggests that elevated rates of mRNA translation are an early adaptive mechanism to limit neurodegeneration. Our work provides compelling evidence that tau-induced deficits in NMD reshape the tau translatome by increasing translation of RNA that are normally repressed in healthy cells.
Collapse
Affiliation(s)
- Gabrielle Zuniga
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Sakie Katsumura
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
- Premium Research Institute for Human Metaverse Medicine (WPI‐PRIMe)Osaka UniversitySuitaOsakaJapan
| | - Jasmine De Mange
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Paulino Ramirez
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Farzaneh Atrian
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| | - Masahiro Morita
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTexasUSA
- Premium Research Institute for Human Metaverse Medicine (WPI‐PRIMe)Osaka UniversitySuitaOsakaJapan
| | - Bess Frost
- Barshop Institute for Longevity and Aging StudiesSan AntonioTexasUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesSan AntonioTexasUSA
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTexasUSA
| |
Collapse
|
2
|
Lester E, Parker R. Tau, RNA, and RNA-Binding Proteins: Complex Interactions in Health and Neurodegenerative Diseases. Neuroscientist 2024; 30:458-472. [PMID: 36892034 DOI: 10.1177/10738584231154551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The tau protein is a key contributor to multiple neurodegenerative diseases. The pathology of tau is thought to be related to tau's propensity to form self-templating fibrillar structures that allow tau fibers to propagate in the brain by prion-like mechanisms. Unresolved issues with respect to tau pathology are how the normal function of tau and its misregulation contribute to disease, how cofactors and cellular organelles influence the initiation and propagation of tau fibers, and determining the mechanism of tau toxicity. Herein, we review the connection between tau and degenerative diseases, the basis for tau fibrilization, and how that process interacts with cellular molecules and organelles. One emerging theme is that tau interacts with RNA and RNA-binding proteins, normally and in pathologic aggregates, which may provide insight into alterations in RNA regulation observed in disease.
Collapse
Affiliation(s)
- Evan Lester
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
3
|
Hole KL, Zhu B, Huggon L, Brown JT, Mason JM, Williams RJ. Tau P301L disengages from the proteosome core complex and neurogranin coincident with enhanced neuronal network excitability. Cell Death Dis 2024; 15:429. [PMID: 38890273 PMCID: PMC11189525 DOI: 10.1038/s41419-024-06815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Tauopathies are characterised by the pathological accumulation of misfolded tau. The emerging view is that toxic tau species drive synaptic dysfunction and potentially tau propagation before measurable neurodegeneration is evident, but the underlying molecular events are not well defined. Human non-mutated 0N4R tau (tauWT) and P301L mutant 0N4R tau (tauP301L) were expressed in mouse primary cortical neurons using adeno-associated viruses to monitor early molecular changes and synaptic function before the onset of neuronal loss. In this model tauP301L was differentially phosphorylated relative to tauwt with a notable increase in phosphorylation at ser262. Affinity purification - mass spectrometry combined with tandem mass tagging was used to quantitatively compare the tauWT and tauP301L interactomes. This revealed an enrichment of tauP301L with ribosomal proteins but a decreased interaction with the proteasome core complex and reduced tauP301L degradation. Differences in the interaction of tauP301L with members of a key synaptic calcium-calmodulin signalling pathway were also identified, most notably, increased association with CaMKII but reduced association with calcineurin and the candidate AD biomarker neurogranin. Decreased association of neurogranin to tauP301L corresponded with the appearance of enhanced levels of extracellular neurogranin suggestive of potential release or leakage from synapses. Finally, analysis of neuronal network activity using micro-electrode arrays showed that overexpression of tauP301L promoted basal hyperexcitability coincident with these changes in the tau interactome and implicating tau in specific early alterations in synaptic function.
Collapse
Affiliation(s)
- Katriona L Hole
- Department of Life Sciences, University of Bath, Bath, UK
- The Francis Crick Institute, London, UK
| | - Bangfu Zhu
- Department of Life Sciences, University of Bath, Bath, UK
| | - Laura Huggon
- Department of Life Sciences, University of Bath, Bath, UK
- UK Dementia Research Institute at King's College London, London, UK
| | - Jon T Brown
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jody M Mason
- Department of Life Sciences, University of Bath, Bath, UK
| | | |
Collapse
|
4
|
Zubčić K, Franić D, Pravica M, Hof PR, Šimić G, Boban M. Effects of heterologous human tau protein expression in yeast models of proteotoxic stress response. CNS Neurosci Ther 2024; 30:e14304. [PMID: 37341072 PMCID: PMC11163194 DOI: 10.1111/cns.14304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND The primary histological characteristic of Alzheimer's disease is the presence of neurofibrillary tangles, which are large aggregates of tau protein. Aging is the primary risk factor for the development of Alzheimer's disease, however, the underlying causes of tau protein aggregation and toxicity are unclear. AIMS Here we investigated tau aggregation and toxicity under the conditions of compromised protein homeostasis. METHODS We used heterologous expression of human tau protein in the unicellular eukaryote yeast Saccharomyces cerevisiae with evolutionarily conserved protein quality control pathways and examined tau-dependent toxicity and aggregation using growth assays, fluorescence microscopy, and a split luciferase-based reporter NanoBiT. RESULTS Tau protein expressed in yeast under mild proteotoxic stress, or in mutants with impaired pathways for proteotoxic stress response, did not lead to synthetic toxicity or the formation of obvious aggregates. Chronologically old cells also did not develop observable tau aggregates. Our examination of tau oligomerization in living cells using NanoBiT reporter suggests that tau does not form significant levels of oligomers under basal conditions or under mild proteotoxic stress. CONCLUSION Together our data suggest that human tau protein does not represent a major burden to the protein quality control system in yeast cells.
Collapse
Affiliation(s)
- Klara Zubčić
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Dina Franić
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Mihaela Pravica
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's DiseaseFriedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Goran Šimić
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| | - Mirta Boban
- Croatian Institute for Brain Research, University of Zagreb School of MedicineZagrebCroatia
| |
Collapse
|
5
|
Jiang L, Roberts R, Wong M, Zhang L, Webber CJ, Libera J, Wang Z, Kilci A, Jenkins M, Ortiz AR, Dorrian L, Sun J, Sun G, Rashad S, Kornbrek C, Daley SA, Dedon PC, Nguyen B, Xia W, Saito T, Saido TC, Wolozin B. β-amyloid accumulation enhances microtubule associated protein tau pathology in an APP NL-G-F/MAPT P301S mouse model of Alzheimer's disease. Front Neurosci 2024; 18:1372297. [PMID: 38572146 PMCID: PMC10987964 DOI: 10.3389/fnins.2024.1372297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction The study of the pathophysiology study of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular -amyloid (A) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. Methods The humanized APPNL-G-F knock-in mouse line was crossed to the PS19 MAPTP301S, over-expression mouse line to create the dual APPNL-G-F/PS19 MAPTP301S line. The resulting pathologies were characterized by immunochemical methods and PCR. Results We now report on a double transgenic APPNL-G-F/PS19 MAPTP301S mouse that at 6 months of age exhibits robust A plaque accumulation, intense MAPT pathology, strong inflammation and extensive neurodegeneration. The presence of A pathology potentiated the other major pathologies, including MAPT pathology, inflammation and neurodegeneration. MAPT pathology neither changed levels of amyloid precursor protein nor potentiated A accumulation. Interestingly, study of immunofluorescence in cleared brains indicates that microglial inflammation was generally stronger in the hippocampus, dentate gyrus and entorhinal cortex, which are regions with predominant MAPT pathology. The APPNL-G-F/MAPTP301S mouse model also showed strong accumulation of N6-methyladenosine (m6A), which was recently shown to be elevated in the AD brain. m6A primarily accumulated in neuronal soma, but also co-localized with a subset of astrocytes and microglia. The accumulation of m6A corresponded with increases in METTL3 and decreases in ALKBH5, which are enzymes that add or remove m6A from mRNA, respectively. Discussion Our understanding of the pathophysiology of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular -amyloid (A) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. The APPNL-G-F/MAPTP301S mouse recapitulates many features of AD pathology beginning at 6 months of aging, and thus represents a useful new mouse model for the field.
Collapse
Affiliation(s)
- Lulu Jiang
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Rebecca Roberts
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Melissa Wong
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Lushuang Zhang
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Chelsea Joy Webber
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Jenna Libera
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Zihan Wang
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Alper Kilci
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Matthew Jenkins
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Alejandro Rondón Ortiz
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Luke Dorrian
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore, Singapore
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sherif Rashad
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | | | - Sarah Anne Daley
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore, Singapore
| | - Brian Nguyen
- LifeCanvas Technologies, Cambridge, MA, United States
| | - Weiming Xia
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Benjamin Wolozin
- Department of Anatomy and Neurobiology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Department of Pharmacology, Physiology and Biophysics, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Department of Neurology, Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
6
|
Liu P, Xue X, Zhang C, Zhou H, Ding Z, Wang L, Jiang Y, Shen WD, Yang S, Wang F. Transcriptional-profile changes in the medial geniculate body after noise-induced tinnitus. Exp Biol Med (Maywood) 2024; 249:10057. [PMID: 38562529 PMCID: PMC10984379 DOI: 10.3389/ebm.2024.10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Tinnitus is a disturbing condition defined as the occurrence of acoustic hallucinations with no actual sound. Although the mechanisms underlying tinnitus have been explored extensively, the pathophysiology of the disease is not completely understood. Moreover, genes and potential treatment targets related to auditory hallucinations remain unknown. In this study, we examined transcriptional-profile changes in the medial geniculate body after noise-induced tinnitus in rats by performing RNA sequencing and validated differentially expressed genes via quantitative polymerase chain reaction analysis. The rat model of tinnitus was established by analyzing startle behavior based on gap-pre-pulse inhibition of acoustic startles. We identified 87 differently expressed genes, of which 40 were upregulated and 47 were downregulated. Pathway-enrichment analysis revealed that the differentially enriched genes in the tinnitus group were associated with pathway terms, such as coronavirus disease COVID-19, neuroactive ligand-receptor interaction. Protein-protein-interaction networks were established, and two hub genes (Rpl7a and AC136661.1) were identified among the selected genes. Further studies focusing on targeting and modulating these genes are required for developing potential treatments for noise-induced tinnitus in patients.
Collapse
Affiliation(s)
- Peng Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Xinmiao Xue
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Chi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Hanwen Zhou
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Zhiwei Ding
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Li Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Yuke Jiang
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Wei-Dong Shen
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| | - Shiming Yang
- Medical School of Chinese PLA, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Fangyuan Wang
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
| |
Collapse
|
7
|
Bartosch AMW, Youth EHH, Hansen S, Wu Y, Buchanan HM, Kaufman ME, Xiao H, Koo SY, Ashok A, Sivakumar S, Soni RK, Dumitrescu LC, Lam TG, Ropri AS, Lee AJ, Klein HU, Vardarajan BN, Bennett DA, Young-Pearse TL, De Jager PL, Hohman TJ, Sproul AA, Teich AF. ZCCHC17 Modulates Neuronal RNA Splicing and Supports Cognitive Resilience in Alzheimer's Disease. J Neurosci 2024; 44:e2324222023. [PMID: 38050142 PMCID: PMC10860597 DOI: 10.1523/jneurosci.2324-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 09/22/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.
Collapse
Affiliation(s)
- Anne Marie W Bartosch
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Elliot H H Youth
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Shania Hansen
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Yiyang Wu
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Heather M Buchanan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Maria E Kaufman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Harrison Xiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Archana Ashok
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Sharanya Sivakumar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York, New York 10032
| | - Logan C Dumitrescu
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Tiffany G Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Ali S Ropri
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Annie J Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - Hans-Ulrich Klein
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - Badri N Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - Tracy L Young-Pearse
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Philip L De Jager
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Center for Translational & Computational Neuroimmunology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Andrew A Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
| | - Andrew F Teich
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York 10032
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, New York 10032
| |
Collapse
|
8
|
Cruz E, Nisbet RM, Götz J. Break and accelerator-The mechanics of Tau (and amyloid) toxicity. Cytoskeleton (Hoboken) 2024; 81:24-29. [PMID: 37632370 DOI: 10.1002/cm.21781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Aggregates of the microtubule-associated protein Tau define more than a dozen primary tauopathies, and together with amyloid-β, the secondary tauopathy Alzheimer's disease (AD). Historically, Tau has been viewed as executor of amyloid-β toxicity, with the two molecules working together as "trigger and bullet." Given the two protein's opposing roles in protein translation, we wish to introduce another metaphor, borrowing from the mechanics of a car, with amyloid-β boosting Tau translation, whereas Tau puts a break on global translation. The underlying studies entail an alternative hypothesis regarding Tau's subcellular accumulation in AD, namely its de novo synthesis in the somatodendritic domain rather than the relocalization from the axon upon dissociation from microtubules. We contest that it may be worth (given Tau's 50th birthday) to revisit some entrenched dogmas about Tau's pathophysiology.
Collapse
Affiliation(s)
- Esteban Cruz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Rebecca M Nisbet
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
10
|
Yao X, Xu X, Hu K, Yang Z, Deng S. BANF1 promotes glutamate-induced apoptosis of HT-22 hippocampal neurons. Mol Biol Rep 2023; 50:9441-9452. [PMID: 37838622 DOI: 10.1007/s11033-023-08889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Glutamate exposure was fatal to HT-22 neuronal cells that derived from mouse hippocampus. This is often used as a model for hippocampus neurodegeneration in vitro. The targets relevant to glutamate-induced neuronal toxicity is not fully understood. In this study, we aimed to identify crucial factors associated with glutamate-induced cytotoxicity in HT-22 cells. METHODS HT-22 cells were treated with 7.5 mM glutamate for 24 h and isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis conducted to identify the differentially expressed proteins. Differential proteins were subjected to Gene Ontology analyses. Upregulation of barrier to autointegration factor (BANF1/BANF1) protein was confirmed by RT-qPCR and western blotting. Cell viability was measured by CKK-8 and MTT assays. Cell apoptosis rates and intracellular reactive oxygen species (ROS) levels were detected using flow cytometry. RESULTS A total of 5811 proteins were quantified by iTRAQ, 50 of which were recognized as significantly differential proteins (fold change ≥ 1.5 and P ≤ 0.05); 26 proteins were up-regulated and 24 were down-regulated after exposure to glutamate. GO enrichment analysis showed that the apoptotic signaling pathway was involved in cell death induced by glutamate. BANF1 expression level was markedly increased in HT-22 cells after glutamate treatment. Further, knockdown of BANF1 alleviated glutamate-mediated cell death with lower ROS levels. CONCLUSIONS In conclusion, we successfully filtered out differential proteins relevant to glutamate-mediated cytotoxicity. BANF1 upregulation promoted glutamate-induced apoptosis of HT-22 cells by enhancing ROS generation.
Collapse
Affiliation(s)
- Xinyu Yao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Xiaoyi Xu
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, Guangdong, China
| | - Kunhua Hu
- Proteomics Research Center, Sun Yat-Sen Medical College of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhaoshou Yang
- The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Shaodong Deng
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523710, Guangdong, China.
- Scientific Research Platform, The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
11
|
Xing J, Theune WC, Lukomska A, Frost MP, Damania A, Trakhtenberg EF. Experimental upregulation of developmentally downregulated ribosomal protein large subunits 7 and 7A promotes axon regeneration after injury in vivo. Exp Neurol 2023; 368:114510. [PMID: 37633482 PMCID: PMC10529763 DOI: 10.1016/j.expneurol.2023.114510] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Ribosomal proteins are involved in neurodevelopment and central nervous system (CNS) disease and injury. However, the roles of specific ribosomal protein subunits in developmental axon growth, and their potential as therapeutic targets for treating CNS injuries, are still poorly understood. Here, we show that ribosomal protein large (Rpl) and small (Rps) subunit genes are substantially (56-fold) enriched amongst the genes, which are downregulated during maturation of retinal ganglion cell (RGC) CNS projection neurons. We also show that Rpl and Rps subunits are highly co-regulated in RGCs, and partially re-upregulated after optic nerve crush (ONC). Because developmental downregulation of ribosomal proteins coincides with developmental decline in neuronal intrinsic axon growth capacity, we hypothesized that Rpl/Rps incomplete re-upregulation after injury may be a part of the cellular response which attempts to reactivate intrinsic axon growth mechanisms. We found that experimentally upregulating Rpl7 and Rpl7A promoted axon regeneration after ONC in vivo. Finally, we characterized gene networks associated with Rpl/Rps, and showed that Rpl7 and Rpl7A belong to the cluster of genes, which are shared between translational and neurodevelopmental biological processes (based on gene-ontology) that are co-downregulated in maturing RGCs during the decline in intrinsic axon growth capacity.
Collapse
Affiliation(s)
- Jian Xing
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - William C Theune
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Agnieszka Lukomska
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Matthew P Frost
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Ashiti Damania
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Ephraim F Trakhtenberg
- Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA.
| |
Collapse
|
12
|
Wang C, Terrigno M, Li J, Distler T, Pandya NJ, Ebeling M, Tyanova S, Hoozemans JJM, Dijkstra AA, Fuchs L, Xiang S, Bonni A, Grüninger F, Jagasia R. Increased G3BP2-Tau interaction in tauopathies is a natural defense against Tau aggregation. Neuron 2023; 111:2660-2674.e9. [PMID: 37385246 DOI: 10.1016/j.neuron.2023.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/21/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
Many RNA-binding proteins (RBPs), particularly those associated with RNA granules, promote pathological protein aggregation in neurodegenerative diseases. Here, we demonstrate that G3BP2, a core component of stress granules, directly interacts with Tau and inhibits Tau aggregation. In the human brain, the interaction of G3BP2 and Tau is dramatically increased in multiple tauopathies, and it is independent of neurofibrillary tangle (NFT) formation in Alzheimer's disease (AD). Surprisingly, Tau pathology is significantly elevated upon loss of G3BP2 in human neurons and brain organoids. Moreover, we found that G3BP2 masks the microtubule-binding region (MTBR) of Tau, thereby inhibiting Tau aggregation. Our study defines a novel role for RBPs as a line of defense against Tau aggregation in tauopathies.
Collapse
Affiliation(s)
- Congwei Wang
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland.
| | - Marco Terrigno
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Juan Li
- School of Life Sciences, University of Science and Technology of China, 230026 Anhui, China
| | - Tania Distler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Nikhil J Pandya
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Martin Ebeling
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Stefka Tyanova
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, 1081 HV Amsterdam, the Netherlands
| | - Anke A Dijkstra
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, 1081 HV Amsterdam, the Netherlands
| | - Luisa Fuchs
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Shengqi Xiang
- School of Life Sciences, University of Science and Technology of China, 230026 Anhui, China
| | - Azad Bonni
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Fiona Grüninger
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland.
| |
Collapse
|
13
|
Askenazi M, Kavanagh T, Pires G, Ueberheide B, Wisniewski T, Drummond E. Compilation of reported protein changes in the brain in Alzheimer's disease. Nat Commun 2023; 14:4466. [PMID: 37491476 PMCID: PMC10368642 DOI: 10.1038/s41467-023-40208-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
Proteomic studies of human Alzheimer's disease brain tissue have potential to identify protein changes that drive disease, and to identify new drug targets. Here, we analyse 38 published Alzheimer's disease proteomic studies, generating a map of protein changes in human brain tissue across thirteen brain regions, three disease stages (preclinical Alzheimer's disease, mild cognitive impairment, advanced Alzheimer's disease), and proteins enriched in amyloid plaques, neurofibrillary tangles, and cerebral amyloid angiopathy. Our dataset is compiled into a searchable database (NeuroPro). We found 848 proteins were consistently altered in 5 or more studies. Comparison of protein changes in early-stage and advanced Alzheimer's disease revealed proteins associated with synapse, vesicle, and lysosomal pathways show change early in disease, but widespread changes in mitochondrial associated protein expression change are only seen in advanced Alzheimer's disease. Protein changes were similar for brain regions considered vulnerable and regions considered resistant. This resource provides insight into Alzheimer's disease brain protein changes and highlights proteins of interest for further study.
Collapse
Affiliation(s)
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Geoffrey Pires
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Biochemistry and Molecular Pharmacology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA.
| |
Collapse
|
14
|
Sirkis DW, Warly Solsberg C, Johnson TP, Bonham LW, Sturm VE, Lee SE, Rankin KP, Rosen HJ, Boxer AL, Seeley WW, Miller BL, Geier EG, Yokoyama JS. Single-cell RNA-seq reveals alterations in peripheral CX3CR1 and nonclassical monocytes in familial tauopathy. Genome Med 2023; 15:53. [PMID: 37464408 PMCID: PMC10354988 DOI: 10.1186/s13073-023-01205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Emerging evidence from mouse models is beginning to elucidate the brain's immune response to tau pathology, but little is known about the nature of this response in humans. In addition, it remains unclear to what extent tau pathology and the local inflammatory response within the brain influence the broader immune system. METHODS To address these questions, we performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) from carriers of pathogenic variants in MAPT, the gene encoding tau (n = 8), and healthy non-carrier controls (n = 8). Primary findings from our scRNA-seq analyses were confirmed and extended via flow cytometry, droplet digital (dd)PCR, and secondary analyses of publicly available transcriptomics datasets. RESULTS Analysis of ~ 181,000 individual PBMC transcriptomes demonstrated striking differential expression in monocytes and natural killer (NK) cells in MAPT pathogenic variant carriers. In particular, we observed a marked reduction in the expression of CX3CR1-the gene encoding the fractalkine receptor that is known to modulate tau pathology in mouse models-in monocytes and NK cells. We also observed a significant reduction in the abundance of nonclassical monocytes and dysregulated expression of nonclassical monocyte marker genes, including FCGR3A. Finally, we identified reductions in TMEM176A and TMEM176B, genes thought to be involved in the inflammatory response in human microglia but with unclear function in peripheral monocytes. We confirmed the reduction in nonclassical monocytes by flow cytometry and the differential expression of select biologically relevant genes dysregulated in our scRNA-seq data using ddPCR. CONCLUSIONS Our results suggest that human peripheral immune cell expression and abundance are modulated by tau-associated pathophysiologic changes. CX3CR1 and nonclassical monocytes in particular will be a focus of future work exploring the role of these peripheral signals in additional tau-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel W Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - Caroline Warly Solsberg
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, 94158, USA
| | - Taylor P Johnson
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - Luke W Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, USA
| | - Virginia E Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA, 94158, USA
- Trinity College Dublin, Dublin, Ireland
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA, 94158, USA
- Trinity College Dublin, Dublin, Ireland
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Department of Pathology, University of California, San Francisco, CA, 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Global Brain Health Institute, University of California, San Francisco, CA, 94158, USA
- Trinity College Dublin, Dublin, Ireland
| | - Ethan G Geier
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA
- Transposon Therapeutics, Inc, San Diego, CA, 92122, USA
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, 1651 4th Street, San Francisco, CA, 94158, USA.
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, 94158, USA.
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 94158, USA.
- Global Brain Health Institute, University of California, San Francisco, CA, 94158, USA.
- Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
15
|
Huang YS, Mendez R, Fernandez M, Richter JD. CPEB and translational control by cytoplasmic polyadenylation: impact on synaptic plasticity, learning, and memory. Mol Psychiatry 2023; 28:2728-2736. [PMID: 37131078 PMCID: PMC10620108 DOI: 10.1038/s41380-023-02088-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
The late 1990s were banner years in molecular neuroscience; seminal studies demonstrated that local protein synthesis, at or near synapses, was necessary for synaptic plasticity, the underlying cellular basis of learning and memory [1, 2]. The newly made proteins were proposed to "tag" the stimulated synapse, distinguishing it from naive synapses, thereby forming a cellular memory [3]. Subsequent studies demonstrated that the transport of mRNAs from soma to dendrite was linked with translational unmasking at synapses upon synaptic stimulation. It soon became apparent that one prevalent mechanism governing these events is cytoplasmic polyadenylation, and that among the proteins that control this process, CPEB, plays a central role in synaptic plasticity, and learning and memory. In vertebrates, CPEB is a family of four proteins, all of which regulate translation in the brain, that have partially overlapping functions, but also have unique characteristics and RNA binding properties that make them control different aspects of higher cognitive function. Biochemical analysis of the vertebrate CPEBs demonstrate them to respond to different signaling pathways whose output leads to specific cellular responses. In addition, the different CPEBs, when their functions go awry, result in pathophysiological phenotypes resembling specific human neurological disorders. In this essay, we review key aspects of the vertebrate CPEB proteins and cytoplasmic polyadenylation within the context of brain function.
Collapse
Affiliation(s)
- Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Raul Mendez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| | | | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
16
|
Amaral B, Capacci A, Anderson T, Tezer C, Bajrami B, Lulla M, Lucas B, Chodaparambil JV, Marcotte D, Kumar PR, Murugan P, Spilker K, Cullivan M, Wang T, Peterson AC, Enyedy I, Ma B, Chen T, Yousaf Z, Calhoun M, Golonzhka O, Dillon GM, Koirala S. Elucidation of the GSK3α Structure Informs the Design of Novel, Paralog-Selective Inhibitors. ACS Chem Neurosci 2023; 14:1080-1094. [PMID: 36812145 PMCID: PMC10020971 DOI: 10.1021/acschemneuro.2c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK3) remains a therapeutic target of interest for diverse clinical indications. However, one hurdle in the development of small molecule GSK3 inhibitors has been safety concerns related to pan-inhibition of both GSK3 paralogs, leading to activation of the Wnt/β-catenin pathway and potential for aberrant cell proliferation. Development of GSK3α or GSK3β paralog-selective inhibitors that could offer an improved safety profile has been reported but further advancement has been hampered by the lack of structural information for GSK3α. Here we report for the first time the crystal structure for GSK3α, both in apo form and bound to a paralog-selective inhibitor. Taking advantage of this new structural information, we describe the design and in vitro testing of novel compounds with up to ∼37-fold selectivity for GSK3α over GSK3β with favorable drug-like properties. Furthermore, using chemoproteomics, we confirm that acute inhibition of GSK3α can lower tau phosphorylation at disease-relevant sites in vivo, with a high degree of selectivity over GSK3β and other kinases. Altogether, our studies advance prior efforts to develop GSK3 inhibitors by describing GSK3α structure and novel GSK3α inhibitors with improved selectivity, potency, and activity in disease-relevant systems.
Collapse
Affiliation(s)
- Brenda Amaral
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Andrew Capacci
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Trip Anderson
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ceren Tezer
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bekim Bajrami
- Departments of Chemical Biology and Proteomics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Mukesh Lulla
- Departments of Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Brian Lucas
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jayanth V Chodaparambil
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Douglas Marcotte
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - P Rajesh Kumar
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Paramasivam Murugan
- Departments of Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kerri Spilker
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Mike Cullivan
- Departments of Physical Biochemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ti Wang
- Departments of Bioassays, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Anton C Peterson
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Istvan Enyedy
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bin Ma
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - TeYu Chen
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Zain Yousaf
- Departments of Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Calhoun
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Olga Golonzhka
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Gregory M Dillon
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Samir Koirala
- Departments of Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
17
|
Kim H, Kim Y, Lee CY, Kim DG, Cheon M. Investigation of early molecular alterations in tauopathy with generative adversarial networks. Sci Rep 2023; 13:732. [PMID: 36639689 PMCID: PMC9839697 DOI: 10.1038/s41598-023-28081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
The recent advances in deep learning-based approaches hold great promise for unravelling biological mechanisms, discovering biomarkers, and predicting gene function. Here, we deployed a deep generative model for simulating the molecular progression of tauopathy and dissecting its early features. We applied generative adversarial networks (GANs) for bulk RNA-seq analysis in a mouse model of tauopathy (TPR50-P301S). The union set of differentially expressed genes from four comparisons (two phenotypes with two time points) was used as input training data. We devised four-way transition curves for a virtual simulation of disease progression, clustered and grouped the curves by patterns, and identified eight distinct pattern groups showing different biological features from Gene Ontology enrichment analyses. Genes that were upregulated in early tauopathy were associated with vasculature development, and these changes preceded immune responses. We confirmed significant disease-associated differences in the public human data for the genes of the different pattern groups. Validation with weighted gene co-expression network analysis suggested that our GAN-based approach can be used to detect distinct patterns of early molecular changes during disease progression, which may be extremely difficult in in vivo experiments. The generative model is a valid systematic approach for exploring the sequential cascades of mechanisms and targeting early molecular events related to dementia.
Collapse
Affiliation(s)
- Hyerin Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Yongjin Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Chung-Yeol Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Do-Geun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Mookyung Cheon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea.
| |
Collapse
|
18
|
Yuan A, Nixon RA. Posttranscriptional regulation of neurofilament proteins and tau in health and disease. Brain Res Bull 2023; 192:115-127. [PMID: 36441047 PMCID: PMC9907725 DOI: 10.1016/j.brainresbull.2022.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 01/16/2023]
Abstract
Neurofilament and tau proteins are neuron-specific cytoskeletal proteins that are enriched in axons, regulated by many of the same protein kinases, interact physically, and are the principal constituents of neurofibrillary lesions in major adult-onset dementias. Both proteins share functions related to the modulation of stability and functions of the microtubule network in axons, axonal transport and scaffolding of organelles, long-term synaptic potentiation, and learning and memory. Expression of these proteins is regulated not only at the transcriptional level but also through posttranscriptional control of pre-mRNA splicing, mRNA stability, transport, localization, local translation and degradation. Current evidence suggests that posttranscriptional determinants of their levels are usually regulated by RNA-binding proteins and microRNAs primarily through 3'-untranslated regions of neurofilament and tau mRNAs. Dysregulations of neurofilament and tau expression caused by mutations or pathologies of RNA-binding proteins such as TDP43, FUS and microRNAs are increasingly recognized in association with varied neurological disorders. In this review, we summarize the current understanding of posttranscriptional control of neurofilament and tau by examining the posttranscriptional regulation of neurofilament and tau by RNA-binding proteins and microRNAs implicated in health and diseases.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA,Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA,Department of Cell Biology, New York University Langone Health, New York, NY 10016, USA,NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA,Correspondence to: Center for Dementia Research, Nathan Kline Institute, New York University Langone Health, New York, NY 10016, USA, (A. Yuan), (R.A. Nixon)
| |
Collapse
|
19
|
Protein synthesis inhibition and loss of homeostatic functions in astrocytes from an Alzheimer's disease mouse model: a role for ER-mitochondria interaction. Cell Death Dis 2022; 13:878. [PMID: 36257957 PMCID: PMC9579125 DOI: 10.1038/s41419-022-05324-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
Deregulation of protein synthesis and ER stress/unfolded protein response (ER stress/UPR) have been reported in astrocytes. However, the relationships between protein synthesis deregulation and ER stress/UPR, as well as their role in the altered homeostatic support of Alzheimer's disease (AD) astrocytes remain poorly understood. Previously, we reported that in astrocytic cell lines from 3xTg-AD mice (3Tg-iAstro) protein synthesis was impaired and ER-mitochondria distance was reduced. Here we show that impaired protein synthesis in 3Tg-iAstro is associated with an increase of p-eIF2α and downregulation of GADD34. Although mRNA levels of ER stress/UPR markers were increased two-three-fold, we found neither activation of PERK nor downstream induction of ATF4 protein. Strikingly, the overexpression of a synthetic ER-mitochondrial linker (EML) resulted in a reduced protein synthesis and augmented p-eIF2α without any effect on ER stress/UPR marker genes. In vivo, in hippocampi of 3xTg-AD mice, reduced protein synthesis, increased p-eIF2α and downregulated GADD34 protein were found, while no increase of p-PERK or ATF4 proteins was observed, suggesting that in AD astrocytes, both in vitro and in vivo, phosphorylation of eIF2α and impairment of protein synthesis are PERK-independent. Next, we investigated the ability of 3xTg-AD astrocytes to support metabolism and function of other cells of the central nervous system. Astrocyte-conditioned medium (ACM) from 3Tg-iAstro cells significantly reduced protein synthesis rate in primary hippocampal neurons. When added as a part of pericyte/endothelial cell (EC)/astrocyte 3D co-culture, 3Tg-iAstro, but not WT-iAstro, severely impaired formation and ramification of tubules, the effect, replicated by EML overexpression in WT-iAstro cells. Finally, a chemical chaperone 4-phenylbutyric acid (4-PBA) rescued protein synthesis, p-eIF2α levels in 3Tg-iAstro cells and tubulogenesis in pericyte/EC/3Tg-iAstro co-culture. Collectively, our results suggest that a PERK-independent, p-eIF2α-associated impairment of protein synthesis compromises astrocytic homeostatic functions, and this may be caused by the altered ER-mitochondria interaction.
Collapse
|
20
|
Kavanagh T, Halder A, Drummond E. Tau interactome and RNA binding proteins in neurodegenerative diseases. Mol Neurodegener 2022; 17:66. [PMID: 36253823 PMCID: PMC9575286 DOI: 10.1186/s13024-022-00572-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
Pathological tau aggregation is a primary neuropathological feature of many neurodegenerative diseases. Intriguingly, despite the common presence of tau aggregates in these diseases the affected brain regions, clinical symptoms, and morphology, conformation, and isoform ratio present in tau aggregates varies widely. The tau-mediated disease mechanisms that drive neurodegenerative disease are still unknown. Tau interactome studies are critically important for understanding tauopathy. They reveal the interacting partners that define disease pathways, and the tau interactions present in neuropathological aggregates provide potential insight into the cellular environment and protein interactions present during pathological tau aggregation. Here we provide a combined analysis of 12 tau interactome studies of human brain tissue, human cell culture models and rodent models of disease. Together, these studies identified 2084 proteins that interact with tau in human tissue and 1152 proteins that interact with tau in rodent models of disease. Our combined analysis of the tau interactome revealed consistent enrichment of interactions between tau and proteins involved in RNA binding, ribosome, and proteasome function. Comparison of human and rodent tau interactome studies revealed substantial differences between the two species. We also performed a second analysis to identify the tau interacting proteins that are enriched in neurons containing granulovacuolar degeneration or neurofibrillary tangle pathology. These results revealed a timed dysregulation of tau interactions as pathology develops. RNA binding proteins, particularly HNRNPs, emerged as early disease-associated tau interactors and therefore may have an important role in driving tau pathology.
Collapse
Affiliation(s)
- Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Sydney, NSW Australia
| | - Aditi Halder
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Sydney, NSW Australia
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Sydney, NSW Australia
| |
Collapse
|
21
|
Romaus-Sanjurjo D, Saikia JM, Kim HJ, Tsai KM, Le GQ, Zheng B. Overexpressing eukaryotic elongation factor 1 alpha (eEF1A) proteins to promote corticospinal axon repair after injury. Cell Death Discov 2022; 8:390. [PMID: 36123349 PMCID: PMC9485247 DOI: 10.1038/s41420-022-01186-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/08/2022] Open
Abstract
Although protein synthesis is hypothesized to have a pivotal role in axonal repair after central nervous system (CNS) injury, the role of core components of the protein synthesis machinery has not been examined. Notably, some elongation factors possess non-canonical functions that may further impact axonal repair. Here, we examined whether overexpressing eukaryotic elongation factor 1 alpha (eEF1A) proteins enhances the collateral sprouting of corticospinal tract (CST) neurons after unilateral pyramidotomy, along with the underlying molecular mechanisms. We found that overexpressing eEF1A proteins in CST neurons increased the levels of pS6, an indicator for mTOR activity, but not pSTAT3 and pAKT levels, in neuronal somas. Strikingly, overexpressing eEF1A2 alone, but neither eEF1A1 alone nor both factors simultaneously, increased protein synthesis and actin rearrangement in CST neurons. While eEF1A1 overexpression only slightly enhanced CST sprouting after pyramidotomy, eEF1A2 overexpression substantially enhanced this sprouting. Surprisingly, co-overexpression of both eEF1A1 and eEF1A2 led to a sprouting phenotype similar to wild-type controls, suggesting an antagonistic effect of overexpressing both proteins. These data provide the first evidence that overexpressing a core component of the translation machinery, eEF1A2, enhances CST sprouting, likely by a combination of increased protein synthesis, mTOR signaling and actin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Daniel Romaus-Sanjurjo
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratories (LINCs), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Junmi M Saikia
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hugo J Kim
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kristen M Tsai
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Geneva Q Le
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- VA San Diego Research Service, San Diego, CA, 92161, USA.
| |
Collapse
|
22
|
Tsumagari K, Sato Y, Shimozawa A, Aoyagi H, Okano H, Kuromitsu J. Co-expression network analysis of human tau-transgenic mice reveals protein modules associated with tau-induced pathologies. iScience 2022; 25:104832. [PMID: 35992067 PMCID: PMC9382322 DOI: 10.1016/j.isci.2022.104832] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Abnormally accumulated tau protein aggregates are one of the hallmarks of neurodegenerative diseases, including Alzheimer's disease (AD). In order to investigate proteomic alteration driven by tau aggregates, we implemented quantitative proteomics to analyze disease model mice expressing human MAPT P301S transgene (hTau-Tg) and quantified more than 9,000 proteins in total. We applied the weighted gene co-expression analysis (WGCNA) algorithm to the datasets and explored protein co-expression modules that were associated with the accumulation of tau aggregates and were preserved in proteomes of AD brains. This led us to identify four modules with functions related to neuroinflammatory responses, mitochondrial energy production processes (including the tricarboxylic acid cycle and oxidative phosphorylation), cholesterol biosynthesis, and postsynaptic density. Furthermore, a phosphoproteomics study uncovered phosphorylation sites that were highly correlated with these modules. Our datasets represent resources for understanding the molecular basis of tau-induced neurodegeneration, including AD.
Collapse
Affiliation(s)
- Kazuya Tsumagari
- Center for Integrated Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshiaki Sato
- Eisai-Keio Innovation Laboratory for Dementia, hhc Data Creation Center, Eisai Co., Ltd., Shinjuku-ku, Tokyo 160-8582, Japan
| | - Aki Shimozawa
- Center for Integrated Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hirofumi Aoyagi
- Eisai-Keio Innovation Laboratory for Dementia, hhc Data Creation Center, Eisai Co., Ltd., Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Junro Kuromitsu
- Eisai-Keio Innovation Laboratory for Dementia, hhc Data Creation Center, Eisai Co., Ltd., Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
23
|
Kumari A, Rahaman A, Zeng XA, Farooq MA, Huang Y, Yao R, Ali M, Ishrat R, Ali R. Temporal Cortex Microarray Analysis Revealed Impaired Ribosomal Biogenesis and Hyperactivity of the Glutamatergic System: An Early Signature of Asymptomatic Alzheimer's Disease. Front Neurosci 2022; 16:966877. [PMID: 35958988 PMCID: PMC9359077 DOI: 10.3389/fnins.2022.966877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
Pathogenic aging is regarded as asymptomatic AD when there is no cognitive deficit except for neuropathology consistent with Alzheimer's disease. These individuals are highly susceptible to developing AD. Braak and Braak's theory specific to tau pathology illustrates that the brain's temporal cortex region is an initiation site for early AD progression. So, the hub gene analysis of this region may reveal early altered biological cascades that may be helpful to alleviate AD in an early stage. Meanwhile, cognitive processing also drags its attention because cognitive impairment is the ultimate result of AD. Therefore, this study aimed to explore changes in gene expression of aged control, asymptomatic AD (AsymAD), and symptomatic AD (symAD) in the temporal cortex region. We used microarray data sets to identify differentially expressed genes (DEGs) with the help of the R programming interface. Further, we constructed the protein-protein interaction (PPI) network by performing the STRING plugin in Cytoscape and determined the hub genes via the CytoHubba plugin. Furthermore, we conducted Gene Ontology (GO) enrichment analysis via Bioconductor's cluster profile package. Resultant, the AsymAD transcriptome revealed the early-stage changes of glutamatergic hyperexcitability. Whereas the connectivity of major hub genes in this network indicates a shift from initially reduced rRNA biosynthesis in the AsymAD group to impaired protein synthesis in the symAD group. Both share the phenomenon of breaking tight junctions and others. In conclusion, this study offers new understandings of the early biological vicissitudes that occur in the brain before the manifestation of symAD and gives new promising therapeutic targets for early AD intervention.
Collapse
Affiliation(s)
- Ankita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- Abdul Rahaman
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- *Correspondence: Xin-An Zeng
| | - Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Yanyan Huang
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
| | - Runyu Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Murtaza Ali
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Romana Ishrat
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Romana Ishrat
| | - Rafat Ali
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
24
|
Proteomic Assessment of C57BL/6 Hippocampi after Non-Selective Pharmacological Inhibition of Nitric Oxide Synthase Activity: Implications of Seizure-like Neuronal Hyperexcitability Followed by Tauopathy. Biomedicines 2022; 10:biomedicines10081772. [PMID: 35892672 PMCID: PMC9331517 DOI: 10.3390/biomedicines10081772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Nitric oxide (NO) is a small gaseous signaling molecule responsible for maintaining homeostasis in a myriad of tissues and molecular pathways in neurology and the cardiovasculature. In recent years, there has been increasing interest in the potential interaction between arterial stiffness (AS), an independent cardiovascular risk factor, and neurodegenerative syndromes given increasingly epidemiological study reports. For this reason, we previously investigated the mechanistic convergence between AS and neurodegeneration via the progressive non-selective inhibition of all nitric oxide synthase (NOS) isoforms with N(G)-nitro-L-arginine methyl ester (L-NAME) in C57BL/6 mice. Our previous results showed progressively increased AS in vivo and impaired visuospatial learning and memory in L-NAME-treated C57BL/6 mice. In the current study, we sought to further investigate the progressive molecular signatures in hippocampal tissue via LC–MS/MS proteomic analysis. Our data implicate mitochondrial dysfunction due to progressive L-NAME treatment. Two weeks of L-NAME treatment implicates altered G-protein-coupled-receptor signaling in the nerve synapse and associated presence of seizures and altered emotional behavior. Furthermore, molecular signatures implicate the cerebral presence of seizure-related hyperexcitability after short-term (8 weeks) treatment followed by ribosomal dysfunction and tauopathy after long-term (16 weeks) treatment.
Collapse
|
25
|
Antón-Fernández A, Vallés-Saiz L, Avila J, Hernández F. Neuronal nuclear tau and neurodegeneration. Neuroscience 2022; 518:178-184. [PMID: 35872252 DOI: 10.1016/j.neuroscience.2022.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/23/2022] [Accepted: 07/13/2022] [Indexed: 02/08/2023]
Abstract
Tau is a well-known microtubule-associated protein related to its cytoplasmic localization in a neuronal cell. However, tau has been located at the cell nucleus where it could be a nucleic acid-associated protein by its preferential binding to DNA sequences present in the nucleolus and pericentromeric heterochromatin. This less well-known localization of tau could not be trivial, since during aging, an increase in the amount of nuclear tau takes place and it may be related to the described role of tau in the activation of transposons and further aging acceleration.
Collapse
Affiliation(s)
- Alejandro Antón-Fernández
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Laura Vallés-Saiz
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Jesús Avila
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | - Félix Hernández
- Centro de Biología Molecular "Severo Ochoa", CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
26
|
Zwierzchowski-Zarate AN, Mendoza-Oliva A, Kashmer OM, Collazo-Lopez JE, White CL, Diamond MI. RNA induces unique tau strains and stabilizes Alzheimer's disease seeds. J Biol Chem 2022; 298:102132. [PMID: 35700826 PMCID: PMC9364032 DOI: 10.1016/j.jbc.2022.102132] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022] Open
Abstract
Tau aggregation underlies neurodegenerative tauopathies, and trans-cellular propagation of tau assemblies of unique structure, i.e. strains, may underlie the diversity of these disorders. Polyanions have been reported to induce tau aggregation in vitro, but the precise trigger to convert tau from an inert to a seed-competent form in disease states is unknown. RNA triggers tau fibril formation in vitro and has been observed to associate with neurofibrillary tangles in human brain. Here we have tested whether RNA exerts sequence-specific effects on tau assembly and strain formation. We found that three RNA homopolymers, polyA, polyU, and polyC, all bound tau, but only polyA RNA triggered seed and fibril formation. In addition, polyA:tau seeds and fibrils were sensitive to RNase. We also observed that the origin of the RNA influenced the ability of tau to adopt a structure that would form stable strains. Human RNA potently induced tau seed formation and created tau conformations that preferentially formed stable strains in a HEK293T cell model, whereas RNA from other sources, or heparin, produced strains that were not stably maintained in cultured cells. Finally, we found that soluble, but not insoluble seeds from Alzheimer's disease (AD) brain were also sensitive to RNase. We conclude that human RNA specifically induces formation of stable tau strains, and may trigger the formation of dominant pathological assemblies that propagate in AD, and possibly other tauopathies.
Collapse
Affiliation(s)
- Amy N Zwierzchowski-Zarate
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Aydé Mendoza-Oliva
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Omar M Kashmer
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Josue E Collazo-Lopez
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Charles L White
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX USA.
| |
Collapse
|
27
|
Mein H, Jing Y, Ahmad F, Zhang H, Liu P. Altered Brain Arginine Metabolism and Polyamine System in a P301S Tauopathy Mouse Model: A Time-Course Study. Int J Mol Sci 2022; 23:ijms23116039. [PMID: 35682712 PMCID: PMC9181759 DOI: 10.3390/ijms23116039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Altered arginine metabolism (including the polyamine system) has recently been implicated in the pathogenesis of tauopathies, characterised by hyperphosphorylated and aggregated microtubule-associated protein tau (MAPT) accumulation in the brain. The present study, for the first time, systematically determined the time-course of arginine metabolism changes in the MAPT P301S (PS19) mouse brain at 2, 4, 6, 8 and 12 months of age. The polyamines putrescine, spermidine and spermine are critically involved in microtubule assembly and stabilization. This study, therefore, further investigated how polyamine biosynthetic and catabolic enzymes changed in PS19 mice. There were general age-dependent increases of L-arginine, L-ornithine, putrescine and spermidine in the PS19 brain (particularly in the hippocampus and parahippocampal region). While this profile change clearly indicates a shift of arginine metabolism to favor polyamine production (a polyamine stress response), spermine levels were decreased or unchanged due to the upregulation of polyamine retro-conversion pathways. Our results further implicate altered arginine metabolism (particularly the polyamine system) in the pathogenesis of tauopathies. Given the role of the polyamines in microtubule assembly and stabilization, future research is required to understand the functional significance of the polyamine stress response and explore the preventive and/or therapeutic opportunities for tauopathies by targeting the polyamine system.
Collapse
Affiliation(s)
- Hannah Mein
- Brain Health Research Centre, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin P.O. Box 56, New Zealand; (H.M.); (Y.J.); (F.A.)
| | - Yu Jing
- Brain Health Research Centre, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin P.O. Box 56, New Zealand; (H.M.); (Y.J.); (F.A.)
| | - Faraz Ahmad
- Brain Health Research Centre, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin P.O. Box 56, New Zealand; (H.M.); (Y.J.); (F.A.)
| | - Hu Zhang
- Brain Health Research Centre, School of Pharmacy, University of Otago, Dunedin P.O. Box 56, New Zealand;
| | - Ping Liu
- Brain Health Research Centre, Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin P.O. Box 56, New Zealand; (H.M.); (Y.J.); (F.A.)
- Correspondence:
| |
Collapse
|
28
|
Brody AH, Nies SH, Guan F, Smith LM, Mukherjee B, Salazar SA, Lee S, Lam TKT, Strittmatter SM. Alzheimer risk gene product Pyk2 suppresses tau phosphorylation and phenotypic effects of tauopathy. Mol Neurodegener 2022; 17:32. [PMID: 35501917 PMCID: PMC9063299 DOI: 10.1186/s13024-022-00526-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic variation at the PTK2B locus encoding the protein Pyk2 influences Alzheimer's disease risk. Neurons express Pyk2 and the protein is required for Amyloid-β (Aβ) peptide driven deficits of synaptic function and memory in mouse models, but Pyk2 deletion has minimal effect on neuro-inflammation. Previous in vitro data suggested that Pyk2 activity might enhance GSK3β-dependent Tau phosphorylation and be required for tauopathy. Here, we examine the influence of Pyk2 on Tau phosphorylation and associated pathology. METHODS The effect of Pyk2 on Tau phosphorylation was examined in cultured Hek cells through protein over-expression and in iPSC-derived human neurons through pharmacological Pyk2 inhibition. PS19 mice overexpressing the P301S mutant of human Tau were employed as an in vivo model of tauopathy. Phenotypes of PS19 mice with a targeted deletion of Pyk2 expression were compared with PS19 mice with intact Pyk2 expression. Phenotypes examined included Tau phosphorylation, Tau accumulation, synapse loss, gliosis, proteomic profiling and behavior. RESULTS Over-expression experiments from Hek293T cells indicated that Pyk2 contributed to Tau phosphorylation, while iPSC-derived human neuronal cultures with endogenous protein levels supported the opposite conclusion. In vivo, multiple phenotypes of PS19 were exacerbated by Pyk2 deletion. In Pyk2-null PS19 mice, Tau phosphorylation and accumulation increased, mouse survival decreased, spatial memory was impaired and hippocampal C1q deposition increased relative to PS19 littermate controls. Proteomic profiles of Pyk2-null mouse brain revealed that several protein kinases known to interact with Tau are regulated by Pyk2. Endogenous Pyk2 suppresses LKB1 and p38 MAPK activity, validating one potential pathway contributing to increased Tau pathology. CONCLUSIONS The absence of Pyk2 results in greater mutant Tau-dependent phenotypes in PS19 mice, in part via increased LKB1 and MAPK activity. These data suggest that in AD, while Pyk2 activity mediates Aβ-driven deficits, Pyk2 suppresses Tau-related phenotypes.
Collapse
Affiliation(s)
- A Harrison Brody
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Sarah Helena Nies
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale School of Medicine, New Haven, CT, USA.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, D-72074, Tübingen, Germany
| | - Fulin Guan
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Levi M Smith
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Bandhan Mukherjee
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Santiago A Salazar
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Suho Lee
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Tu Kiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA.,Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
29
|
Liang SY, Wang ZT, Tan L, Yu JT. Tau Toxicity in Neurodegeneration. Mol Neurobiol 2022; 59:3617-3634. [PMID: 35359226 DOI: 10.1007/s12035-022-02809-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/20/2022] [Indexed: 12/22/2022]
Abstract
Tau is a microtubule-associated protein widely distributed in the central nervous system (CNS). The main function of tau is to promote the assembly of microtubules and stabilize their structure. After a long period of research on neurodegenerative diseases, the function and dysfunction of the microtubule-associated protein tau in neurodegenerative diseases and tau neurotoxicity have attracted increasing attention. Tauopathies are a series of progressive neurodegenerative diseases caused by pathological changes in tau, such as abnormal phosphorylation. The pathological features of tauopathies are the deposition of abnormally phosphorylated tau proteins and the aggregation of tau proteins in neurons. This article first describes the normal physiological function and dysfunction of tau proteins and then discusses the enzymes and proteins involved in tau phosphorylation and dephosphorylation, the role of tau in cell dysfunction, and the relationships between tau and several neurodegenerative diseases. The study of tau neurotoxicity provides new directions for the treatment of tauopathies.
Collapse
Affiliation(s)
- Shu-Yu Liang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China. .,Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12th Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
30
|
Ruiz-Gabarre D, Carnero-Espejo A, Ávila J, García-Escudero V. What's in a Gene? The Outstanding Diversity of MAPT. Cells 2022; 11:840. [PMID: 35269461 PMCID: PMC8909800 DOI: 10.3390/cells11050840] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 02/04/2023] Open
Abstract
Tau protein is a microtubule-associated protein encoded by the MAPT gene that carries out a myriad of physiological functions and has been linked to certain pathologies collectively termed tauopathies, including Alzheimer's disease, frontotemporal dementia, Huntington's disease, progressive supranuclear palsy, etc. Alternative splicing is a physiological process by which cells generate several transcripts from one single gene and may in turn give rise to different proteins from the same gene. MAPT transcripts have been proven to be subjected to alternative splicing, generating six main isoforms in the central nervous system. Research throughout the years has demonstrated that the splicing landscape of the MAPT gene is far more complex than that, including at least exon skipping events, the use of 3' and 5' alternative splice sites and, as has been recently discovered, also intron retention. In addition, MAPT alternative splicing has been showed to be regulated spatially and developmentally, further evidencing the complexity of the gene's splicing regulation. It is unclear what would drive the need for the existence of so many isoforms encoded by the same gene, but a wide range of functions have been ascribed to these Tau isoforms, both in physiology and pathology. In this review we offer a comprehensive up-to-date exploration of the mechanisms leading to the outstanding diversity of isoforms expressed from the MAPT gene and the functions in which such isoforms are involved, including their potential role in the onset and development of tauopathies such as Alzheimer's disease.
Collapse
Affiliation(s)
- Daniel Ruiz-Gabarre
- Anatomy, Histology and Neuroscience Department, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (D.R.-G.); (A.C.-E.)
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
- Graduate Program in Neuroscience, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Almudena Carnero-Espejo
- Anatomy, Histology and Neuroscience Department, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (D.R.-G.); (A.C.-E.)
- Graduate Program in Neuroscience, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Vega García-Escudero
- Anatomy, Histology and Neuroscience Department, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain; (D.R.-G.); (A.C.-E.)
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049 Madrid, Spain
- Graduate Program in Neuroscience, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| |
Collapse
|
31
|
Walker JM, Kazempour Dehkordi S, Fracassi A, Vanschoiack A, Pavenko A, Taglialatela G, Woltjer R, Richardson TE, Zare H, Orr ME. Differential protein expression in the hippocampi of resilient individuals identified by digital spatial profiling. Acta Neuropathol Commun 2022; 10:23. [PMID: 35164877 PMCID: PMC8842950 DOI: 10.1186/s40478-022-01324-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/30/2022] [Indexed: 02/04/2023] Open
Abstract
Clinical symptoms correlate with underlying neurodegenerative changes in the vast majority of people. However, an intriguing group of individuals demonstrate neuropathologic changes consistent with Alzheimer disease (AD) yet remain cognitively normal (termed "resilient"). Previous studies have reported less overall neuronal loss, less gliosis, and fewer comorbidities in these individuals. Herein, NanoString GeoMx™ Digital Spatial Profiler (DSP) technology was utilized to investigate protein expression differences comparing individuals with dementia and AD neuropathologic change to resilient individuals. DSP allows for spatial analysis of protein expression in multiple regions of interest (ROIs) on formalin-fixed paraffin-embedded sections. ROIs in this analysis were hippocampal neurofibrillary tangle (NFT)-bearing neurons, non-NFT-bearing neurons, and their immediate neuronal microenvironments. Analyses of 86 proteins associated with CNS cell-typing or known neurodegenerative changes in 168 ROIs from 14 individuals identified 11 proteins displaying differential expression in NFT-bearing neurons of the resilient when compared to the demented (including APP, IDH1, CD68, GFAP, SYP and Histone H3). In addition, IDH1, CD68, and SYP were differentially expressed in the environment of NFT-bearing neurons when comparing resilient to demented. IDH1 (which is upregulated under energetic and oxidative stress) and PINK1 (which is upregulated in response to mitochondrial dysfunction and oxidative stress) both displayed lower expression in the environment of NFT-bearing neurons in the resilient. Therefore, the resilient display less evidence of energetic and oxidative stress. Synaptophysin (SYP) was increased in the resilient, which likely indicates better maintenance of synapses and synaptic connections. Furthermore, neurofilament light chain (NEFL) and ubiquitin c-terminal hydrolase (Park5) were higher in the resilient in the environment of NFTs. These differences all suggest healthier intact axons, dendrites and synapses in the resilient. In conclusion, resilient individuals display protein expression patterns suggestive of an environment containing less energetic and oxidative stress, which in turn results in maintenance of neurons and their synaptic connections.
Collapse
Affiliation(s)
- Jamie M. Walker
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, San Antonio, TX USA
- Department of Pathology, Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, 7703 Floyd Curl Dr., MC 8070, San Antonio, TX 78229-3900 USA
| | - Shiva Kazempour Dehkordi
- Department of Pathology, Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, 7703 Floyd Curl Dr., MC 8070, San Antonio, TX 78229-3900 USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX USA
| | - Anna Fracassi
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB, Galveston, TX USA
| | | | | | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, UTMB, Galveston, TX USA
| | - Randall Woltjer
- Department of Pathology & Laboratory Medicine, Oregon Health and Science University, Portland, OR USA
| | - Timothy E. Richardson
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, San Antonio, TX USA
- Department of Pathology, Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, 7703 Floyd Curl Dr., MC 8070, San Antonio, TX 78229-3900 USA
| | - Habil Zare
- Department of Pathology, Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, 7703 Floyd Curl Dr., MC 8070, San Antonio, TX 78229-3900 USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX USA
| | - Miranda E. Orr
- Section of Gerontology and Geriatric Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- Salisbury VA Medical Center, Salisbury, NC 28144 USA
- Department of Internal Medicine, Wake Forest School of Medicine, 575 Patterson Ave, Winston-Salem, NC 27101 USA
| |
Collapse
|
32
|
Tau mRNA Metabolism in Neurodegenerative Diseases: A Tangle Journey. Biomedicines 2022; 10:biomedicines10020241. [PMID: 35203451 PMCID: PMC8869323 DOI: 10.3390/biomedicines10020241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/07/2022] Open
Abstract
Tau proteins are known to be mainly involved in regulation of microtubule dynamics. Besides this function, which is critical for axonal transport and signal transduction, tau proteins also have other roles in neurons. Moreover, tau proteins are turned into aggregates and consequently trigger many neurodegenerative diseases termed tauopathies, of which Alzheimer’s disease (AD) is the figurehead. Such pathological aggregation processes are critical for the onset of these diseases. Among the various causes of tau protein pathogenicity, abnormal tau mRNA metabolism, expression and dysregulation of tau post-translational modifications are critical steps. Moreover, the relevance of tau function to general mRNA metabolism has been highlighted recently in tauopathies. In this review, we mainly focus on how mRNA metabolism impacts the onset and development of tauopathies. Thus, we intend to portray how mRNA metabolism of, or mediated by, tau is associated with neurodegenerative diseases.
Collapse
|
33
|
Eastman G, Sharlow ER, Lazo JS, Bloom GS, Sotelo-Silveira JR. Transcriptome and Translatome Regulation of Pathogenesis in Alzheimer's Disease Model Mice. J Alzheimers Dis 2022; 86:365-386. [PMID: 35034904 DOI: 10.3233/jad-215357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Defining cellular mechanisms that drive Alzheimer's disease (AD) pathogenesis and progression will be aided by studies defining how gene expression patterns change during pre-symptomatic AD and ensuing periods of declining cognition. Previous studies have emphasized changes in transcriptome, but not translatome regulation, leaving the ultimate results of gene expression alterations relatively unexplored in the context of AD. OBJECTIVE To identify genes whose expression might be regulated at the transcriptome and translatome levels in AD, we analyzed gene expression in cerebral cortex of two AD model mouse strains, CVN (APPSwDI;NOS2 -/- ) and Tg2576 (APPSw), and their companion wild type (WT) strains at 6 months of age by tandem RNA-Seq and Ribo-Seq (ribosome profiling). METHODS Identical starting pools of bulk RNA were used for RNA-Seq and Ribo-Seq. Differential gene expression analysis was performed at the transcriptome, translatome, and translational efficiency levels. Regulated genes were functionally evaluated by gene ontology tools. RESULTS Compared to WT mice, AD model mice had similar levels of transcriptome regulation, but differences in translatome regulation. A microglial signature associated with early stages of Aβ accumulation was upregulated at both levels in CVN mice. Although the two mice strains did not share many regulated genes, they showed common regulated pathways related to AβPP metabolism associated with neurotoxicity and neuroprotection. CONCLUSION This work represents the first genome-wide study of brain translatome regulation in animal models of AD and provides evidence of a tight and early translatome regulation of gene expression controlling the balance between neuroprotective and neurodegenerative processes in brain.
Collapse
Affiliation(s)
- Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.,Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA.,Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.,Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - José R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
34
|
Montalbano M, Jaworski E, Garcia S, Ellsworth A, McAllen S, Routh A, Kayed R. Tau Modulates mRNA Transcription, Alternative Polyadenylation Profiles of hnRNPs, Chromatin Remodeling and Spliceosome Complexes. Front Mol Neurosci 2021; 14:742790. [PMID: 34924950 PMCID: PMC8678415 DOI: 10.3389/fnmol.2021.742790] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Tau protein is a known contributor in several neurodegenerative diseases, including Alzheimer’s disease (AD) and frontotemporal dementia (FTD). It is well-established that tau forms pathological aggregates and fibrils in these diseases. Tau has been observed within the nuclei of neurons, but there is a gap in understanding regarding the mechanism by which tau modulates transcription. We are interested in the P301L mutation of tau, which has been associated with FTD and increased tau aggregation. Our study utilized tau-inducible HEK (iHEK) cells to reveal that WT and P301L tau distinctively alter the transcription and alternative polyadenylation (APA) profiles of numerous nuclear precursors mRNAs, which then translate to form proteins involved in chromatin remodeling and splicing. We isolated total mRNA before and after over-expressing tau and then performed Poly(A)-ClickSeq (PAC-Seq) to characterize mRNA expression and APA profiles. We characterized changes in Gene Ontology (GO) pathways using EnrichR and Gene Set Enrichment Analysis (GSEA). We observed that P301L tau up-regulates genes associated with reactive oxygen species responsiveness as well as genes involved in dendrite, microtubule, and nuclear body/speckle formation. The number of genes regulated by WT tau is greater than the mutant form, which indicates that the P301L mutation causes loss-of-function at the transcriptional level. WT tau up-regulates genes contributing to cytoskeleton-dependent intracellular transport, microglial activation, microtubule and nuclear chromatin organization, formation of nuclear bodies and speckles. Interestingly, both WT and P301L tau commonly down-regulate genes responsible for ubiquitin-proteosome system. In addition, WT tau significantly down-regulates several genes implicated in chromatin remodeling and nucleosome organization. Although there are limitations inherent to the model systems used, this study will improve understanding regarding the nuclear impact of tau at the transcriptional and post-transcriptional level. This study also illustrates the potential impact of P301L tau on the human brain genome during early phases of pathogenesis.
Collapse
Affiliation(s)
- Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Stephanie Garcia
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Anna Ellsworth
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Salome McAllen
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States.,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, United States.,Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
35
|
Rabaglino MB, Wakabayashi M, Pearson JT, Jensen LJ. Effect of age on the vascular proteome in middle cerebral arteries and mesenteric resistance arteries in mice. Mech Ageing Dev 2021; 200:111594. [PMID: 34756926 DOI: 10.1016/j.mad.2021.111594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 10/20/2022]
Abstract
Aging is associated with hypertension and brain blood flow dysregulation, which are major risk factors for cardiovascular and neurodegenerative diseases. Structural remodeling, endothelial dysfunction, or hypercontractility of resistance vessels may cause increased total peripheral resistance and hypertension. Recent studies showed that G protein- and RhoA/Rho-kinase pathways are involved in increased mean arterial pressure (MAP) and arterial tone in middle-aged mice. We aimed to characterize the age-dependent changes in the vascular proteome in normal laboratory mice using mass spectrometry and bioinformatics analyses on middle cerebral arteries and mesenteric resistance arteries from young (3 months) vs. middle-aged (14 months) mice. In total, 31 proteins were significantly affected by age whereas 172 proteins were differentially expressed by vessel type. Hierarchical clustering revealed that 207 proteins were significantly changed or clustered by age. Vitamin B6 pathway, Biosynthesis of antibiotics, Regulation of actin cytoskeleton and Endocytosis were the top enriched KEGG pathways by age. Several proteins in the RhoA/Rho-kinase pathway changed in a manner consistent with hypertension and dysregulation of cerebral perfusion. Although aging had a less profound effect than vessel type on the resistance artery proteome, regulation of actin cytoskeleton, including the RhoA/Rho-kinase pathway, is an important target for age-dependent hypertension.
Collapse
Affiliation(s)
- Maria Belen Rabaglino
- Dept. of Applied Mathematics and Computer Science, Danish Technical University, Denmark
| | - Masaki Wakabayashi
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - James Todd Pearson
- Dept. of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Lars Jørn Jensen
- Dept. of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
36
|
Jiang L, Lin W, Zhang C, Ash PEA, Verma M, Kwan J, van Vliet E, Yang Z, Cruz AL, Boudeau S, Maziuk BF, Lei S, Song J, Alvarez VE, Hovde S, Abisambra JF, Kuo MH, Kanaan N, Murray ME, Crary JF, Zhao J, Cheng JX, Petrucelli L, Li H, Emili A, Wolozin B. Interaction of tau with HNRNPA2B1 and N 6-methyladenosine RNA mediates the progression of tauopathy. Mol Cell 2021; 81:4209-4227.e12. [PMID: 34453888 PMCID: PMC8541906 DOI: 10.1016/j.molcel.2021.07.038] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/14/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
The microtubule-associated protein tau oligomerizes, but the actions of oligomeric tau (oTau) are unknown. We have used Cry2-based optogenetics to induce tau oligomers (oTau-c). Optical induction of oTau-c elicits tau phosphorylation, aggregation, and a translational stress response that includes stress granules and reduced protein synthesis. Proteomic analysis identifies HNRNPA2B1 as a principle target of oTau-c. The association of HNRNPA2B1 with endogenous oTau was verified in neurons, animal models, and human Alzheimer brain tissues. Mechanistic studies demonstrate that HNRNPA2B1 functions as a linker, connecting oTau with N6-methyladenosine (m6A) modified RNA transcripts. Knockdown of HNRNPA2B1 prevents oTau or oTau-c from associating with m6A or from reducing protein synthesis and reduces oTau-induced neurodegeneration. Levels of m6A and the m6A-oTau-HNRNPA2B1 complex are increased up to 5-fold in the brains of Alzheimer subjects and P301S tau mice. These results reveal a complex containing oTau, HNRNPA2B1, and m6A that contributes to the integrated stress response of oTau.
Collapse
Affiliation(s)
- Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Weiwei Lin
- Center for Network Systems Biology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter E A Ash
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mamta Verma
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Julian Kwan
- Center for Network Systems Biology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Emily van Vliet
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Zhuo Yang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anna Lourdes Cruz
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Samantha Boudeau
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Brandon F Maziuk
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shuwen Lei
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jaehyup Song
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Victor E Alvarez
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Stacy Hovde
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jose F Abisambra
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Nicholas Kanaan
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - John F Crary
- Department of Pathology, Mount Sinai Medical Center, New York, NY 10029, USA
| | - Jian Zhao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02459, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02459, USA
| | | | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA; Center for Neurophotonics, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
37
|
APOE4 Affects Basal and NMDAR-Mediated Protein Synthesis in Neurons by Perturbing Calcium Homeostasis. J Neurosci 2021; 41:8686-8709. [PMID: 34475200 DOI: 10.1523/jneurosci.0435-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/15/2021] [Accepted: 08/22/2021] [Indexed: 01/24/2023] Open
Abstract
Apolipoprotein E (APOE), one of the primary lipoproteins in the brain has three isoforms in humans, APOE2, APOE3, and APOE4. APOE4 is the most well-established risk factor increasing the predisposition for Alzheimer's disease (AD). The presence of the APOE4 allele alone is shown to cause synaptic defects in neurons and recent studies have identified multiple pathways directly influenced by APOE4. However, the mechanisms underlying APOE4-induced synaptic dysfunction remain elusive. Here, we report that the acute exposure of primary cortical neurons or synaptoneurosomes to APOE4 leads to a significant decrease in global protein synthesis. Primary cortical neurons were derived from male and female embryos of Sprague Dawley (SD) rats or C57BL/6J mice. Synaptoneurosomes were prepared from P30 male SD rats. APOE4 treatment also abrogates the NMDA-mediated translation response indicating an alteration of synaptic signaling. Importantly, we demonstrate that both APOE3 and APOE4 generate a distinct translation response which is closely linked to their respective calcium signature. Acute exposure of neurons to APOE3 causes a short burst of calcium through NMDA receptors (NMDARs) leading to an initial decrease in protein synthesis which quickly recovers. Contrarily, APOE4 leads to a sustained increase in calcium levels by activating both NMDARs and L-type voltage-gated calcium channels (L-VGCCs), thereby causing sustained translation inhibition through eukaryotic translation elongation factor 2 (eEF2) phosphorylation, which in turn disrupts the NMDAR response. Thus, we show that APOE4 affects basal and activity-mediated protein synthesis responses in neurons by affecting calcium homeostasis.SIGNIFICANCE STATEMENT Defective protein synthesis has been shown as an early defect in familial Alzheimer's disease (AD). However, this has not been studied in the context of sporadic AD, which constitutes the majority of cases. In our study, we show that Apolipoprotein E4 (APOE4), the predominant risk factor for AD, inhibits global protein synthesis in neurons. APOE4 also affects NMDA activity-mediated protein synthesis response, thus inhibiting synaptic translation. We also show that the defective protein synthesis mediated by APOE4 is closely linked to the perturbation of calcium homeostasis caused by APOE4 in neurons. Thus, we propose the dysregulation of protein synthesis as one of the possible molecular mechanisms to explain APOE4-mediated synaptic and cognitive defects. Hence, the study not only suggests an explanation for the APOE4-mediated predisposition to AD, it also bridges the gap in understanding APOE4-mediated pathology.
Collapse
|
38
|
Kang SG, Han ZZ, Daude N, McNamara E, Wohlgemuth S, Molina-Porcel L, Safar JG, Mok SA, Westaway D. Pathologic tau conformer ensembles induce dynamic, liquid-liquid phase separation events at the nuclear envelope. BMC Biol 2021; 19:199. [PMID: 34503506 PMCID: PMC8428099 DOI: 10.1186/s12915-021-01132-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background The microtubule-associated protein tau forms aggregates in different neurodegenerative diseases called tauopathies. Prior work has shown that a single P301L mutation in tau gene, MAPT, can promote alternative tau folding pathways that correlate with divergent clinical diagnoses. Using progressive chemical denaturation, some tau preparations from the brain featured complex transitions starting at low concentrations of guanidine hydrochloride (GdnHCl) denaturant, indicating an ensemble of differently folded tau species called conformers. On the other hand, brain samples with abundant, tangle-like pathology had simple GdnHCl unfolding profile resembling the profile of fibrillized recombinant tau and suggesting a unitary conformer composition. In studies here we sought to understand tau conformer progression and potential relationships with condensed liquid states, as well as associated perturbations in cell biological processes. Results As starting material, we used brain samples from P301L transgenic mice containing tau conformer ensembles that unfolded at low GdnHCl concentrations and with signatures resembling brain material from P301L subjects presenting with language or memory problems. We seeded reporter cells expressing a soluble form of 4 microtubule-binding repeat tau fused to GFP or YFP reporter moieties, resulting in redistribution of dispersed fluorescence signals into focal assemblies that could fuse together and move within processes between adjacent cells. Nuclear envelope fluorescent tau signals and small fluorescent inclusions behaved as a demixed liquid phase, indicative of liquid-liquid phase separation (LLPS); these droplets exhibited spherical morphology, fusion events and could recover from photobleaching. Moreover, juxtanuclear tau assemblies were associated with disrupted nuclear transport and reduced cell viability in a stable cell line. Staining for thioflavin S (ThS) became more prevalent as tau-derived inclusions attained cross-sectional area greater than 3 μm2, indicating (i) a bipartite composition, (ii) in vivo progression of tau conformers, and (iii) that a mass threshold applying to demixed condensates may drive liquid-solid transitions. Conclusions Tau conformer ensembles characterized by denaturation at low GdnHCl concentration templated the production of condensed droplets in living cells. These species exhibit dynamic changes and develop in vivo, and the larger ThS-positive assemblies may represent a waystation to arrive at intracellular fibrillar tau inclusions seen in end-stage genetic tauopathies. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01132-y.
Collapse
Affiliation(s)
- Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada
| | - Zhuang Zhuang Han
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada
| | - Emily McNamara
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada
| | | | - Jiri G Safar
- Department of Neurology and Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Sue-Ann Mok
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2 M8, Canada. .,Department of Biochemistry, University of Alberta, Edmonton, AB, Canada. .,Division of Neurology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
39
|
Liu YJ, Chern Y. Contribution of Energy Dysfunction to Impaired Protein Translation in Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:668500. [PMID: 34393724 PMCID: PMC8355359 DOI: 10.3389/fncel.2021.668500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Impaired energy homeostasis and aberrant translational control have independently been implicated in the pathogenesis of neurodegenerative diseases. AMP kinase (AMPK), regulated by the ratio of cellular AMP and ATP, is a major gatekeeper for cellular energy homeostasis. Abnormal regulation of AMPK has been reported in several neurodegenerative diseases, including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). Most importantly, AMPK activation is known to suppress the translational machinery by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1), activating translational regulators, and phosphorylating nuclear transporter factors. In this review, we describe recent findings on the emerging role of protein translation impairment caused by energy dysregulation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Ju Liu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
40
|
Qu S, Song C, Tan X, Wang G, Ling F. Comparative proteomic analysis provides insight into the key proteins as potential targets underlying the effect of malachite green against Ichthyophthirius multifiliis. JOURNAL OF FISH DISEASES 2021; 44:881-892. [PMID: 33560558 DOI: 10.1111/jfd.13346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Target identification is important for drug discovery. Unfortunately, no drug targets have been found in Ichthyophthirius multifiliis until now and further limited development of the novel drug for Ichthyophthiriasis. In this study, an iTRAQ-based quantitative proteomic analysis was used to find the target of malachite green (MG), exhibiting greater efficacy than the existing drugs, against I. multifiliis trophonts in situ. We also verified the proteomic results by RT-qPCR, TEM and cell apoptosis assay. Our results showed that major variations in protein abundance were found among many of the ribosome proteins, indicating ribosome might be a candidate target. Furthermore, GO and KEGG pathway analyses of differentially expressed proteins (DEPs) revealed that ribosome and PI3K-Akt signalling pathway were remarkably enriched. Taken together, the above DEPs were also verified by RT-qPCR and morphological observations. This study provides insights into the key proteins enriched in PI3K-Akt signal pathway and ribosome pathway as potential targets of MG killing I. multifiliis, which could be served as targets for other less toxic drugs and be tested as potential treatments for I. multifiliis.
Collapse
Affiliation(s)
- Shenye Qu
- Northwest A&F University, Yangling, Shaanxi, China
| | - Chenguang Song
- Northwest A&F University, Yangling, Shaanxi, China
- National Fishery Technology Extension Center, China Society of Fisheries, Peking, China
| | - Xiaoping Tan
- Northwest A&F University, Yangling, Shaanxi, China
| | - Gaoxue Wang
- Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Ling
- Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
41
|
Asadi MR, Sadat Moslehian M, Sabaie H, Jalaiei A, Ghafouri-Fard S, Taheri M, Rezazadeh M. Stress Granules and Neurodegenerative Disorders: A Scoping Review. Front Aging Neurosci 2021; 13:650740. [PMID: 34248597 PMCID: PMC8261063 DOI: 10.3389/fnagi.2021.650740] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic ribonucleoproteins called stress granules (SGs) are considered as one of the main cellular solutions against stress. Their temporary presence ends with stress relief. Any factor such as chronic stress or mutations in the structure of the components of SGs that lead to their permanent presence can affect their interactions with pathological aggregations and increase the degenerative effects. SGs involved in RNA mechanisms are important factors in the pathophysiology of neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), frontotemporal degeneration (FTD), and Alzheimer's diseases (AD). Although many studies have been performed in the field of SGs and neurodegenerative disorders, so far, no systematic studies have been executed in this field. The purpose of this study is to provide a comprehensive perspective of all studies about the role of SGs in the pathogenesis of neurodegenerative disorders with a focus on the protein ingredients of these granules. This scoping review is based on a six-stage methodology structure and the PRISMA guideline. A systematic search of seven databases for qualified articles was conducted until December 2020. Publications were screened independently by two reviewers and quantitative and qualitative analysis was performed on the extracted data. Bioinformatics analysis was used to plot the network and predict interprotein interactions. In addition, GO analysis was performed. A total of 48 articles were identified that comply the inclusion criteria. Most studies on neurodegenerative diseases have been conducted on ALS, AD, and FTD using human post mortem tissues. Human derived cell line studies have been used only in ALS. A total 29 genes of protein components of SGs have been studied, the most important of which are TDP-43, TIA-1, PABP-1. Bioinformatics studies have predicted 15 proteins to interact with the protein components of SGs, which may be the constituents of SGs. Understanding the interactions between SGs and pathological aggregations in neurodegenerative diseases can provide new targets for treatment of these disorders.
Collapse
Affiliation(s)
- Mohammad Reza Asadi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Sadat Moslehian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Jalaiei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Evans HT, Taylor D, Kneynsberg A, Bodea LG, Götz J. Altered ribosomal function and protein synthesis caused by tau. Acta Neuropathol Commun 2021; 9:110. [PMID: 34147135 PMCID: PMC8214309 DOI: 10.1186/s40478-021-01208-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/29/2021] [Indexed: 12/22/2022] Open
Abstract
The synthesis of new proteins is a fundamental aspect of cellular life and is required for many neurological processes, including the formation, updating and extinction of long-term memories. Protein synthesis is impaired in neurodegenerative diseases including tauopathies, in which pathology is caused by aberrant changes to the microtubule-associated protein tau. We recently showed that both global de novo protein synthesis and the synthesis of select ribosomal proteins (RPs) are decreased in mouse models of frontotemporal dementia (FTD) which express mutant forms of tau. However, a comprehensive analysis of the effect of FTD-mutant tau on ribosomes is lacking. Here we used polysome profiling, de novo protein labelling and mass spectrometry-based proteomics to examine how ribosomes are altered in models of FTD. We identified 10 RPs which were decreased in abundance in primary neurons taken from the K3 mouse model of FTD. We further demonstrate that expression of human tau (hTau) decreases both protein synthesis and biogenesis of the 60S ribosomal subunit, with these effects being exacerbated in the presence of FTD-associated tau mutations. Lastly, we demonstrate that expression of the amino-terminal projection domain of hTau is sufficient to reduce protein synthesis and ribosomal biogenesis. Together, these data reinforce a role for tau in impairing ribosomal function.
Collapse
|
43
|
Cloyd RA, Koren J, Abisambra JF, Smith BN. Effects of altered tau expression on dentate granule cell excitability in mice. Exp Neurol 2021; 343:113766. [PMID: 34029610 DOI: 10.1016/j.expneurol.2021.113766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 12/18/2022]
Abstract
Tauopathies, including Alzheimer's disease, are characterized by progressive accumulation of hyperphosphorylated and pathologic tau protein in association with onset of cognitive and behavioral impairment. Tau pathology is also associated with increased susceptibility to seizures and epilepsy, with tau-/- mice showing seizure resistance in some epilepsy models. To better understand how tau pathology is related to neuronal excitability, we performed whole-cell patch-clamp electrophysiology in dentate gyrus granule cells of tau-/- and human-tau expressing, htau mice. The htau mouse is unique from other transgenic tau models in that the endogenous murine tau gene has been and replaced with readily phosphorylated human tau. We assessed several measures of neuronal excitability, including evoked action potential frequency and excitatory synaptic responses in dentate granule cells from tau-/-, htau, and non-transgenic control mice at 1.5, 4, and 9 months of age. Compared to age matched controls, dentate granule cells from both tau-/- and htau mice had a lower peak frequency of evoked action potentials and greater paired pulse facilitation, suggesting reduced neuronal excitability. Our results suggest that neuronal excitability is more strongly influenced by the absence of functional tau than by the presence of pathologic tau. These results also suggest that tau's effect on neuronal excitability is more complex than previously understood.
Collapse
Affiliation(s)
- Ryan A Cloyd
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - John Koren
- Department of Neuroscience & Center for Translational Research in Neurodegenerative Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Jose F Abisambra
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Neuroscience & Center for Translational Research in Neurodegenerative Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Bret N Smith
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
44
|
Bao C, Bajrami B, Marcotte DJ, Chodaparambil JV, Kerns HM, Henderson J, Wei R, Gao B, Dillon GM. Mechanisms of Regulation and Diverse Activities of Tau-Tubulin Kinase (TTBK) Isoforms. Cell Mol Neurobiol 2021; 41:669-685. [PMID: 32424773 DOI: 10.1007/s10571-020-00875-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Tau-tubulin kinase 1 (TTBK1) is a CNS-specific, kinase that has been implicated in the pathological phosphorylation of tau in Alzheimer's Disease (AD) and Frontotemporal Dementia (FTD). TTBK1 is a challenging therapeutic target because it shares a highly conserved catalytic domain with its homolog, TTBK2, a ubiquitously expressed kinase genetically linked to the disease spinocerebellar ataxia type 11. The present study attempts to elucidate the functional distinctions between the TTBK isoforms and increase our understanding of them as distinct targets for the treatment of neurodegenerative disease. We demonstrate that in cortical neurons, TTBK1, not TTBK2, is the isoform responsible for tau phosphorylation at epitopes enriched in tauopathies such as Serine 422. In addition, although our elucidation of the crystal structure of the TTBK2 kinase domain indicates almost identical structural similarity with TTBK1, biochemical and cellular assays demonstrate that the enzymatic activity of these two proteins is regulated by a combination of unique extra-catalytic sequences and autophosphorylation events. Finally, we have identified an unbiased list of neuronal interactors and phosphorylation substrates for TTBK1 and TTBK2 that highlight the unique cellular pathways and functional networks that each isoform is involved in. This data address an important gap in knowledge regarding the implications of targeting TTBK kinases and may prove valuable in the development of potential therapies for disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ru Wei
- Biogen, Cambridge, MA, 02134, USA
| | | | | |
Collapse
|
45
|
SIRT6-CBP-dependent nuclear Tau accumulation and its role in protein synthesis. Cell Rep 2021; 35:109035. [PMID: 33910019 DOI: 10.1016/j.celrep.2021.109035] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 03/06/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Several neurodegenerative diseases present Tau accumulation as the main pathological marker. Tau post-translational modifications such as phosphorylation and acetylation are increased in neurodegeneration. Here, we show that Tau hyper-acetylation at residue 174 increases its own nuclear presence and is the result of DNA damage signaling or the lack of SIRT6, both causative of neurodegeneration. Tau-K174ac is deacetylated in the nucleus by SIRT6. However, lack of SIRT6 or chronic DNA damage results in nuclear Tau-K174ac accumulation. Once there, it induces global changes in gene expression, affecting protein translation, synthesis, and energy production. Concomitantly, Alzheimer's disease (AD) case subjects show increased nucleolin and a decrease in SIRT6 levels. AD case subjects present increased levels of nuclear Tau, particularly Tau-K174ac. Our results suggest that increased Tau-K174ac in AD case subjects is the result of DNA damage signaling and SIRT6 depletion. We propose that Tau-K174ac toxicity is due to its increased stability, nuclear accumulation, and nucleolar dysfunction.
Collapse
|
46
|
Guo Q, Dammer EB, Zhou M, Kundinger SR, Gearing M, Lah JJ, Levey AI, Shulman JM, Seyfried NT. Targeted Quantification of Detergent-Insoluble RNA-Binding Proteins in Human Brain Reveals Stage and Disease Specific Co-aggregation in Alzheimer's Disease. Front Mol Neurosci 2021; 14:623659. [PMID: 33815056 PMCID: PMC8014091 DOI: 10.3389/fnmol.2021.623659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/12/2021] [Indexed: 01/02/2023] Open
Abstract
Core spliceosome and related RNA-binding proteins aggregate in Alzheimer’s disease (AD) brain even in early asymptomatic stages (AsymAD) of disease. To assess the specificity of RNA-binding protein aggregation in AD, we developed a targeted mass spectrometry approach to quantify broad classes of RNA-binding proteins with other pathological proteins including tau and amyloid beta (Aβ) in detergent insoluble fractions from control, AsymAD, AD and Parkinson’s disease (PD) brain. Relative levels of specific insoluble RNA-binding proteins across different disease groups correlated with accumulation of Aβ and tau aggregates. RNA-binding proteins, including splicing factors with homology to the basic-acidic dipeptide repeats of U1-70K, preferentially aggregated in AsymAD and AD. In contrast, PD brain aggregates were relatively depleted of many RNA-binding proteins compared to AsymAD and AD groups. Correlation network analyses resolved 29 distinct modules of co-aggregating proteins including modules linked to spliceosome assembly, nuclear speckles and RNA splicing. Modules related to spliceosome assembly and nuclear speckles showed stage-specific enrichment of insoluble RBPs from AsymAD and AD brains, whereas the RNA splicing module was reduced specifically in PD. Collectively, this work identifies classes of RNA-binding proteins that distinctly co-aggregate in detergent-insoluble fractions across the specific neurodegenerative diseases we examined.
Collapse
Affiliation(s)
- Qi Guo
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| | - Eric B Dammer
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States.,Goizueta Alzheimer's Disease Research Center, School of Medicine, Emory University, Atlanta, GA, United States
| | - Maotian Zhou
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| | - Sean R Kundinger
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| | - Marla Gearing
- Goizueta Alzheimer's Disease Research Center, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - James J Lah
- Goizueta Alzheimer's Disease Research Center, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Joshua M Shulman
- Departments of Neurology, Neuroscience and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| | - Nicholas T Seyfried
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States.,Goizueta Alzheimer's Disease Research Center, School of Medicine, Emory University, Atlanta, GA, United States.,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
47
|
Whole genome methylation and transcriptome analyses to identify risk for cerebral palsy (CP) in extremely low gestational age neonates (ELGAN). Sci Rep 2021; 11:5305. [PMID: 33674671 PMCID: PMC7935929 DOI: 10.1038/s41598-021-84214-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
Preterm birth remains the leading identifiable risk factor for cerebral palsy (CP), a devastating form of motor impairment due to developmental brain injury occurring around the time of birth. We performed genome wide methylation and whole transcriptome analyses to elucidate the early pathogenesis of CP in extremely low gestational age neonates (ELGANs). We evaluated peripheral blood cell specimens collected during a randomized trial of erythropoietin for neuroprotection in the ELGAN (PENUT Trial, NCT# 01378273). DNA methylation data were generated from 94 PENUT subjects (n = 47 CP vs. n = 47 Control) on day 1 and 14 of life. Gene expression data were generated from a subset of 56 subjects. Only one differentially methylated region was identified for the day 1 to 14 change between CP versus no CP, without evidence for differential gene expression of the associated gene RNA Pseudouridine Synthase Domain Containing 2. iPathwayGuide meta-analyses identified a relevant upregulation of JAK1 expression in the setting of decreased methylation that was observed in control subjects but not CP subjects. Evaluation of whole transcriptome data identified several top pathways of potential clinical relevance including thermogenesis, ferroptossis, ribosomal activity and other neurodegenerative conditions that differentiated CP from controls.
Collapse
|
48
|
Broad Kinase Inhibition Mitigates Early Neuronal Dysfunction in Tauopathy. Int J Mol Sci 2021; 22:ijms22031186. [PMID: 33530349 PMCID: PMC7865413 DOI: 10.3390/ijms22031186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Tauopathies are a group of more than twenty known disorders that involve progressive neurodegeneration, cognitive decline and pathological tau accumulation. Current therapeutic strategies provide only limited, late-stage symptomatic treatment. This is partly due to lack of understanding of the molecular mechanisms linking tau and cellular dysfunction, especially during the early stages of disease progression. In this study, we treated early stage tau transgenic mice with a multi-target kinase inhibitor to identify novel substrates that contribute to cognitive impairment and exhibit therapeutic potential. Drug treatment significantly ameliorated brain atrophy and cognitive function as determined by behavioral testing and a sensitive imaging technique called manganese-enhanced magnetic resonance imaging (MEMRI) with quantitative R1 mapping. Surprisingly, these benefits occurred despite unchanged hyperphosphorylated tau levels. To elucidate the mechanism behind these improved cognitive outcomes, we performed quantitative proteomics to determine the altered protein network during this early stage in tauopathy and compare this model with the human Alzheimer’s disease (AD) proteome. We identified a cluster of preserved pathways shared with human tauopathy with striking potential for broad multi-target kinase intervention. We further report high confidence candidate proteins as novel therapeutically relevant targets for the treatment of tauopathy. Proteomics data are available via ProteomeXchange with identifier PXD023562.
Collapse
|
49
|
Evans HT, Blackmore D, Götz J, Bodea LG. De novo proteomic methods for examining the molecular mechanisms underpinning long-term memory. Brain Res Bull 2021; 169:94-103. [PMID: 33465403 DOI: 10.1016/j.brainresbull.2020.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 01/19/2023]
Abstract
Memory formation is a fundamental function of the nervous system that enables the experience-based adaptation of behaviour. The formation, recall and updating of long-term memory (LTM) requires new protein synthesis through its direct involvement in neuronal processes, such as long-term potentiation (LTP), long-term depression (LTD) and synaptic scaling. We discuss the advantages and limitations of several emerging techniques which enable the tagging of newly synthesised proteins, including stable isotope labelling with amino acids in cell culture (SILAC), puromycin labelling, and non-canonical amino acid (NCAA) labelling. We further present how these methods allow for the identification and visualisation of proteins which are newly synthesised during different stages of memory formation. These emerging techniques will continue to expand our understanding of how memories are formed, consolidated and retrieved.
Collapse
Affiliation(s)
- Harrison Tudor Evans
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| | - Daniel Blackmore
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Liviu-Gabriel Bodea
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
50
|
Drepper F, Biernat J, Kaniyappan S, Meyer HE, Mandelkow EM, Warscheid B, Mandelkow E. A combinatorial native MS and LC-MS/MS approach reveals high intrinsic phosphorylation of human Tau but minimal levels of other key modifications. J Biol Chem 2020; 295:18213-18225. [PMID: 33106314 PMCID: PMC7939451 DOI: 10.1074/jbc.ra120.015882] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Abnormal changes of neuronal Tau protein, such as phosphorylation and aggregation, are considered hallmarks of cognitive deficits in Alzheimer's disease. Abnormal phosphorylation is thought to precede aggregation and therefore to promote aggregation, but the nature and extent of phosphorylation remain ill-defined. Tau contains ∼85 potential phosphorylation sites, which can be phosphorylated by various kinases because the unfolded structure of Tau makes them accessible. However, methodological limitations (e.g. in MS of phosphopeptides, or antibodies against phosphoepitopes) led to conflicting results regarding the extent of Tau phosphorylation in cells. Here we present results from a new approach based on native MS of intact Tau expressed in eukaryotic cells (Sf9). The extent of phosphorylation is heterogeneous, up to ∼20 phosphates per molecule distributed over 51 sites. The medium phosphorylated fraction Pm showed overall occupancies of ∼8 Pi (± 5) with a bell-shaped distribution; the highly phosphorylated fraction Ph had 14 Pi (± 6). The distribution of sites was highly asymmetric (with 71% of all P-sites in the C-terminal half of Tau). All sites were on Ser or Thr residues, but none were on Tyr. Other known posttranslational modifications were near or below our detection limit (e.g. acetylation, ubiquitination). These findings suggest that normal cellular Tau shows a remarkably high extent of phosphorylation, whereas other modifications are nearly absent. This implies that abnormal phosphorylations at certain sites may not affect the extent of phosphorylation significantly and do not represent hyperphosphorylation. By implication, the pathological aggregation of Tau is not likely a consequence of high phosphorylation.
Collapse
Affiliation(s)
- Friedel Drepper
- Group of Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Jacek Biernat
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany
| | - Senthilvelrajan Kaniyappan
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Helmut E Meyer
- Medical Proteome Center, Ruhr-University Bochum, Bochum, Germany; Department of Biomedical Research, Leibniz-Institute for Analytical Sciences (ISAS), Dortmund, Germany
| | - Eva Maria Mandelkow
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany; CAESAR Research Center, Bonn, Germany
| | - Bettina Warscheid
- Group of Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| | - Eckhard Mandelkow
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany; CAESAR Research Center, Bonn, Germany.
| |
Collapse
|