1
|
Hosseini MS. Current insights and future directions of Li-Fraumeni syndrome. Discov Oncol 2024; 15:561. [PMID: 39404911 PMCID: PMC11480288 DOI: 10.1007/s12672-024-01435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Li-Fraumeni syndrome is a rare yet serious hereditary cancer predisposition syndrome, marked by a significant early-life increased risk of developing cancer. Primarily caused by germline mutations in the TP53 tumor suppressor gene, Li-Fraumeni syndrome is associated with a wide range of malignancies. Clinical management of Li-Fraumeni syndrome could be challenging, especially the lifelong surveillance and follow-up of patients which requires a multidisciplinary approach. Emerging insights into the molecular and clinical basis of Li-Fraumeni syndrome, coupled with advances in genomic technologies and targeted therapies, offer promise in optimizing risk assessment, early detection, and treatment strategies tailored to the unique clinical and molecular profiles of affected individuals. This review discusses Li-Fraumeni syndrome in more depth, reviewing molecular, genomic, epidemiological, clinical, and therapeutic aspects of this disease.
Collapse
Affiliation(s)
- Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666, EA, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Sadowski K, Jażdżewska A, Kozłowski J, Zacny A, Lorenc T, Olejarz W. Revolutionizing Glioblastoma Treatment: A Comprehensive Overview of Modern Therapeutic Approaches. Int J Mol Sci 2024; 25:5774. [PMID: 38891962 PMCID: PMC11172387 DOI: 10.3390/ijms25115774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in the adult population, with an average survival of 12.1 to 14.6 months. The standard treatment, combining surgery, radiotherapy, and chemotherapy, is not as efficient as we would like. However, the current possibilities are no longer limited to the standard therapies due to rapid advancements in biotechnology. New methods enable a more precise approach by targeting individual cells and antigens to overcome cancer. For the treatment of glioblastoma, these are gamma knife therapy, proton beam therapy, tumor-treating fields, EGFR and VEGF inhibitors, multiple RTKs inhibitors, and PI3K pathway inhibitors. In addition, the increasing understanding of the role of the immune system in tumorigenesis and the ability to identify tumor-specific antigens helped to develop immunotherapies targeting GBM and immune cells, including CAR-T, CAR-NK cells, dendritic cells, and immune checkpoint inhibitors. Each of the described methods has its advantages and disadvantages and faces problems, such as the inefficient crossing of the blood-brain barrier, various neurological and systemic side effects, and the escape mechanism of the tumor. This work aims to present the current modern treatments of glioblastoma.
Collapse
Affiliation(s)
- Karol Sadowski
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Adrianna Jażdżewska
- The Department of Anatomy and Neurobiology, Medical University of Gdansk, Dębinki 1, 80-211 Gdansk, Poland;
| | - Jan Kozłowski
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | - Aleksandra Zacny
- The Department of Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.S.)
| | - Tomasz Lorenc
- Department of Radiology I, The Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
3
|
Kibe Y, Ohka F, Aoki K, Yamaguchi J, Motomura K, Ito E, Takeuchi K, Nagata Y, Ito S, Mizutani N, Shiba Y, Maeda S, Nishikawa T, Shimizu H, Saito R. Pediatric-type high-grade gliomas with PDGFRA amplification in adult patients with Li-Fraumeni syndrome: clinical and molecular characterization of three cases. Acta Neuropathol Commun 2024; 12:57. [PMID: 38605367 PMCID: PMC11010357 DOI: 10.1186/s40478-024-01762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Li-Fraumeni syndrome (LFS) is an autosomal dominant tumor predisposition syndrome caused by heterozygous germline mutations or deletions in the TP53 tumor suppressor gene. Central nervous system tumors, such as choroid plexus tumors, medulloblastomas, and diffuse gliomas, are frequently found in patients with LFS. Although molecular profiles of diffuse gliomas that develop in pediatric patients with LFS have been elucidated, those in adults are limited. Recently, diffuse gliomas have been divided into pediatric- and adult-type gliomas, based on their distinct molecular profiles. In the present study, we investigated the molecular profiles of high-grade gliomas in three adults with LFS. These tumors revealed characteristic histopathological findings of high-grade glioma or glioblastoma and harbored wild-type IDH1/2 according to whole exome sequencing (WES). However, these tumors did not exhibit the key molecular alterations of glioblastoma, IDH-wildtype such as TERT promoter mutation, EGFR amplification, or chromosome 7 gain and 10 loss. Although WES revealed no other characteristic gene mutations or copy number alterations in high-grade gliomas, such as those in histone H3 genes, PDGFRA amplification was found in all three cases together with uniparental disomy of chromosome 17p, where the TP53 gene is located. DNA methylation analyses revealed that all tumors exhibited DNA methylation profiles similar to those of pediatric-type high-grade glioma H3-wildtype and IDH-wildtype (pHGG H3-/IDH-wt), RTK1 subtype. These data suggest that high-grade gliomas developed in adult patients with LFS may be involved in pHGG H3-/IDH-wt. PDGFRA and homozygous alterations in TP53 may play pivotal roles in the development of this type of glioma in adult patients with LFS.
Collapse
Affiliation(s)
- Yuji Kibe
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Kosuke Aoki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Junya Yamaguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Eiji Ito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhito Takeuchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuichi Nagata
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Satoshi Ito
- Department of Neurosurgery, Konan Kosei Hospital, 137 Oomatsubara, Takaya-cho, Konan, 483-8703, Japan
| | - Nobuhiko Mizutani
- Department of Neurosurgery, Konan Kosei Hospital, 137 Oomatsubara, Takaya-cho, Konan, 483-8703, Japan
| | - Yoshiki Shiba
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Sachi Maeda
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tomohide Nishikawa
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroki Shimizu
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
4
|
Lam K, Kamiya-Matsuoka C, Slopis JM, McCutcheon IE, Majd NK. Therapeutic Strategies for Gliomas Associated With Cancer Predisposition Syndromes. JCO Precis Oncol 2024; 8:e2300442. [PMID: 38394467 DOI: 10.1200/po.23.00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 02/25/2024] Open
Abstract
PURPOSE The purpose of this article was to provide an overview of syndromic gliomas. DESIGN The authors conducted a nonsystematic literature review. RESULTS Cancer predisposition syndromes (CPSs) are genetic conditions that increase one's risk for certain types of cancer compared with the general population. Syndromes that can predispose one to developing gliomas include neurofibromatosis, Li-Fraumeni syndrome, Lynch syndrome, and tuberous sclerosis complex. The standard treatment for sporadic glioma may involve resection, radiation therapy, and/or alkylating chemotherapy. However, DNA-damaging approaches, such as radiation and alkylating agents, may increase the risk of secondary malignancies and other complications in patients with CPSs. In some cases, depending on genetic aberrations, targeted therapies or immunotherapeutic approaches may be considered. Data on clinical characteristics, therapeutic strategies, and prognosis of syndromic gliomas remain limited. CONCLUSION In this review, we provide an overview of syndromic gliomas with a focus on management for patients with CPSs and the role of novel treatments that can be considered.
Collapse
Affiliation(s)
- Keng Lam
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer, Houston, TX
| | | | - John M Slopis
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer, Houston, TX
| | - Ian E McCutcheon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer, Houston, TX
| | - Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer, Houston, TX
| |
Collapse
|
5
|
Jovanović A, Tošić N, Marjanović I, Komazec J, Zukić B, Nikitović M, Ilić R, Grujičić D, Janić D, Pavlović S. Germline Variants in Cancer Predisposition Genes in Pediatric Patients with Central Nervous System Tumors. Int J Mol Sci 2023; 24:17387. [PMID: 38139220 PMCID: PMC10744041 DOI: 10.3390/ijms242417387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Central nervous system (CNS) tumors comprise around 20% of childhood malignancies. Germline variants in cancer predisposition genes (CPGs) are found in approximately 10% of pediatric patients with CNS tumors. This study aimed to characterize variants in CPGs in pediatric patients with CNS tumors and correlate these findings with clinically relevant data. Genomic DNA was isolated from the peripheral blood of 51 pediatric patients and further analyzed by the next-generation sequencing approach. Bioinformatic analysis was done using an "in-house" gene list panel, which included 144 genes related to pediatric brain tumors, and the gene list panel Neoplasm (HP:0002664). Our study found that 27% of pediatric patients with CNS tumors have a germline variant in some of the known CPGs, like ALK, APC, CHEK2, ELP1, MLH1, MSH2, NF1, NF2 and TP53. This study represents the first comprehensive evaluation of germline variants in pediatric patients with CNS tumors in the Western Balkans region. Our results indicate the necessity of genomic research to reveal the genetic basis of pediatric CNS tumors, as well as to define targets for the application and development of innovative therapeutics that form the basis of the upcoming era of personalized medicine.
Collapse
Affiliation(s)
- Aleksa Jovanović
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Nataša Tošić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Irena Marjanović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Jovana Komazec
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Branka Zukić
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| | - Marina Nikitović
- Pediatric Radiation Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
| | - Rosanda Ilić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Danica Grujičić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.I.); (D.G.)
- Neurooncology Department, Neurosurgery Clinic, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Dragana Janić
- Pediatric Oncology Department, National Cancer Research Center, 11000 Belgrade, Serbia; (A.J.); (D.J.)
| | - Sonja Pavlović
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia; (N.T.); (I.M.); (J.K.); (B.Z.)
| |
Collapse
|
6
|
van den Bent MJ, Geurts M, French PJ, Smits M, Capper D, Bromberg JEC, Chang SM. Primary brain tumours in adults. Lancet 2023; 402:1564-1579. [PMID: 37738997 DOI: 10.1016/s0140-6736(23)01054-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 09/24/2023]
Abstract
The most frequent adult-type primary CNS tumours are diffuse gliomas, but a large variety of rarer CNS tumour types exists. The classification of these tumours is increasingly based on molecular diagnostics, which is reflected in the extensive molecular foundation of the recent WHO 2021 classification of CNS tumours. Resection as extensive as is safely possible is the cornerstone of treatment in most gliomas, and is now also recommended early in the treatment of patients with radiological evidence of histologically low-grade tumours. For the adult-type diffuse glioma, standard of care is a combination of radiotherapy and chemotherapy. Although treatment with curative intent is not available, combined modality treatment has resulted in long-term survival (>10-20 years) for some patients with isocitrate dehydrogenase (IDH) mutant tumours. Other rarer tumours require tailored approaches, best delivered in specialised centres. Targeted treatments based on molecular alterations still only play a minor role in the treatment landscape of adult-type diffuse glioma, and today are mainly limited to patients with tumours with BRAFV600E (ie, Val600Glu) mutations. Immunotherapy for CNS tumours is still in its infancy, and so far, trials with checkpoint inhibitors and vaccination studies have not shown improvement in patient outcomes in glioblastoma. Current research is focused on improving our understanding of the immunosuppressive tumour environment, the molecular heterogeneity of tumours, and the role of tumour microtube network connections between cells in the tumour microenvironment. These factors all appear to play a role in treatment resistance, and indicate that novel approaches are needed to further improve outcomes of patients with CNS tumours.
Collapse
Affiliation(s)
- Martin J van den Bent
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands.
| | - Marjolein Geurts
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands
| | - Pim J French
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands; Medical Delta, Delft, Netherlands
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium, Berlin, Germany; German Cancer Research Center, Heidelberg, Germany
| | - Jacoline E C Bromberg
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands
| | - Susan M Chang
- Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
McDonald MF, Prather LL, Helfer CR, Ludmir EB, Echeverria AE, Yust-Katz S, Patel AJ, Deneen B, Rao G, Jalali A, Dhar SU, Amos CI, Mandel JJ. Prevalence of pathogenic germline variants in adult-type diffuse glioma. Neurooncol Pract 2023; 10:482-490. [PMID: 37720399 PMCID: PMC10502787 DOI: 10.1093/nop/npad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Background No consensus germline testing guidelines currently exist for glioma patients, so the prevalence of germline pathogenic variants remains unknown. This study aims to determine the prevalence and type of pathogenic germline variants in adult glioma. Methods A retrospective review at a single institution with paired tumor/normal sequencing from August 2018-April 2022 was performed and corresponding clinical data were collected. Results We identified 152 glioma patients of which 15 (9.8%) had pathogenic germline variants. Pathogenic germline variants were seen in 11/84 (13.1%) of Glioblastoma, IDH wild type; 3/42 (7.1%) of Astrocytoma, IDH mutant; and 1/26 (3.8%) of Oligodendroglioma, IDH mutant, and 1p/19q co-deleted patients. Pathogenic variants in BRCA2, MUTYH, and CHEK2 were most common (3/15, 20% each). BRCA1 variants occurred in 2/15 (13%) patients, with variants in NF1, ATM, MSH2, and MSH3 occurring in one patient (7%) each. Prior cancer diagnosis was found in 5/15 patients (33%). Second-hit somatic variants were seen in 3/15 patients (20%) in NF1, MUTYH, and MSH2. Referral to genetics was performed in 6/15 (40%) patients with pathogenic germline variants. 14/15 (93%) of patients discovered their pathogenic variant as a result of their paired glioma sequencing. Conclusions These findings suggest a possible overlooked opportunity for determination of hereditary cancer syndromes with impact on surveillance as well as potential broader treatment options. Further studies that can determine the role of variants in gliomagenesis and confirm the occurrence and types of pathogenic germline variants in patients with IDH wild type compared to IDH mutant tumors are necessary.
Collapse
Affiliation(s)
- Malcolm F McDonald
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Lyndsey L Prather
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Cassandra R Helfer
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Ethan B Ludmir
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Alfredo E Echeverria
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Akash J Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
| | - Benjamin Deneen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Shweta U Dhar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Chris I Amos
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob J Mandel
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Das A, Nobre L. Genomics in pediatric high-grade gliomas: Hope or hype practical implications for resource limited settings. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2023. [DOI: 10.1016/j.phoj.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
9
|
Guerrini-Rousseau L, Tauziède-Espariat A, Castel D, Rouleau E, Sievers P, Saffroy R, Beccaria K, Blauwblomme T, Hasty L, Bourdeaut F, Grill J, Varlet P, Debily MA. Pediatric high-grade glioma MYCN is frequently associated with Li-Fraumeni syndrome. Acta Neuropathol Commun 2023; 11:3. [PMID: 36609284 PMCID: PMC9817308 DOI: 10.1186/s40478-022-01490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Affiliation(s)
- Léa Guerrini-Rousseau
- grid.14925.3b0000 0001 2284 9388Department of Child and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France ,grid.14925.3b0000 0001 2284 9388Molecular Predictors and New Targets in Oncology, INSERM U981, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Arnault Tauziède-Espariat
- grid.414435.30000 0001 2200 9055Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, 1, rue Cabanis, 75014 Paris, France ,grid.512035.0Inserm, UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - David Castel
- grid.14925.3b0000 0001 2284 9388Molecular Predictors and New Targets in Oncology, INSERM U981, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Etienne Rouleau
- grid.14925.3b0000 0001 2284 9388Department of Biology and Pathology, Tumor Genetics Service, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Philipp Sievers
- grid.5253.10000 0001 0328 4908Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raphaël Saffroy
- grid.413133.70000 0001 0206 8146Department of Biochemistry and Oncogenetic, Paul Brousse Hospital, 94804 Villejuif, France
| | - Kévin Beccaria
- grid.412134.10000 0004 0593 9113Department of Pediatric Neurosurgery, Necker Hospital, APHP, Université Paris Cité, 75015 Paris, France
| | - Thomas Blauwblomme
- grid.412134.10000 0004 0593 9113Department of Pediatric Neurosurgery, Necker Hospital, APHP, Université Paris Cité, 75015 Paris, France
| | - Lauren Hasty
- grid.414435.30000 0001 2200 9055Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, 1, rue Cabanis, 75014 Paris, France
| | - Franck Bourdeaut
- grid.418596.70000 0004 0639 6384INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Curie Institute, Paris, France
| | - Jacques Grill
- grid.14925.3b0000 0001 2284 9388Department of Child and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France ,grid.14925.3b0000 0001 2284 9388Molecular Predictors and New Targets in Oncology, INSERM U981, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Pascale Varlet
- grid.414435.30000 0001 2200 9055Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, 1, rue Cabanis, 75014 Paris, France ,grid.512035.0Inserm, UMR 1266, IMA-Brain, Institut de Psychiatrie et Neurosciences de Paris, Paris, France
| | - Marie-Anne Debily
- grid.14925.3b0000 0001 2284 9388Molecular Predictors and New Targets in Oncology, INSERM U981, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France ,grid.8390.20000 0001 2180 5818Univ. Evry, Université Paris-Saclay, 91000 Evry, France
| |
Collapse
|
10
|
Shafi O, Siddiqui G. Tracing the origins of glioblastoma by investigating the role of gliogenic and related neurogenic genes/signaling pathways in GBM development: a systematic review. World J Surg Oncol 2022; 20:146. [PMID: 35538578 PMCID: PMC9087910 DOI: 10.1186/s12957-022-02602-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/15/2022] [Indexed: 02/16/2023] Open
Abstract
Background Glioblastoma is one of the most aggressive tumors. The etiology and the factors determining its onset are not yet entirely known. This study investigates the origins of GBM, and for this purpose, it focuses primarily on developmental gliogenic processes. It also focuses on the impact of the related neurogenic developmental processes in glioblastoma oncogenesis. It also addresses why glial cells are at more risk of tumor development compared to neurons. Methods Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving glioblastoma, gliogenesis, neurogenesis, stemness, neural stem cells, gliogenic signaling and pathways, neurogenic signaling and pathways, and astrocytogenic genes. Results The origin of GBM is dependent on dysregulation in multiple genes and pathways that accumulatively converge the cells towards oncogenesis. There are multiple layers of steps in glioblastoma oncogenesis including the failure of cell fate-specific genes to keep the cells differentiated in their specific cell types such as p300, BMP, HOPX, and NRSF/REST. There are genes and signaling pathways that are involved in differentiation and also contribute to GBM such as FGFR3, JAK-STAT, and hey1. The genes that contribute to differentiation processes but also contribute to stemness in GBM include notch, Sox9, Sox4, c-myc gene overrides p300, and then GFAP, leading to upregulation of nestin, SHH, NF-κB, and others. GBM mutations pathologically impact the cell circuitry such as the interaction between Sox2 and JAK-STAT pathway, resulting in GBM development and progression. Conclusion Glioblastoma originates when the gene expression of key gliogenic genes and signaling pathways become dysregulated. This study identifies key gliogenic genes having the ability to control oncogenesis in glioblastoma cells, including p300, BMP, PAX6, HOPX, NRSF/REST, LIF, and TGF beta. It also identifies key neurogenic genes having the ability to control oncogenesis including PAX6, neurogenins including Ngn1, NeuroD1, NeuroD4, Numb, NKX6-1 Ebf, Myt1, and ASCL1. This study also postulates how aging contributes to the onset of glioblastoma by dysregulating the gene expression of NF-κB, REST/NRSF, ERK, AKT, EGFR, and others.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
11
|
SMARCB1-deficient and SMARCA4-deficient Malignant Brain Tumors With Complex Copy Number Alterations andTP53Mutations May Represent the First Clinical Manifestation of Li-Fraumeni Syndrome. Am J Surg Pathol 2022; 46:1277-1283. [PMID: 35446794 DOI: 10.1097/pas.0000000000001905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) is a malignant central nervous system tumor predominantly affecting infants. Mutations ofSMARCB1or (rarely)SMARCA4causing loss of nuclear SMARCB1 or SMARCA4 protein expression are characteristic features, but further recurrent genetic alterations are lacking. Most AT/RTs occur de novo, but secondary AT/RTs arising from other central nervous system tumors have been reported. Malignant gliomas, IDH wild-type, arising in patients with Li-Fraumeni syndrome typically show somatic mutations ofTP53as well as complex copy number alterations, but little is known about the loss of SMARCB1 or SMARCA4 protein expression in this context. Here, we report 2 children in whom malignant supratentorial brain tumors with SMARCB1 deficiency, complex copy number alterations, and somaticTP53mutations lead to the discovery of pathogenic/likely pathogenicTP53variants in the germline. Screening of the molecularneuropathology.org dataset for cases with similar genetic and epigenetic alterations yielded another case with SMARCA4 deficiency in a young adult with Li-Fraumeni syndrome. In conclusion, SMARCB1-deficient or SMARCA4-deficient malignant brain tumors with complex copy number alterations and somaticTP53mutations in children and young adults may represent the first clinical manifestation of Li-Fraumeni syndrome and should prompt genetic counseling and investigation forTP53germline status.
Collapse
|
12
|
Patel V, Alexandrescu S. Immunohistochemical surrogates for molecular alterations for the classification and grading of gliomas. Semin Diagn Pathol 2021; 39:78-83. [PMID: 34857434 DOI: 10.1053/j.semdp.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/11/2022]
Abstract
Recent advances in molecular diagnostics have led to a better understanding of glioma tumorigenesis, prognosis, and treatment. Therefore, the 2016 WHO Classification of Tumours of the Central Nervous System and more recent literature recommends the incorporation of molecular results in the pathology report. The methods for molecular testing vary among institutions; however, most practicing pathologists utilize a range of immunohistochemical surrogates for molecular alterations in the evaluation of gliomas. This manuscript reviews the clinical aspects and pitfalls of the immunohistochemical stains with diagnostic, prognostic and therapeutic implications in gliomas.
Collapse
Affiliation(s)
- Viharkumar Patel
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 United States.
| | - Sanda Alexandrescu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 United States; Department of Pathology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Bader 104, Boston, MA 02467, United States.
| |
Collapse
|
13
|
Reed MR, Lyle AG, De Loose A, Maddukuri L, Learned K, Beale HC, Kephart ET, Cheney A, van den Bout A, Lee MP, Hundley KN, Smith AM, DesRochers TM, Vibat CRT, Gokden M, Salama S, Wardell CP, Eoff RL, Vaske OM, Rodriguez A. A Functional Precision Medicine Pipeline Combines Comparative Transcriptomics and Tumor Organoid Modeling to Identify Bespoke Treatment Strategies for Glioblastoma. Cells 2021; 10:cells10123400. [PMID: 34943910 PMCID: PMC8699481 DOI: 10.3390/cells10123400] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Li Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome caused by germline mutations in TP53. TP53 is the most common mutated gene in human cancer, occurring in 30-50% of glioblastomas (GBM). Here, we highlight a precision medicine platform to identify potential targets for a GBM patient with LFS. We used a comparative transcriptomics approach to identify genes that are uniquely overexpressed in the LFS GBM patient relative to a cancer compendium of 12,747 tumor RNA sequencing data sets, including 200 GBMs. STAT1 and STAT2 were identified as being significantly overexpressed in the LFS patient, indicating ruxolitinib, a Janus kinase 1 and 2 inhibitors, as a potential therapy. The LFS patient had the highest level of STAT1 and STAT2 expression in an institutional high-grade glioma cohort of 45 patients, further supporting the cancer compendium results. To empirically validate the comparative transcriptomics pipeline, we used a combination of adherent and organoid cell culture techniques, including ex vivo patient-derived organoids (PDOs) from four patient-derived cell lines, including the LFS patient. STAT1 and STAT2 expression levels in the four patient-derived cells correlated with levels identified in the respective parent tumors. In both adherent and organoid cultures, cells from the LFS patient were among the most sensitive to ruxolitinib compared to patient-derived cells with lower STAT1 and STAT2 expression levels. A spheroid-based drug screening assay (3D-PREDICT) was performed and used to identify further therapeutic targets. Two targeted therapies were selected for the patient of interest and resulted in radiographic disease stability. This manuscript supports the use of comparative transcriptomics to identify personalized therapeutic targets in a functional precision medicine platform for malignant brain tumors.
Collapse
Affiliation(s)
- Megan R. Reed
- Department of Biochemistry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.R.R.); (L.M.); (R.L.E.)
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.D.L.); (M.P.L.); (K.N.H.)
| | - A. Geoffrey Lyle
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (A.G.L.); (H.C.B.); (A.C.); (A.v.d.B.); (S.S.); (O.M.V.)
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (K.L.); (E.T.K.)
| | - Annick De Loose
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.D.L.); (M.P.L.); (K.N.H.)
| | - Leena Maddukuri
- Department of Biochemistry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.R.R.); (L.M.); (R.L.E.)
| | - Katrina Learned
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (K.L.); (E.T.K.)
| | - Holly C. Beale
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (A.G.L.); (H.C.B.); (A.C.); (A.v.d.B.); (S.S.); (O.M.V.)
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (K.L.); (E.T.K.)
| | - Ellen T. Kephart
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (K.L.); (E.T.K.)
| | - Allison Cheney
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (A.G.L.); (H.C.B.); (A.C.); (A.v.d.B.); (S.S.); (O.M.V.)
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (K.L.); (E.T.K.)
| | - Anouk van den Bout
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (A.G.L.); (H.C.B.); (A.C.); (A.v.d.B.); (S.S.); (O.M.V.)
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (K.L.); (E.T.K.)
| | - Madison P. Lee
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.D.L.); (M.P.L.); (K.N.H.)
| | - Kelsey N. Hundley
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.D.L.); (M.P.L.); (K.N.H.)
| | - Ashley M. Smith
- KIYATEC Inc., Greenville, SC 29605, USA; (A.M.S.); (T.M.D.); (C.R.T.V.)
| | | | | | - Murat Gokden
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Sofie Salama
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (A.G.L.); (H.C.B.); (A.C.); (A.v.d.B.); (S.S.); (O.M.V.)
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Christopher P. Wardell
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Robert L. Eoff
- Department of Biochemistry, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.R.R.); (L.M.); (R.L.E.)
| | - Olena M. Vaske
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (A.G.L.); (H.C.B.); (A.C.); (A.v.d.B.); (S.S.); (O.M.V.)
| | - Analiz Rodriguez
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (A.D.L.); (M.P.L.); (K.N.H.)
- Correspondence: ; Tel.: +1-501-686-8078; Fax: +1-501-686-8767
| |
Collapse
|
14
|
Schoof M, Kordes U, Volk AE, Al-Kershi S, Kresbach C, Schüller U. Malignant gliomas with H3F3A G34R mutation or MYCN amplification in pediatric patients with Li Fraumeni syndrome. Acta Neuropathol 2021; 142:591-593. [PMID: 34264394 PMCID: PMC8357758 DOI: 10.1007/s00401-021-02346-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander E Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina Al-Kershi
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Catena Kresbach
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
15
|
Messina R, Cazzato G, Perillo T, Stagno V, Blè V, Resta M, De Leonardis F, Santoro N, Signorelli F, Ingravallo G. A Unique Case of Bilateral Thalamic High-Grade Glioma in a Pediatric Patient with LI-Fraumeni Syndrome: Case Presentation and Review of the Literature. Neurol Int 2021; 13:175-183. [PMID: 33921960 PMCID: PMC8167566 DOI: 10.3390/neurolint13020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/27/2021] [Accepted: 04/08/2021] [Indexed: 02/05/2023] Open
Abstract
Li-Fraumeni syndrome (LFS) is a rare high-penetrance and autosomal-dominant pathological condition caused by the germline mutation of the TP53 gene, predisposing to the development of tumors from pediatric age. We conducted a qualitative systematic review following the ENTREQ (Enhancing Transparency in Reporting the Synthesis of Qualitative Research) framework. A search was made in MEDLINE/Pubmed and MeSH Database using the terms "Li-Fraumeni" AND "pediatric high-grade glioma (HGG)", identifying six cases of HGGs in pediatric patients with LFS. We added a further case with peculiar features such as no familiar history of LFS, association of embryonal rhabdomyosarcoma and bithalamic HGG, whose immunohistochemical profile was accurately defined by Next Generation Sequencing. Knowledge synthesis and case analysis grounded the discussion about challenges in the management of this pathology in pediatric age.
Collapse
Affiliation(s)
- Raffaella Messina
- Division of Neurosurgery, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University “Aldo Moro” of Bari, 70124 Bari, Italy; (V.B.); (F.S.)
- Correspondence: (R.M.); (G.I.)
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation—Section of Pathology, University “Aldo Moro” of Bari, 70124 Bari, Italy;
| | - Teresa Perillo
- Department of Pediatric Oncology and Hematology, University “Aldo Moro” of Bari, 70124 Bari, Italy; (T.P.); (F.D.L.); (N.S.)
| | - Vita Stagno
- Department of Neurosurgery North Bristol Trust, Southmead Hospital, Bristol BS10 5NB, UK;
| | - Valeria Blè
- Division of Neurosurgery, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University “Aldo Moro” of Bari, 70124 Bari, Italy; (V.B.); (F.S.)
| | - Mariachiara Resta
- Division of Neuroradiology, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University “Aldo Moro” of Bari, 70124 Bari, Italy;
| | - Francesco De Leonardis
- Department of Pediatric Oncology and Hematology, University “Aldo Moro” of Bari, 70124 Bari, Italy; (T.P.); (F.D.L.); (N.S.)
| | - Nicola Santoro
- Department of Pediatric Oncology and Hematology, University “Aldo Moro” of Bari, 70124 Bari, Italy; (T.P.); (F.D.L.); (N.S.)
| | - Francesco Signorelli
- Division of Neurosurgery, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University “Aldo Moro” of Bari, 70124 Bari, Italy; (V.B.); (F.S.)
| | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation—Section of Pathology, University “Aldo Moro” of Bari, 70124 Bari, Italy;
- Correspondence: (R.M.); (G.I.)
| |
Collapse
|
16
|
Tabori U, Das A, Hawkins C. Germline predisposition to glial neoplasms in children and young adults: A narrative review. GLIOMA 2021. [DOI: 10.4103/glioma.glioma_12_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|