1
|
Kögel D, Temme A, Aigner A. Recent advances in development and delivery of non-viral nucleic acid therapeutics for brain tumor therapy. Pharmacol Ther 2025; 266:108762. [PMID: 39603349 DOI: 10.1016/j.pharmthera.2024.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
High grade gliomas (HGG) are a group of CNS tumors refractory to currently existing therapies, which routinely leads to early recurrence and a dismal prognosis. Recent advancements in nucleic acid-based therapy using a wide variety of different molecular targets and non-viral nanocarrier systems suggest that this approach holds significant potential to meet the urgent demand for improved therapeutic options for the treatment of these tumors. This review provides a comprehensive and up-to-date overview on the current landscape and progress of preclinical and clinical developments in this rapidly evolving and exciting field of research, including optimized nanocarrier delivery systems, promising therapeutic targets and tailor-made therapeutic strategies for individualized HGG patient treatment.
Collapse
Affiliation(s)
- Donat Kögel
- Department of Neurosurgery, Experimental Neurosurgery, University Hospital, Goethe University, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt am Main, Germany; German Cancer Research Center DKFZ, Heidelberg, Germany.
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology, University Hospital Carl Gustav Carus, TU Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Site Leipzig, Leipzig, Germany
| |
Collapse
|
2
|
Kapplingattu SV, Bhattacharya S, Adlakha YK. MiRNAs as major players in brain health and disease: current knowledge and future perspectives. Cell Death Discov 2025; 11:7. [PMID: 39805813 PMCID: PMC11729916 DOI: 10.1038/s41420-024-02283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
MicroRNAs are regulators of gene expression and their dysregulation can lead to various diseases. MicroRNA-135 (MiR-135) exhibits brain-specific expression, and performs various functions such as neuronal morphology, neural induction, and synaptic function in the human brain. Dysfunction of miR-135 has been reported in brain tumors, and neurodegenerative and neurodevelopmental disorders. Several reports show downregulation of miR-135 in glioblastoma, indicating its tumor suppressor role in the pathogenesis of brain tumors. In this review, by performing in silico analysis of molecular targets of miR-135, we reveal the significant pathways and processes modulated by miR-135. We summarize the biological significance, roles, and signaling pathways of miRNAs in general, with a focus on miR-135 in different neurological diseases including brain tumors, and neurodegenerative and neurodevelopmental disorders. We also discuss methods, limitations, and potential of glioblastoma organoids in recapitulating disease initiation and progression. We highlight the promising therapeutic potential of miRNAs as antitumor agents for aggressive human brain tumors including glioblastoma.
Collapse
Affiliation(s)
- Sarika V Kapplingattu
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Yogita K Adlakha
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India.
| |
Collapse
|
3
|
Weiss T, Lee S, Snijder B, Weller M. Next step towards functional precision medicine in neuro-oncology. Neuro Oncol 2025; 27:5-6. [PMID: 39718993 PMCID: PMC11726246 DOI: 10.1093/neuonc/noae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Affiliation(s)
- Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Sohyon Lee
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Connor K, Golebiewska A, Byrne AT. Challenging the status quo to improve the translational potential of preclinical oncology studies. Nat Rev Cancer 2025; 25:3-4. [PMID: 39375534 DOI: 10.1038/s41568-024-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Affiliation(s)
- Kate Connor
- Discipline of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- RCSI Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Preclinical Imaging Centre (NPIC), Dublin, Ireland
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Annette T Byrne
- RCSI Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.
- National Preclinical Imaging Centre (NPIC), Dublin, Ireland.
| |
Collapse
|
5
|
Lanskikh D, Kuziakova O, Baklanov I, Penkova A, Doroshenko V, Buriak I, Zhmenia V, Kumeiko V. Cell-Based Glioma Models for Anticancer Drug Screening: From Conventional Adherent Cell Cultures to Tumor-Specific Three-Dimensional Constructs. Cells 2024; 13:2085. [PMID: 39768176 PMCID: PMC11674823 DOI: 10.3390/cells13242085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Gliomas are a group of primary brain tumors characterized by their aggressive nature and resistance to treatment. Infiltration of surrounding normal tissues limits surgical approaches, wide inter- and intratumor heterogeneity hinders the development of universal therapeutics, and the presence of the blood-brain barrier reduces the efficiency of their delivery. As a result, patients diagnosed with gliomas often face a poor prognosis and low survival rates. The spectrum of anti-glioma drugs used in clinical practice is quite narrow. Alkylating agents are often used as first-line therapy, but their effectiveness varies depending on the molecular subtypes of gliomas. This highlights the need for new, more effective therapeutic approaches. Standard drug-screening methods involve the use of two-dimensional cell cultures. However, these models cannot fully replicate the conditions present in real tumors, making it difficult to extrapolate the results to humans. We describe the advantages and disadvantages of existing glioma cell-based models designed to improve the situation and build future prospects to make drug discovery comprehensive and more effective for each patient according to personalized therapy paradigms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (D.L.); (O.K.); (I.B.); (A.P.); (V.D.); (I.B.); (V.Z.)
| |
Collapse
|
6
|
Blanchard Z, Brown EA, Ghazaryan A, Welm AL. PDX models for functional precision oncology and discovery science. Nat Rev Cancer 2024:10.1038/s41568-024-00779-3. [PMID: 39681638 DOI: 10.1038/s41568-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Precision oncology relies on detailed molecular analysis of how diverse tumours respond to various therapies, with the aim to optimize treatment outcomes for individual patients. Patient-derived xenograft (PDX) models have been key to preclinical validation of precision oncology approaches, enabling the analysis of each tumour's unique genomic landscape and testing therapies that are predicted to be effective based on specific mutations, gene expression patterns or signalling abnormalities. To extend these standard precision oncology approaches, the field has strived to complement the otherwise static and often descriptive measurements with functional assays, termed functional precision oncology (FPO). By utilizing diverse PDX and PDX-derived models, FPO has gained traction as an effective preclinical and clinical tool to more precisely recapitulate patient biology using in vivo and ex vivo functional assays. Here, we explore advances and limitations of PDX and PDX-derived models for precision oncology and FPO. We also examine the future of PDX models for precision oncology in the age of artificial intelligence. Integrating these two disciplines could be the key to fast, accurate and cost-effective treatment prediction, revolutionizing oncology and providing patients with cancer with the most effective, personalized treatments.
Collapse
Affiliation(s)
- Zannel Blanchard
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Elisabeth A Brown
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Arevik Ghazaryan
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Logun M, Wang X, Sun Y, Bagley SJ, Li N, Desai A, Zhang DY, Nasrallah MP, Pai ELL, Oner BS, Plesa G, Siegel D, Binder ZA, Ming GL, Song H, O'Rourke DM. Patient-derived glioblastoma organoids as real-time avatars for assessing responses to clinical CAR-T cell therapy. Cell Stem Cell 2024:S1934-5909(24)00409-0. [PMID: 39657679 DOI: 10.1016/j.stem.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/19/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
Patient-derived tumor organoids have been leveraged for disease modeling and preclinical studies but rarely applied in real time to aid with interpretation of patient treatment responses in clinics. We recently demonstrated early efficacy signals in a first-in-human, phase 1 study of dual-targeting chimeric antigen receptor (CAR)-T cells (EGFR-IL13Rα2 CAR-T cells) in patients with recurrent glioblastoma. Here, we analyzed six sets of patient-derived glioblastoma organoids (GBOs) treated concurrently with the same autologous CAR-T cell products as patients in our phase 1 study. We found that CAR-T cell treatment led to target antigen reduction and cytolysis of tumor cells in GBOs, the degree of which correlated with CAR-T cell engraftment detected in patients' cerebrospinal fluid (CSF). Furthermore, cytokine release patterns in GBOs mirrored those in patient CSF samples over time. Our findings highlight a unique trial design and GBOs as a valuable platform for real-time assessment of CAR-T cell bioactivity and insights into immunotherapy efficacy.
Collapse
Affiliation(s)
- Meghan Logun
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xin Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yusha Sun
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen J Bagley
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nannan Li
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Arati Desai
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Y Zhang
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily Ling-Lin Pai
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bike Su Oner
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donald Siegel
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zev A Binder
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Hongjun Song
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Donald M O'Rourke
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Liu J, Wang P, Zhang H, Guo Y, Tang M, Wang J, Wu N. Current research status of Raman spectroscopy in glioma detection. Photodiagnosis Photodyn Ther 2024; 50:104388. [PMID: 39461488 DOI: 10.1016/j.pdpdt.2024.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Glioma is the most common primary tumor of the nervous system. Conventional diagnostic methods for glioma often involve time-consuming or reliance on externally introduced materials. Consequently, there is an urgent need for rapid and reliable diagnostic techniques. Raman spectroscopy has emerged as a promising tool, offering rapid, accurate, and label-free analysis with high sensitivity and specificity in biomedical applications. In this review, the fundamental principles of Raman spectroscopy have been introduced, and then the progress of applying Raman spectroscopy in biomedical studies has been summarized, including the identification and typing of glioma. The challenges encountered in the clinical application of Raman spectroscopy for glioma have been discussed, and the prospects have also been envisioned.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Pan Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Hua Zhang
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Yuansen Guo
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Mingjie Tang
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Junwei Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Nan Wu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China.
| |
Collapse
|
9
|
Salvato I, Klein E, Poli A, Rezaeipour M, Ermini L, Nosirov B, Lipsa A, Oudin A, Baus V, Dore GM, Cosma A, Golebiewska A, Marchini A, Niclou SP. Adenoviral delivery of the CIITA transgene induces T-cell-mediated killing in glioblastoma organoids. Mol Oncol 2024. [PMID: 39535369 DOI: 10.1002/1878-0261.13750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
The immunosuppressive nature of the tumor microenvironment poses a significant challenge to effective immunotherapies against glioblastoma (GB). Boosting the immune response is critical for successful therapy. Here, we adopted a cancer gene therapy approach to induce T-cell-mediated killing of the tumor through increased activation of the immune system. Patient-based three-dimensional (3D) GB models were infected with a replication-deficient adenovirus (AdV) armed with the class II major histocompatibility complex (MHC-II) transactivator (CIITA) gene (Ad-CIITA). Successful induction of surface MHC-II was achieved in infected GB cell lines and primary human GB organoids. Infection with an AdV carrying a mutant form of CIITA with a single amino acid substitution resulted in cytoplasmic accumulation of CIITA without subsequent MHC-II expression. Co-culture of infected tumor cells with either peripheral blood mononuclear cells (PBMCs) or isolated T-cells led to dramatic breakdown of GB organoids. Intriguingly, both wild-type and mutant Ad-CIITA, but not unarmed AdV, triggered immune-mediated tumor cell death in the co-culture system, suggesting an at least partially MHC-II-independent process. We further show that the observed cancer cell killing requires the presence of either CD8+ or CD4+ T-cells and direct contact between GB and immune cells. We did not, however, detect evidence of activation of canonical T-cell-mediated cell death pathways. Although the precise mechanism remains to be determined, these findings highlight the potential of AdV-mediated CIITA delivery to enhance T-cell-mediated immunity against GB.
Collapse
Affiliation(s)
- Ilaria Salvato
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Eliane Klein
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Mahsa Rezaeipour
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Luca Ermini
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Bakhtiyor Nosirov
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Anuja Lipsa
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Virginie Baus
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Gian Mario Dore
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Antonio Cosma
- National Cytometry Platform, Translational Medicine Operation Hub, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, Heidelberg, Germany
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
10
|
Mao S, Wang Y, Chao N, Zeng L, Zhang L. Integrated analysis of single-cell RNA-seq and bulk RNA-seq reveals immune suppression subtypes and establishes a novel signature for determining the prognosis in lung adenocarcinoma. Cell Oncol (Dordr) 2024; 47:1697-1713. [PMID: 38616208 DOI: 10.1007/s13402-024-00948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer with lower survival rates. Recent advancements in targeted therapies and immunotherapies targeting immune checkpoints have achieved remarkable success, there is still a large percentage of LUAD that lacks available therapeutic options. Due to tumor heterogeneity, the diagnosis and treatment of LUAD are challenging. Exploring the biology of LUAD and identifying new biomarker and therapeutic targets options are essential. METHOD We performed single-cell RNA sequencing (scRNA-seq) of 6 paired primary and adjacent LUAD tissues, and integrative omics analysis of the scRNA-seq, bulk RNA-seq and whole-exome sequencing data revealed molecular subtype characteristics. Our experimental results confirm that CDC25C gene can serve as a potential marker for poor prognosis in LUAD. RESULTS We investigated aberrant gene expression in diverse cell types in LUAD via the scRNA-seq data. Moreover, multi-omics clustering revealed four subgroups defined by transcriptional profile and molecular subtype 4 (MS4) with poor survival probability, and immune cell infiltration signatures revealed that MS4 tended to be the immunosuppressive subtype. Our study revealed that the CDC25C gene can be a distinct prognostic biomarker that indicates immune infiltration levels and response to immunotherapy in LUAD patients. Our experimental results concluded that CDC25C expression affects lung cancer cell invasion and migration, might play a key role in regulating Epithelial-Mesenchymal Transition (EMT) pathways. CONCLUSIONS Our multi-omics result revealed a comprehensive set of molecular attributes associated with prognosis-related genes in LUAD at the cellular and tissue level. Identification of a subtype of immunosuppressive TME and prognostic signature for LUAD. We identified the cell cycle regulation gene CDC25C affects lung cancer cell invasion and migration, which can be used as a potential biomarker for LUAD.
Collapse
Affiliation(s)
- Shengqiang Mao
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yilong Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ningning Chao
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lingyan Zeng
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
11
|
Yao L, Hatami M, Ma W, Skutella T. Vaccine-based immunotherapy and related preclinical models for glioma. Trends Mol Med 2024; 30:965-981. [PMID: 39013724 DOI: 10.1016/j.molmed.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
Glioma, the most common primary malignant tumor in the central nervous system (CNS), lacks effective treatments, and >60% of cases are glioblastoma (GBM), the most aggressive form. Despite advances in immunotherapy, GBM remains highly resistant. Approaches that target tumor antigens expedite the development of immunotherapies, including personalized tumor-specific vaccines, patient-specific target selection, dendritic cell (DC) vaccines, and chimeric antigen receptor (CAR) and T cell receptor (TCR) T cells. Recent studies show promising results in treating GBM and lower-grade glioma (LGG), fostering hope for future immunotherapy. This review discusses tumor vaccines against glioma, preclinical models in immunological research, and the role of CD4+ T cells in vaccine-induced antitumor immunity. We also summarize clinical approaches, challenges, and future research for creating more effective vaccines.
Collapse
Affiliation(s)
- Longping Yao
- Institute for Anatomy and Cell Biology, Heidelberg Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Maryam Hatami
- Institute for Anatomy and Cell Biology, Heidelberg Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Heidelberg Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
12
|
Schubert MC, Soyka SJ, Tamimi A, Maus E, Schroers J, Wißmann N, Reyhan E, Tetzlaff SK, Yang Y, Denninger R, Peretzke R, Beretta C, Drumm M, Heuer A, Buchert V, Steffens A, Walshon J, McCortney K, Heiland S, Bendszus M, Neher P, Golebiewska A, Wick W, Winkler F, Breckwoldt MO, Kreshuk A, Kuner T, Horbinski C, Kurz FT, Prevedel R, Venkataramani V. Deep intravital brain tumor imaging enabled by tailored three-photon microscopy and analysis. Nat Commun 2024; 15:7383. [PMID: 39256378 PMCID: PMC11387418 DOI: 10.1038/s41467-024-51432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/07/2024] [Indexed: 09/12/2024] Open
Abstract
Intravital 2P-microscopy enables the longitudinal study of brain tumor biology in superficial mouse cortex layers. Intravital microscopy of the white matter, an important route of glioblastoma invasion and recurrence, has not been feasible, due to low signal-to-noise ratios and insufficient spatiotemporal resolution. Here, we present an intravital microscopy and artificial intelligence-based analysis workflow (Deep3P) that enables longitudinal deep imaging of glioblastoma up to a depth of 1.2 mm. We find that perivascular invasion is the preferred invasion route into the corpus callosum and uncover two vascular mechanisms of glioblastoma migration in the white matter. Furthermore, we observe morphological changes after white matter infiltration, a potential basis of an imaging biomarker during early glioblastoma colonization. Taken together, Deep3P allows for a non-invasive intravital investigation of brain tumor biology and its tumor microenvironment at subcortical depths explored, opening up opportunities for studying the neuroscience of brain tumors and other model systems.
Collapse
Affiliation(s)
- Marc Cicero Schubert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Stella Judith Soyka
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Amr Tamimi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Julian Schroers
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany
| | - Niklas Wißmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Ekin Reyhan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Svenja Kristin Tetzlaff
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Yang
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert Denninger
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Robin Peretzke
- Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carlo Beretta
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Michael Drumm
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Alina Heuer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Verena Buchert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Alicia Steffens
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Jordain Walshon
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Sabine Heiland
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Neher
- Division of Medical Image Computing (MIC), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, 1526, Luxembourg, Luxembourg
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Felix Tobias Kurz
- German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
- Division of Neuroradiology, Geneva University Hospitals, Geneva, Switzerland
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Rome, Italy.
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory, Heidelberg, Germany.
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany.
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
13
|
Chepeleva M, Kaoma T, Zinovyev A, Toth R, Nazarov PV. consICA: an R package for robust reference-free deconvolution of multi-omics data. BIOINFORMATICS ADVANCES 2024; 4:vbae102. [PMID: 39027644 PMCID: PMC11257712 DOI: 10.1093/bioadv/vbae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Motivation Deciphering molecular signals from omics data helps understanding cellular processes and disease progression. Effective algorithms for extracting these signals are essential, with a strong emphasis on robustness and reproducibility. Results R/Bioconductor package consICA implements consensus independent component analysis (ICA)-a data-driven deconvolution method to decompose heterogeneous omics data and extract features suitable for patient stratification and multimodal data integration. The method separates biologically relevant molecular signals from technical effects and provides information about the cellular composition and biological processes. Build-in annotation, survival analysis, and report generation provide useful tools for the interpretation of extracted signals. The implementation of parallel computing in the package ensures efficient analysis using modern multicore systems. The package offers a reproducible and efficient data-driven solution for the analysis of complex molecular profiles, with significant implications for cancer research. Availability and implementation The package is implemented in R and available under MIT license at Bioconductor (https://bioconductor.org/packages/consICA) or at GitHub (https://github.com/biomod-lih/consICA).
Collapse
Affiliation(s)
- Maryna Chepeleva
- Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette L-4365, Luxembourg
| | - Tony Kaoma
- Bioinformatics and AI Unit, Department of Medical Informatics, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | | | - Reka Toth
- Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
- Bioinformatics and AI Unit, Department of Medical Informatics, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| | - Petr V Nazarov
- Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
- Bioinformatics and AI Unit, Department of Medical Informatics, Luxembourg Institute of Health, Strassen L-1445, Luxembourg
| |
Collapse
|
14
|
Chen S, Gu J, Wu K, Zhao X, Lu Y. Progress in clinical diagnosis and treatment of colorectal cancer with rare genetic variants. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0026. [PMID: 38940668 PMCID: PMC11208903 DOI: 10.20892/j.issn.2095-3941.2024.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024] Open
Abstract
Targeted therapy is crucial for advanced colorectal cancer (CRC) positive for genetic drivers. With advances in deep sequencing technology and new targeted drugs, existing standard molecular pathological detection systems and therapeutic strategies can no longer meet the requirements for careful management of patients with advanced CRC. Thus, rare genetic variations require diagnosis and targeted therapy in clinical practice. Rare gene mutations, amplifications, and rearrangements are usually associated with poor prognosis and poor response to conventional therapy. This review summarizes the clinical diagnosis and treatment of rare genetic variations, in genes including erb-b2 receptor tyrosine kinase 2 (ERBB2), B-Raf proto-oncogene, serine/threonine kinase (BRAF), ALK receptor tyrosine kinase/ROS proto-oncogene 1, receptor tyrosine kinase (ALK/ROS1), neurotrophic receptor tyrosine kinases (NTRKs), ret proto-oncogene (RET), fibroblast growth factor receptor 2 (FGFR2), and epidermal growth factor receptor (EGFR), to enhance understanding and identify more accurate personalized treatments for patients with rare genetic variations.
Collapse
Affiliation(s)
- Shuyi Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an 710032, China
| | - Jing Gu
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an 710032, China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
15
|
Drexler R, Khatri R, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh Y, Dührsen L, Salviano-Silva A, Lamszus K, Westphal M, Gempt J, Wefers AK, Neumann JE, Bode H, Hausmann F, Huber TB, Bonn S, Jütten K, Delev D, Weber KJ, Harter PN, Onken J, Vajkoczy P, Capper D, Wiestler B, Weller M, Snijder B, Buck A, Weiss T, Göller PC, Sahm F, Menstel JA, Zimmer DN, Keough MB, Ni L, Monje M, Silverbush D, Hovestadt V, Suvà ML, Krishna S, Hervey-Jumper SL, Schüller U, Heiland DH, Hänzelmann S, Ricklefs FL. A prognostic neural epigenetic signature in high-grade glioma. Nat Med 2024; 30:1622-1635. [PMID: 38760585 PMCID: PMC11186787 DOI: 10.1038/s41591-024-02969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024]
Abstract
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Ryba
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amanda Salviano-Silva
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology Hamburg (ZMNH), University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Helena Bode
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Jütten
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
- Department of Neurosurgery, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina J Weber
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Frankfurt am Main, Germany
| | - Patrick N Harter
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- Institute of Neuropathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich, Germany
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, University of Zürich, Zurich, Switzerland
| | - Pauline C Göller
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Joelle Aline Menstel
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - David Niklas Zimmer
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | | | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, USA
| | - Dana Silverbush
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Volker Hovestadt
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mario L Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
- Translational Neurosurgery, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
16
|
Arabi H, Manesh AS, Zaidi H. Innovations in dedicated PET instrumentation: from the operating room to specimen imaging. Phys Med Biol 2024; 69:11TR03. [PMID: 38744305 DOI: 10.1088/1361-6560/ad4b92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
This review casts a spotlight on intraoperative positron emission tomography (PET) scanners and the distinctive challenges they confront. Specifically, these systems contend with the necessity of partial coverage geometry, essential for ensuring adequate access to the patient. This inherently leans them towards limited-angle PET imaging, bringing along its array of reconstruction and geometrical sensitivity challenges. Compounding this, the need for real-time imaging in navigation systems mandates rapid acquisition and reconstruction times. For these systems, the emphasis is on dependable PET image reconstruction (without significant artefacts) while rapid processing takes precedence over the spatial resolution of the system. In contrast, specimen PET imagers are unburdened by the geometrical sensitivity challenges, thanks to their ability to leverage full coverage PET imaging geometries. For these devices, the focus shifts: high spatial resolution imaging takes precedence over rapid image reconstruction. This review concurrently probes into the technical complexities of both intraoperative and specimen PET imaging, shedding light on their recent designs, inherent challenges, and technological advancements.
Collapse
Affiliation(s)
- Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
| | - Abdollah Saberi Manesh
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, 500 Odense, Denmark
- University Research and Innovation Center, Óbuda University, Budapest, Hungary
| |
Collapse
|
17
|
Kalla J, Pfneissl J, Mair T, Tran L, Egger G. A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00960-8. [PMID: 38806997 DOI: 10.1007/s13402-024-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/30/2024] Open
Abstract
Cancer is a highly heterogeneous disease, and thus treatment responses vary greatly between patients. To improve therapy efficacy and outcome for cancer patients, more representative and patient-specific preclinical models are needed. Organoids and tumoroids are 3D cell culture models that typically retain the genetic and epigenetic characteristics, as well as the morphology, of their tissue of origin. Thus, they can be used to understand the underlying mechanisms of cancer initiation, progression, and metastasis in a more physiological setting. Additionally, co-culture methods of tumoroids and cancer-associated cells can help to understand the interplay between a tumor and its tumor microenvironment. In recent years, tumoroids have already helped to refine treatments and to identify new targets for cancer therapy. Advanced culturing systems such as chip-based fluidic devices and bioprinting methods in combination with tumoroids have been used for high-throughput applications for personalized medicine. Even though organoid and tumoroid models are complex in vitro systems, validation of results in vivo is still the common practice. Here, we describe how both animal- and human-derived tumoroids have helped to identify novel vulnerabilities for cancer treatment in recent years, and how they are currently used for precision medicine.
Collapse
Affiliation(s)
- Jessica Kalla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Janette Pfneissl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Theresia Mair
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
18
|
Kong D, Kwon D, Moon B, Kim DH, Kim MJ, Choi J, Kang KS. CD19 CAR-expressing iPSC-derived NK cells effectively enhance migration and cytotoxicity into glioblastoma by targeting to the pericytes in tumor microenvironment. Biomed Pharmacother 2024; 174:116436. [PMID: 38508081 DOI: 10.1016/j.biopha.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
In cancer immunotherapy, chimeric antigen receptors (CARs) targeting specific antigens have become a powerful tool for cell-based therapy. CAR-natural killer (NK) cells offer selective anticancer lysis with reduced off-tumor toxicity compared to CAR-T cells, which is beneficial in the heterogeneous milieu of solid tumors. In the tumor microenvironment (TME) of glioblastoma (GBM), pericytes not only support tumor growth but also contribute to immune evasion, underscoring their potential as therapeutic targets in GBM treatment. Given this context, our study aimed to target the GBM TME, with a special focus on pericytes expressing CD19, to evaluate the potential effectiveness of CD19 CAR-iNK cells against GBM. We performed CD19 CAR transduction in induced pluripotent stem cell-derived NK (iNK) cells. To determine whether CD19 CAR targets the TME pericytes in GBM, we developed GBM-blood vessel assembloids (GBVA) by fusing GBM spheroids with blood vessel organoids. When co-cultured with GBVA, CD19 CAR-iNK cells migrated towards the pericytes surrounding the GBM. Using a microfluidic chip, we demonstrated CD19 CAR-iNK cells' targeted action and cytotoxic effects in a perfusion-like environment. GBVA xenografts recapitulated the TME including human CD19-positive pericytes, thereby enabling the application of an in vivo model for validating the efficacy of CD19 CAR-iNK cells against GBM. Compared to GBM spheroids, the presence of pericytes significantly enhanced CD19 CAR-iNK cell migration towards GBM and reduced proliferation. These results underline the efficacy of CD19 CAR-iNK cells in targeting pericytes within the GBM TME, suggesting their potential therapeutic value for GBM treatment.
Collapse
Affiliation(s)
- Dasom Kong
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Daekee Kwon
- Research Institute in Maru Therapeutics, Seoul 05854, Republic of Korea
| | - Bokyung Moon
- Research Institute in Maru Therapeutics, Seoul 05854, Republic of Korea
| | - Da-Hyun Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Department of Biotechnology, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Min-Ji Kim
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungju Choi
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
19
|
Yabo YA, Heiland DH. Understanding glioblastoma at the single-cell level: Recent advances and future challenges. PLoS Biol 2024; 22:e3002640. [PMID: 38814900 PMCID: PMC11139343 DOI: 10.1371/journal.pbio.3002640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Glioblastoma, the most aggressive and prevalent form of primary brain tumor, is characterized by rapid growth, diffuse infiltration, and resistance to therapies. Intrinsic heterogeneity and cellular plasticity contribute to its rapid progression under therapy; therefore, there is a need to fully understand these tumors at a single-cell level. Over the past decade, single-cell transcriptomics has enabled the molecular characterization of individual cells within glioblastomas, providing previously unattainable insights into the genetic and molecular features that drive tumorigenesis, disease progression, and therapy resistance. However, despite advances in single-cell technologies, challenges such as high costs, complex data analysis and interpretation, and difficulties in translating findings into clinical practice persist. As single-cell technologies are developed further, more insights into the cellular and molecular heterogeneity of glioblastomas are expected, which will help guide the development of personalized and effective therapies, thereby improving prognosis and quality of life for patients.
Collapse
Affiliation(s)
- Yahaya A Yabo
- Translational Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Microenvironment and Immunology Research Laboratory, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Dieter Henrik Heiland
- Translational Neurosurgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Microenvironment and Immunology Research Laboratory, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurosurgery, Faculty of Medicine, Medical Center University of Freiburg, Freiburg, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- German Cancer Consortium (DKTK) partner site, Freiburg, Germany
| |
Collapse
|
20
|
Yabo YA, Moreno-Sanchez PM, Pires-Afonso Y, Kaoma T, Nosirov B, Scafidi A, Ermini L, Lipsa A, Oudin A, Kyriakis D, Grzyb K, Poovathingal SK, Poli A, Muller A, Toth R, Klink B, Berchem G, Berthold C, Hertel F, Mittelbronn M, Heiland DH, Skupin A, Nazarov PV, Niclou SP, Michelucci A, Golebiewska A. Glioblastoma-instructed microglia transition to heterogeneous phenotypic states with phagocytic and dendritic cell-like features in patient tumors and patient-derived orthotopic xenografts. Genome Med 2024; 16:51. [PMID: 38566128 PMCID: PMC10988817 DOI: 10.1186/s13073-024-01321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. METHODS Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry, and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. RESULTS We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. CONCLUSIONS Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.
Collapse
Affiliation(s)
- Yahaya A Yabo
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Pilar M Moreno-Sanchez
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Yolanda Pires-Afonso
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
| | - Tony Kaoma
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Bakhtiyor Nosirov
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Andrea Scafidi
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
| | - Luca Ermini
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
| | - Anuja Lipsa
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
| | - Dimitrios Kyriakis
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Suresh K Poovathingal
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
- Single Cell Analytics & Microfluidics Core, Vlaams Instituut Voor Biotechnologie-KU Leuven, 3000, Louvain, Belgium
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
| | - Arnaud Muller
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Reka Toth
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, L-3555, Dudelange, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
- German Cancer Consortium (DKTK): Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC), Cancer Consortium (DKTK) Partner Site Dresden, and German Cancer Research Center (DKFZ), Dresden, Heidelberg, 01307, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Guy Berchem
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
- Centre Hospitalier Luxembourg, L-1210, Luxembourg, Luxembourg
| | | | - Frank Hertel
- Centre Hospitalier Luxembourg, L-1210, Luxembourg, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
- National Center of Pathology (NCP), Laboratoire National de Santé, L-3555, Dudelange, Luxembourg
| | - Dieter H Heiland
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, 91054, Erlangen, Germany
- Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, 91054, Erlangen, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Neurosurgery, Medical Center, University of Freiburg, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106, Freiburg, Germany
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
- Department of Physics and Material Science, University Luxembourg, L-4367, Belvaux, Luxembourg
- Department of Neuroscience, University of California San Diego, La Jolla, CA, 92093, USA
| | - Petr V Nazarov
- Bioinformatics Platform, Department of Medical Informatics, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg.
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210, Luxembourg, Luxembourg.
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg.
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1210, Luxembourg, Luxembourg.
| |
Collapse
|
21
|
Chen L, Chen Y, Ge L, Zhang Q, Meng J. Recent advances in patient-derived tumor organoids for reconstructing TME of head and neck cancer. J Oral Pathol Med 2024; 53:238-245. [PMID: 38561906 DOI: 10.1111/jop.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The differences between existing preclinical models and the tumor microenvironment in vivo are one of the significant challenges hindering cancer therapy development. Patient-derived tumor organoids (PDTO) can highly retain tumor heterogeneity. Thus, it provides a more reliable platform for research in tumor biology, new drug screening, and precision medicine. METHODS We conducted a systematic review to summarise the characteristics of the existing preclinical models, the advantages of patient-derived tumor organoids in reconstructing the tumor microenvironment, and the latest research progress. Moreover, this study deciphers organoid culture technology in the clinical precision treatment of head and neck cancer to achieve better transformation. Studies were identified through a comprehensive search of Ovid MEDLINE (Wolters Kluwer), PubMed (National Library of Medicine), web of Science (Thomson Reuters) and, Scopus (Elsevier) databases, without publication date or language restrictions. RESULTS In tumor development, the interaction between cellular and non-cellular components in the tumor microenvironment (TME) has a crucial role. Co-culture, Air-liquid interface culture, microfluidics, and decellularized matrix have depicted great potential in reconstructing the tumor microenvironment and simulating tumor genesis, development, and metastasis. CONCLUSION An accurate determination of stromal cells, immune cells, and extracellular matrix can be achieved by reconstructing the head and neck cancer tumor microenvironment using the PDTO model. Moreover, the interaction between head and neck cancer cells can also play an essential role in implementing the individualized precision treatment of head and neck cancer.
Collapse
Affiliation(s)
- Lin Chen
- Department of Stomatology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yinyu Chen
- Department of Stomatology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liangyu Ge
- Department of Stomatology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Qian Zhang
- Department of Stomatology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jian Meng
- Department of Stomatology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
22
|
Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes Dis 2024; 11:614-632. [PMID: 37692477 PMCID: PMC10491878 DOI: 10.1016/j.gendis.2023.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 02/16/2023] [Indexed: 09/12/2023] Open
Abstract
An accumulation of previous work has established organoids as good preclinical models of human tumors, facilitating translation from basic research to clinical practice. They are changing the paradigm of preclinical cancer research because they can recapitulate the heterogeneity and pathophysiology of human cancers and more closely approximate the complex tissue environment and structure found in clinical tumors than in vitro cell lines and animal models. However, the potential applications of cancer organoids remain to be comprehensively summarized. In the review, we firstly describe what is currently known about cancer organoid culture and then discuss in depth the basic mechanisms, including tumorigenesis and tumor metastasis, and describe recent advances in patient-derived tumor organoids (PDOs) for drug screening and immunological studies. Finally, the present challenges faced by organoid technology in clinical practice and its prospects are discussed. This review highlights that organoids may offer a novel therapeutic strategy for cancer research.
Collapse
Affiliation(s)
- Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
- Department of Pharmacology (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Sino-Russian Medical Research Center, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, China
- Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang 150086, China
| |
Collapse
|
23
|
Xue Z, Zhang Y, Zhao R, Liu X, Grützmann K, Klink B, Zhang X, Wang S, Zhao W, Sun Y, Han M, Wang X, Hu Y, Liu X, Yang N, Qiu C, Li W, Huang B, Li X, Bjerkvig R, Wang J, Zhou W. The dopamine receptor D1 inhibitor, SKF83566, suppresses GBM stemness and invasion through the DRD1-c-Myc-UHRF1 interactions. J Exp Clin Cancer Res 2024; 43:25. [PMID: 38246990 PMCID: PMC10801958 DOI: 10.1186/s13046-024-02947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Extensive local invasion of glioblastoma (GBM) cells within the central nervous system (CNS) is one factor that severely limits current treatments. The aim of this study was to uncover genes involved in the invasion process, which could also serve as therapeutic targets. For the isolation of invasive GBM cells from non-invasive cells, we used a three-dimensional organotypic co-culture system where glioma stem cell (GSC) spheres were confronted with brain organoids (BOs). Using ultra-low input RNA sequencing (ui-RNA Seq), an invasive gene signature was obtained that was exploited in a therapeutic context. METHODS GFP-labeled tumor cells were sorted from invasive and non-invasive regions within co-cultures. Ui-RNA sequencing analysis was performed to find a gene cluster up-regulated in the invasive compartment. This gene cluster was further analyzed using the Connectivity MAP (CMap) database. This led to the identification of SKF83566, an antagonist of the D1 dopamine receptor (DRD1), as a candidate therapeutic molecule. Knockdown and overexpression experiments were performed to find molecular pathways responsible for the therapeutic effects of SKF83566. Finally, the effects of SKF83566 were validated in orthotopic xenograft models in vivo. RESULTS Ui-RNA seq analysis of three GSC cell models (P3, BG5 and BG7) yielded a set of 27 differentially expressed genes between invasive and non-invasive cells. Using CMap analysis, SKF83566 was identified as a selective inhibitor targeting both DRD1 and DRD5. In vitro studies demonstrated that SKF83566 inhibited tumor cell proliferation, GSC sphere formation, and invasion. RNA sequencing analysis of SKF83566-treated P3, BG5, BG7, and control cell populations yielded a total of 32 differentially expressed genes, that were predicted to be regulated by c-Myc. Of these, the UHRF1 gene emerged as the most downregulated gene following treatment, and ChIP experiments revealed that c-Myc binds to its promoter region. Finally, SKF83566, or stable DRD1 knockdown, inhibited the growth of orthotopic GSC (BG5) derived xenografts in nude mice. CONCLUSIONS DRD1 contributes to GBM invasion and progression by regulating c-Myc entry into the nucleus that affects the transcription of the UHRF1 gene. SKF83566 inhibits the transmembrane protein DRD1, and as such represents a candidate small therapeutic molecule for GBMs.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Brain
- CCAAT-Enhancer-Binding Proteins/drug effects
- CCAAT-Enhancer-Binding Proteins/metabolism
- Dopamine
- Dopamine Antagonists/metabolism
- Dopamine Antagonists/pharmacology
- Glioblastoma/drug therapy
- Glioblastoma/genetics
- Glioma
- Mice, Nude
- Multigene Family
- Proto-Oncogene Proteins c-myc/drug effects
- Proto-Oncogene Proteins c-myc/metabolism
- Receptors, Dopamine D1/antagonists & inhibitors
- Ubiquitin-Protein Ligases/drug effects
- Ubiquitin-Protein Ligases/metabolism
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
Collapse
Affiliation(s)
- Zhiyi Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yan Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ruiqi Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xiaofei Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Konrad Grützmann
- Core Unit for Molecular Tumour Diagnostics (CMTD), National Center for Tumour Diseases (NCT) Dresden, Dresden, Germany
- Institute for Medical Informatics and Biometry, Medical Faculty, TU Dresden, Dresden, Germany
| | - Barbara Klink
- Department of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Xun Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Wenbo Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yanfei Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaotian Hu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xuemeng Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Chen Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Rolf Bjerkvig
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, 5009, Norway
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, 5009, Norway.
| | - Wenjing Zhou
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
24
|
Oudin A, Moreno-Sanchez PM, Baus V, Niclou SP, Golebiewska A. Magnetic resonance imaging-guided intracranial resection of glioblastoma tumors in patient-derived orthotopic xenografts leads to clinically relevant tumor recurrence. BMC Cancer 2024; 24:3. [PMID: 38166949 PMCID: PMC10763155 DOI: 10.1186/s12885-023-11774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Preclinical in vivo cancer models are essential tools for investigating tumor progression and response to treatment prior to clinical trials. Although treatment modalities are regularly assessed in mice upon tumor growth in vivo, surgical resection remains challenging, particularly in the orthotopic site. Here, we report a successful surgical resection of glioblastoma (GBM) in patient-derived orthotopic xenografts (PDOXs). METHODS We derived a cohort of 46 GBM PDOX models that faithfully recapitulate human disease in mice. We assessed the detection and quantification of intracranial tumors using magnetic resonance imaging (MRI).To evaluate feasibility of surgical resection in PDOXs, we selected two models representing histopathological features of GBM tumors, including diffuse growth into the mouse brain. Surgical resection in the mouse brains was performed based on MRI-guided coordinates. Survival study followed by MRI and immunohistochemistry-based evaluation of recurrent tumors allowed for assessment of clinically relevant parameters. RESULTS We demonstrate the utility of MRI for the noninvasive assessment of in vivo tumor growth, preoperative programming of resection coordinates and follow-up of tumor recurrence. We report tumor detection by MRI in 90% of GBM PDOX models (36/40), of which 55% (22/40) can be reliably quantified during tumor growth. We show that a surgical resection protocol in mice carrying diffuse primary GBM tumors in the brain leads to clinically relevant outcomes. Similar to neurosurgery in patients, we achieved a near total to complete extent of tumor resection, and mice with resected tumors presented significantly increased survival. The remaining unresected GBM cells that invaded the normal mouse brain prior to surgery regrew tumors with similar histopathological features and tumor microenvironments to the primary tumors. CONCLUSIONS Our data positions GBM PDOXs developed in mouse brains as a valuable preclinical model for conducting therapeutic studies that involve surgical tumor resection. The high detectability of tumors by MRI across a substantial number of PDOX models in mice will allow for scalability of our approach toward specific tumor types for efficacy studies in precision medicine-oriented approaches. Additionally, these models hold promise for the development of enhanced image-guided surgery protocols.
Collapse
Affiliation(s)
- Anais Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), 6A, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg
| | - Pilar M Moreno-Sanchez
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), 6A, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Virginie Baus
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), 6A, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), 6A, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), 6A, Rue Nicolas-Ernest Barblé, Luxembourg, L-1210, Luxembourg.
| |
Collapse
|
25
|
Yabo YA, Moreno-Sanchez PM, Pires-Afonso Y, Kaoma T, Nosirov B, Scafidi A, Ermini L, Lipsa A, Oudin A, Kyriakis D, Grzyb K, Poovathingal SK, Poli A, Muller A, Toth R, Klink B, Berchem G, Berthold C, Hertel F, Mittelbronn M, Heiland DH, Skupin A, Nazarov PV, Niclou SP, Michelucci A, Golebiewska A. Glioblastoma-instructed microglia transition to heterogeneous phenotypic states with phagocytic and dendritic cell-like features in patient tumors and patient-derived orthotopic xenografts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531162. [PMID: 36945572 PMCID: PMC10028830 DOI: 10.1101/2023.03.05.531162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Background A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. Methods Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA-sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. Results We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. Conclusions Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.
Collapse
Affiliation(s)
- Yahaya A Yabo
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Pilar M Moreno-Sanchez
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Yolanda Pires-Afonso
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Tony Kaoma
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Bakhtiyor Nosirov
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Andrea Scafidi
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Luca Ermini
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
| | - Anuja Lipsa
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
| | - Anaïs Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
| | - Dimitrios Kyriakis
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Suresh K Poovathingal
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
- Single Cell Analytics & Microfluidics Core, Vlaams Instituut voor Biotechnologie-KU Leuven, 3000 Leuven, Belgium
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Arnaud Muller
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Reka Toth
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Barbara Klink
- National Center of Genetics, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
- German Cancer Consortium (DKTK), 01307 Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), 01307 Dresden, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Guy Berchem
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
- Centre Hospitalier Luxembourg, 1210 Luxembourg, Luxembourg
| | | | - Frank Hertel
- Centre Hospitalier Luxembourg, 1210 Luxembourg, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Luxembourg
- National Center of Pathology (NCP), Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Dieter H Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
- Department of Physics and Material Science, University Luxembourg, L-4367 Belvaux, Luxembourg
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| | - Petr V Nazarov
- Multiomics Data Science, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health (LIH), L-1526 Luxembourg, Luxembourg
| |
Collapse
|
26
|
Zhu S, Guo J, Yu L, Liu J, Chen J, Xin J, Zhang Y, Luo J, Duan C. Synergistic effect of cryptotanshinone and temozolomide treatment against human glioblastoma cells. Sci Rep 2023; 13:21835. [PMID: 38071213 PMCID: PMC10710453 DOI: 10.1038/s41598-023-48777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a complex disease to treat owing to its profound chemoresistance. Therefore, we evaluated the combined effect and therapeutic efficacy of temozolomide (TMZ), a potent alkylating agent and the current gold standard therapy for GBM, and cryptotanshinone (CTS), which inhibits glioma cell proliferation in GBM cells. Using LN229 and U87-MG human GBM cells in a short-term stimulation in vitro model, the cytotoxic and anti-proliferative effects of single and combined treatment with 4 μM CTS and 200 μM TMZ were investigated. Furthermore, cell viability, DNA damage, apoptosis rate, and signal transducer and activator of transcription 3 (STAT3) protein were measured using cytotoxic assay, comet assay, flow cytometry, and western blotting analysis, respectively. The two drugs' synergistic interaction was validated using the synergy score. We found that the anti-proliferative effects of combination therapy using the two drugs were greater than that of each agent used alone (CTS or TMZ). Western blot analysis indicated that treatment of GBM cells with CTS combined with TMZ more significantly decreased the expression of MGMT and STAT3, than that with TMZ alone. Combined treatment with CTS and TMZ might be an effective option to overcome the chemoresistance of GBM cells in a long-term treatment strategy.
Collapse
Affiliation(s)
- Songxian Zhu
- Brain Research Institute, Research Center of Neurological Diseases, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Jingjing Guo
- Brain Research Institute, Research Center of Neurological Diseases, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Li Yu
- Brain Research Institute, Research Center of Neurological Diseases, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Jun Liu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei, China
| | - Jixiang Chen
- Brain Research Institute, Research Center of Neurological Diseases, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Jinxin Xin
- Brain Research Institute, Research Center of Neurological Diseases, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China
| | - Yuqiang Zhang
- Medical Services, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China.
| | - Jie Luo
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei, China.
| | - Chao Duan
- Brain Research Institute, Research Center of Neurological Diseases, Taihe Hospital, Hubei University of Medicine, 32 Renmin South Rd, Shiyan, 442000, Hubei, China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Taihe Hospital of Shiyan, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
27
|
Lago C, Federico A, Leva G, Mack NL, Schwalm B, Ballabio C, Gianesello M, Abballe L, Giovannoni I, Reddel S, Rossi S, Leone N, Carai A, Mastronuzzi A, Bisio A, Soldano A, Quintarelli C, Locatelli F, Kool M, Miele E, Tiberi L. Patient- and xenograft-derived organoids recapitulate pediatric brain tumor features and patient treatments. EMBO Mol Med 2023; 15:e18199. [PMID: 38037472 DOI: 10.15252/emmm.202318199] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Brain tumors are the leading cause of cancer-related death in children. Experimental in vitro models that faithfully capture the hallmarks and tumor heterogeneity of pediatric brain cancers are limited and hard to establish. We present a protocol that enables efficient generation, expansion, and biobanking of pediatric brain cancer organoids. Utilizing our protocol, we have established patient-derived organoids (PDOs) from ependymomas, medulloblastomas, low-grade glial tumors, and patient-derived xenograft organoids (PDXOs) from medulloblastoma xenografts. PDOs and PDXOs recapitulate histological features, DNA methylation profiles, and intratumor heterogeneity of the tumors from which they were derived. We also showed that PDOs can be xenografted. Most interestingly, when subjected to the same routinely applied therapeutic regimens, PDOs respond similarly to the patients. Taken together, our study highlights the potential of PDOs and PDXOs for research and translational applications for personalized medicine.
Collapse
Affiliation(s)
- Chiara Lago
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Aniello Federico
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Gloria Leva
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Norman L Mack
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Benjamin Schwalm
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Claudio Ballabio
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Matteo Gianesello
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| | - Luana Abballe
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | | | - Sofia Reddel
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Nicolas Leone
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Alessandra Bisio
- Laboratory of Radiobiology, CIBIO, Trento, Italy
- Trento Institute for Fundamental Physics and Application, TIFPA, Trento, Italy
| | - Alessia Soldano
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Concetta Quintarelli
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Franco Locatelli
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Evelina Miele
- Department of Onco-Hematology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, Trento, Italy
| |
Collapse
|
28
|
Zhu Y, Song Z, Wang Z. A Prediction Model for Deciphering Intratumoral Heterogeneity Derived from the Microglia/Macrophages of Glioma Using Non-Invasive Radiogenomics. Brain Sci 2023; 13:1667. [PMID: 38137116 PMCID: PMC10742081 DOI: 10.3390/brainsci13121667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Microglia and macrophages play a major role in glioma immune responses within the glioma microenvironment. We aimed to construct a prognostic prediction model for glioma based on microglia/macrophage-correlated genes. Additionally, we sought to develop a non-invasive radiogenomics approach for risk stratification evaluation. Microglia/macrophage-correlated genes were identified from four single-cell datasets. Hub genes were selected via lasso-Cox regression, and risk scores were calculated. The immunological characteristics of different risk stratifications were assessed, and radiomics models were constructed using corresponding MRI imaging to predict risk stratification. We identified eight hub genes and developed a relevant risk score formula. The risk score emerged as a significant prognostic predictor correlated with immune checkpoints, and a relevant nomogram was drawn. High-risk groups displayed an active microenvironment associated with microglia/macrophages. Furthermore, differences in somatic mutation rates, such as IDH1 missense variant and TP53 missense variant, were observed between high- and low-risk groups. Lastly, a radiogenomics model utilizing five features from magnetic resonance imaging (MRI) T2 fluid-attenuated inversion recovery (Flair) effectively predicted the risk groups under a random forest model. Our findings demonstrate that risk stratification based on microglia/macrophages can effectively predict prognosis and immune functions in glioma. Moreover, we have shown that risk stratification can be non-invasively predicted using an MRI-T2 Flair-based radiogenomics model.
Collapse
Affiliation(s)
| | | | - Zhong Wang
- Department of Neurosurgery, The First Affifiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou 215006, China
| |
Collapse
|
29
|
Barachini S, Morelli M, Santonocito OS, Mazzanti CM. Preclinical glioma models in neuro-oncology: enhancing translational research. Curr Opin Oncol 2023; 35:536-542. [PMID: 37820088 DOI: 10.1097/cco.0000000000000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW Gliomas represent approximately 25% of all primary brain and other central nervous system (CNS) tumors and 81% of malignant tumors. Unfortunately, standard treatment approaches for most CNS cancers have shown limited improvement in patient survival rates. RECENT FINDINGS The current drug development process has been plagued by high failure rates, leading to a shift towards human disease models in biomedical research. Unfortunately, suitable preclinical models for brain tumors have been lacking, hampering our understanding of tumor initiation processes and the discovery of effective treatments. In this review, we will explore the diverse preclinical models employed in neuro-oncology research and their contributions to translational science. SUMMARY By utilizing a combination of these preclinical models and fostering interdisciplinary collaborations, researchers can deepen their understanding of glioma brain tumors and develop novel therapeutic strategies to combat these devastating diseases. These models offer promising prospects for personalized and efficacious treatments for these challenging malignancies. Although it is unrealistic to fully replicate the complexity of the human body in vitro, the ultimate goal should be to achieve the closest possible resemblance to the clinical context.
Collapse
Affiliation(s)
- Serena Barachini
- Department of Clinical and Experimental Medicine, University of Pisa
| | | | | | | |
Collapse
|
30
|
Wang W, Li Y, Lin K, Wang X, Tu Y, Zhuo Z. Progress in building clinically relevant patient-derived tumor xenograft models for cancer research. Animal Model Exp Med 2023; 6:381-398. [PMID: 37679891 PMCID: PMC10614132 DOI: 10.1002/ame2.12349] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Patient-derived tumor xenograft (PDX) models, a method involving the surgical extraction of tumor tissues from cancer patients and subsequent transplantation into immunodeficient mice, have emerged as a pivotal approach in translational research, particularly in advancing precision medicine. As the first stage of PDX development, the patient-derived orthotopic xenograft (PDOX) models implant tumor tissue in mice in the corresponding anatomical locations of the patient. The PDOX models have several advantages, including high fidelity to the original tumor, heightened drug sensitivity, and an elevated rate of successful transplantation. However, the PDOX models present significant challenges, requiring advanced surgical techniques and resource-intensive imaging technologies, which limit its application. And then, the humanized mouse models, as well as the zebrafish models, were developed. Humanized mouse models contain a human immune environment resembling the tumor and immune system interplay. The humanized mouse models are a hot topic in PDX model research. Regarding zebrafish patient-derived tumor xenografts (zPDX) and patient-derived organoids (PDO) as promising models for studying cancer and drug discovery, zPDX models are used to transplant tumors into zebrafish as novel personalized medical animal models with the advantage of reducing patient waiting time. PDO models provide a cost-effective approach for drug testing that replicates the in vivo environment and preserves important tumor-related information for patients. The present review highlights the functional characteristics of each new phase of PDX and provides insights into the challenges and prospective developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Yongshu Li
- College of Life SciencesHubei Normal UniversityHuangshiChina
- Shenzhen Institute for Technology InnovationNational Institute of MetrologyShenzhenChina
| | - Kaida Lin
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Yanyang Tu
- Research Center, Huizhou Central People's HospitalGuangdong Medical UniversityHuizhou CityChina
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| |
Collapse
|
31
|
Ntafoulis I, Kleijn A, Ju J, Jimenez-Cowell K, Fabro F, Klein M, Chi Yen RT, Balvers RK, Li Y, Stubbs AP, Kers TV, Kros JM, Lawler SE, Beerepoot LV, Kremer A, Idbaih A, Verreault M, Byrne AT, O'Farrell AC, Connor K, Biswas A, Salvucci M, Prehn JHM, Lambrechts D, Dilcan G, Lodi F, Arijs I, van den Bent MJ, Dirven CMF, Leenstra S, Lamfers MLM. Ex vivo drug sensitivity screening predicts response to temozolomide in glioblastoma patients and identifies candidate biomarkers. Br J Cancer 2023; 129:1327-1338. [PMID: 37620410 PMCID: PMC10575865 DOI: 10.1038/s41416-023-02402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/13/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Patient-derived glioma stem-like cells (GSCs) have become the gold-standard in neuro-oncological research; however, it remains to be established whether loss of in situ microenvironment affects the clinically-predictive value of this model. We implemented a GSC monolayer system to investigate in situ-in vitro molecular correspondence and the relationship between in vitro and patient response to temozolomide (TMZ). METHODS DNA/RNA-sequencing was performed on 56 glioblastoma tissues and 19 derived GSC cultures. Sensitivity to TMZ was screened across 66 GSC cultures. Viability readouts were related to clinical parameters of corresponding patients and whole-transcriptome data. RESULTS Tumour DNA and RNA sequences revealed strong similarity to corresponding GSCs despite loss of neuronal and immune interactions. In vitro TMZ screening yielded three response categories which significantly correlated with patient survival, therewith providing more specific prediction than the binary MGMT marker. Transcriptome analysis identified 121 genes related to TMZ sensitivity of which 21were validated in external datasets. CONCLUSION GSCs retain patient-unique hallmark gene expressions despite loss of their natural environment. Drug screening using GSCs predicted patient response to TMZ more specifically than MGMT status, while transcriptome analysis identified potential biomarkers for this response. GSC drug screening therefore provides a tool to improve drug development and precision medicine for glioblastoma.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Anne Kleijn
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Jie Ju
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Kevin Jimenez-Cowell
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Federica Fabro
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Michelle Klein
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Romain Tching Chi Yen
- Information Technologies for Translational Medicine, Esch-Sur-Alzette, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Rutger K Balvers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Yunlei Li
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Andrew P Stubbs
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Trisha V Kers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Johan M Kros
- Department of Pathology & Clinical Bioinformatics, Erasmus MC, Rotterdam, Netherlands
| | - Sean E Lawler
- Dept of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, USA
| | - Laurens V Beerepoot
- Department of Internal Medicine, Elisabeth-Tweesteden Hospital, Tilburg, Netherlands
| | - Andreas Kremer
- Information Technologies for Translational Medicine, Esch-Sur-Alzette, Luxembourg
| | - Ahmed Idbaih
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Maite Verreault
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alice C O'Farrell
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kate Connor
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Archita Biswas
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Diether Lambrechts
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Gonca Dilcan
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Francesca Lodi
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Ingrid Arijs
- Department of Human Genetics, Laboratory for Translational Genetics, KU Leuven, and VIB Center for Cancer Biology, Leuven, Belgium
| | - Martin J van den Bent
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, Netherlands.
| |
Collapse
|
32
|
Zhang Y, Lu A, Zhuang Z, Zhang S, Liu S, Chen H, Yang X, Wang Z. Can Organoid Model Reveal a Key Role of Extracellular Vesicles in Tumors? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:5511-5527. [PMID: 37791321 PMCID: PMC10544113 DOI: 10.2147/ijn.s424737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Extracellular vesicles (EVs) are small membrane-bound vesicles that are released by cells into the extracellular environment. The role of EVs in tumors has been extensively studied, and they have been shown to play a crucial role in tumor growth, progression, and metastasis. Past research has mainly used 2D-cultured cell line models to investigate the role of EVs in tumors, which poorly simulate the tumor microenvironment. Organoid technology has gradually matured in recent years. Organoids are similar in composition and behavior to physiological cells and have the potential to recapitulate the architecture and function of the original tissue. It has been widely used in organogenesis, drug screening, gene editing, precision medicine and other fields. The integration of EVs and organoids has the potential to revolutionize the field of cancer research and represents a promising avenue for advancing our understanding of cancer biology and the development of novel therapeutic strategies. Here, we aimed to present a comprehensive overview of studies using organoids to study EVs in tumors.
Collapse
Affiliation(s)
- Yang Zhang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Anqing Lu
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of Central Transportation, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- West China School of Nursing, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Zixuan Zhuang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Su Zhang
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Sicheng Liu
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-Related Molecular Network and National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Haining Chen
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xuyang Yang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ziqiang Wang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
33
|
Guyon J, Daubon T. Histological analysis of invasive glioblastoma organoids embedded in a 3D collagen matrix. STAR Protoc 2023; 4:102521. [PMID: 37597188 PMCID: PMC10462880 DOI: 10.1016/j.xpro.2023.102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/27/2023] [Indexed: 08/21/2023] Open
Abstract
Organoids are unique tools to mimic how tumors evolve in a 3D environment. Here, we present a protocol to embed spheroids invading a 3D matrix into a paraffin mold. We describe steps for preparing spheroids, collagen and agarose inclusion, and paraffinization. We then detail procedures for sectioning, staining, and visualization. This protocol allows histological identification of markers expressed in cells escaping the tumor. For complete details on the use and execution of this protocol, please refer to Guyon et al. (2022).1.
Collapse
Affiliation(s)
- Joris Guyon
- CHU de Bordeaux, Service de Pharmacologie Médicale, 33000 Bordeaux, France; University Bordeaux, INSERM, BPH, U1219, 33000 Bordeaux, France
| | - Thomas Daubon
- University Bordeaux, CNRS, IBGC, UMR 5095, 33000 Bordeaux, France.
| |
Collapse
|
34
|
Baddam SR, Kalagara S, Kuna K, Enaganti S. Recent advancements and theranostics strategies in glioblastoma therapy. Biomed Mater 2023; 18:052007. [PMID: 37582381 DOI: 10.1088/1748-605x/acf0ab] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Glioblastoma (GBM) is the most aggressive and lethal malignant brain tumor, and it is challenging to cure with surgery and treatment. The prevention of permanent brain damage and tumor invasion, which is the ultimate cause of recurrence, are major obstacles in GBM treatment. Besides, emerging treatment modalities and newer genetic findings are helping to understand and manage GBM in patients. Accordingly, researchers are focusing on advanced nanomaterials-based strategies for tackling the various problems associated with GBM. In this context, researchers explored novel strategies with various alternative treatment approaches such as early detection techniques and theranostics approaches. In this review, we have emphasized the recent advancement of GBM cellular models and their roles in designing GBM therapeutics. We have added a special emphasis on the novel genetic and drug target findings as well as strategies for early detection. Besides, we have discussed various theranostic approaches such as hyperthermia therapy, phototherapy and image-guided therapy. Approaches utilized for targeted drug delivery to the GBM were also discussed. This article also describes the recentin vivo, in vitroandex vivoadvances using innovative theranostic approaches.
Collapse
Affiliation(s)
- Sudhakar Reddy Baddam
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute,Worcester,MA 01655, United States of America
| | - Sudhakar Kalagara
- Department of Chemistry and Biochemistry,University of the Texas at El Paso, 500 W University Ave,El Paso,TX 79968, United States of America
| | - Krishna Kuna
- Department of Chemistry,University College of Science, Saifabad, Osmania University, Hyderabad,Telangana,India
| | - Sreenivas Enaganti
- Department of Bioinformatics, Averinbiotech Laboratories,208, 2nd Floor, Windsor Plaza, Nallakunta, Hyderabad, Telangana,India
| |
Collapse
|
35
|
Drexler R, Khatri R, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh Y, Dührsen L, Salviano-Silva A, Lamszus K, Westphal M, Gempt J, Wefers AK, Neumann J, Bode H, Hausmann F, Huber TB, Bonn S, Jütten K, Delev D, Weber KJ, Harter PN, Onken J, Vajkoczy P, Capper D, Wiestler B, Weller M, Snijder B, Buck A, Weiss T, Keough MB, Ni L, Monje M, Silverbush D, Hovestadt V, Suvà ML, Krishna S, Hervey-Jumper SL, Schüller U, Heiland DH, Hänzelmann S, Ricklefs FL. Epigenetic neural glioblastoma enhances synaptic integration and predicts therapeutic vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552017. [PMID: 37609137 PMCID: PMC10441357 DOI: 10.1101/2023.08.04.552017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is nascent. We present an epigenetically defined neural signature of glioblastoma that independently affects patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals high abundance of stem cell-like malignant cells classified as oligodendrocyte precursor and neural precursor cell-like in high-neural glioblastoma. High-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature associates with decreased survival as well as increased functional connectivity and can be detected via DNA analytes and brain-derived neurotrophic factor in plasma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L. Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Ryba
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amanda Salviano-Silva
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K. Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Helena Bode
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Jütten
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Katharina J. Weber
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Frankfurt am Main, Germany
| | - Patrick N. Harter
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- Institute of Neuropathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Michael B. Keough
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Mario L. Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Dieter H. Heiland
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L. Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Wang X, Sun Y, Zhang DY, Ming GL, Song H. Glioblastoma modeling with 3D organoids: progress and challenges. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad008. [PMID: 38596241 PMCID: PMC10913843 DOI: 10.1093/oons/kvad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Glioblastoma (GBM) is the most aggressive adult primary brain tumor with nearly universal treatment resistance and recurrence. The mainstay of therapy remains maximal safe surgical resection followed by concurrent radiation therapy and temozolomide chemotherapy. Despite intensive investigation, alternative treatment options, such as immunotherapy or targeted molecular therapy, have yielded limited success to achieve long-term remission. This difficulty is partly due to the lack of pre-clinical models that fully recapitulate the intratumoral and intertumoral heterogeneity of GBM and the complex tumor microenvironment. Recently, GBM 3D organoids originating from resected patient tumors, genetic manipulation of induced pluripotent stem cell (iPSC)-derived brain organoids and bio-printing or fusion with non-malignant tissues have emerged as novel culture systems to portray the biology of GBM. Here, we highlight several methodologies for generating GBM organoids and discuss insights gained using such organoid models compared to classic modeling approaches using cell lines and xenografts. We also outline limitations of current GBM 3D organoids, most notably the difficulty retaining the tumor microenvironment, and discuss current efforts for improvements. Finally, we propose potential applications of organoid models for a deeper mechanistic understanding of GBM and therapeutic development.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yusha Sun
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Y Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Berube LL, Nickel KOP, Iida M, Ramisetty S, Kulkarni P, Salgia R, Wheeler DL, Kimple RJ. Radiation Sensitivity: The Rise of Predictive Patient-Derived Cancer Models. Semin Radiat Oncol 2023; 33:279-286. [PMID: 37331782 PMCID: PMC10287034 DOI: 10.1016/j.semradonc.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Patient-derived cancer models have been used for decades to improve our understanding of cancer and test anticancer treatments. Advances in radiation delivery have made these models more attractive for studying radiation sensitizers and understanding an individual patient's radiation sensitivity. Advances in the use of patient-derived cancer models lead to a more clinically relevant outcome, although many questions remain regarding the optimal use of patient-derived xenografts and patient-derived spheroid cultures. The use of patient-derived cancer models as personalized predictive avatars through mouse and zebrafish models is discussed, and the advantages and disadvantages of patient-derived spheroids are reviewed. In addition, the use of large repositories of patient-derived models to develop predictive algorithms to guide treatment selection is discussed. Finally, we review methods for establishing patient-derived models and identify key factors that influence their use as both avatars and models of cancer biology.
Collapse
Affiliation(s)
- Liliana L Berube
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Kwang-Ok P Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI; University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI; University of Wisconsin Carbone Cancer Center, Madison, WI.
| |
Collapse
|
38
|
Yang S, Hu H, Kung H, Zou R, Dai Y, Hu Y, Wang T, Lv T, Yu J, Li F. Organoids: The current status and biomedical applications. MedComm (Beijing) 2023; 4:e274. [PMID: 37215622 PMCID: PMC10192887 DOI: 10.1002/mco2.274] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Organoids are three-dimensional (3D) miniaturized versions of organs or tissues that are derived from cells with stem potential and can self-organize and differentiate into 3D cell masses, recapitulating the morphology and functions of their in vivo counterparts. Organoid culture is an emerging 3D culture technology, and organoids derived from various organs and tissues, such as the brain, lung, heart, liver, and kidney, have been generated. Compared with traditional bidimensional culture, organoid culture systems have the unique advantage of conserving parental gene expression and mutation characteristics, as well as long-term maintenance of the function and biological characteristics of the parental cells in vitro. All these features of organoids open up new opportunities for drug discovery, large-scale drug screening, and precision medicine. Another major application of organoids is disease modeling, and especially various hereditary diseases that are difficult to model in vitro have been modeled with organoids by combining genome editing technologies. Herein, we introduce the development and current advances in the organoid technology field. We focus on the applications of organoids in basic biology and clinical research, and also highlight their limitations and future perspectives. We hope that this review can provide a valuable reference for the developments and applications of organoids.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Haijie Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hengchung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruiqi Zou
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yushi Dai
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yafei Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianrun Lv
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jun Yu
- Departments of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fuyu Li
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
39
|
Yashin KS, Yuzhakova DV, Sachkova DA, Kukhnina LS, Kharitonova TM, Zolotova AS, Medyanik IA, Shirmanova MV. Personalized Medicine in Brain Gliomas: Targeted Therapy, Patient-Derived Tumor Models (Review). Sovrem Tekhnologii Med 2023; 15:61-71. [PMID: 38435477 PMCID: PMC10904359 DOI: 10.17691/stm2023.15.3.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 03/05/2024] Open
Abstract
Gliomas are the most common type of primary malignant brain tumors. The choice of treatments for these tumors was quite limited for many years, and therapy results generally remain still unsatisfactory. Recently, a significant breakthrough in the treatment of many forms of cancer occurred when personalized targeted therapies were introduced which inhibit tumor growth by affecting a specific molecular target. Another trend gaining popularity in oncology is the creation of patient-derived tumor models which can be used for drug screening to select the optimal therapy regimen. Molecular and genetic mechanisms of brain gliomas growth are considered, consisting of individual components which could potentially be exposed to targeted drugs. The results of the literature review show a higher efficacy of the personalized approach to the treatment of individual patients compared to the use of standard therapies. However, many unresolved issues remain in the area of predicting the effectiveness of a particular drug therapy regimen. The main hopes in solving this issue are set on the use of patient-derived tumor models, which can be used in one-stage testing of a wide range of antitumor drugs.
Collapse
Affiliation(s)
- K S Yashin
- Neurosurgeon, Department of Neurosurgery, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Assistant, Department of Traumatology and Neurosurgery named after M.V. Kolokoltsev; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Oncologist, Polyclinic Department; Nizhny Novgorod Regional Oncologic Dispensary, 11/1 Delovaya St., Nizhny Novgorod, 603126, Russia
| | - D V Yuzhakova
- Researcher, Laboratory of Genomics of Adaptive Antitumor Immunity, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D A Sachkova
- Master Student, Department of Biophysics; National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia Laboratory Assistant, Laboratory of Fluorescent Bioimaging, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - L S Kukhnina
- Student, Faculty of Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - T M Kharitonova
- Student, Faculty of Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - A S Zolotova
- Resident, Department of Neurosurgery, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - I A Medyanik
- Neurosurgeon, Department Neurosurgery, University Clinic; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Professor, Department of Traumatology and Neurosurgery named after M.V. Kolokoltsev; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Oncologist, Polyclinic Department; Nizhny Novgorod Regional Oncologic Dispensary, 11/1 Delovaya St., Nizhny Novgorod, 603126, Russia
| | - M V Shirmanova
- Deputy Director for Science, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
40
|
Cui X, Wang Y, Zhou J, Wang Q, Kang C. Expert opinion on translational research for advanced glioblastoma treatment. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0012. [PMID: 37092846 PMCID: PMC10246444 DOI: 10.20892/j.issn.2095-3941.2023.0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Malignant gliomas are known to be one of the most difficult diseases to diagnose and treat because of the infiltrative growth pattern, rapid progression, and poor prognosis. Many antitumor drugs are not ideal for the treatment of gliomas due to the blood-brain barrier. Temozolomide (TMZ) is a DNA alkylating agent that can cross the blood-brain barrier. As the only first-line chemotherapeutic drug for malignant gliomas at present, TMZ is widely utilized to provide a survival benefit; however, some patients are inherently insensitive to TMZ. In addition, patients could develop acquired resistance during TMZ treatment, which limits antitumor efficacy. To clarify the mechanism underlying TMZ resistance, numerous studies have provided multilevel solutions, such as improving the effective concentration of TMZ in tumors and developing novel small molecule drugs. This review discusses the in-depth mechanisms underlying TMZ drug resistance, thus aiming to provide possibilities for the establishment of personalized therapeutic strategies against malignant gliomas and the accelerated development and transformation of new targeted drugs.
Collapse
Affiliation(s)
- Xiaoteng Cui
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yunfei Wang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Junhu Zhou
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qixue Wang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
41
|
Pawlowski KD, Duffy JT, Babak MV, Balyasnikova IV. Modeling glioblastoma complexity with organoids for personalized treatments. Trends Mol Med 2023; 29:282-296. [PMID: 36805210 PMCID: PMC11101135 DOI: 10.1016/j.molmed.2023.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023]
Abstract
Glioblastoma (GBM) remains a fatal diagnosis despite the current standard of care of maximal surgical resection, radiation, and temozolomide (TMZ) therapy. One aspect that impedes drug development is the lack of an appropriate model representative of the complexity of patient tumors. Brain organoids derived from cell culture techniques provide a robust, easily manipulatable, and high-throughput model for GBM. In this review, we highlight recent progress in developing GBM organoids (GBOs) with a focus on generating the GBM microenvironment (i.e., stem cells, vasculature, and immune cells) recapitulating human disease. Finally, we also discuss the use of organoids as a screening tool in drug development for GBM.
Collapse
Affiliation(s)
- Kristen D Pawlowski
- Rush Medical College, Rush University Medical Center, Chicago, IL 60612, USA; Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joseph T Duffy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, People's Republic of China.
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
42
|
Mayhew CN, Singhania R. A review of protocols for brain organoids and applications for disease modeling. STAR Protoc 2023; 4:101860. [PMID: 36566384 PMCID: PMC9803834 DOI: 10.1016/j.xpro.2022.101860] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/14/2022] [Accepted: 10/25/2022] [Indexed: 12/25/2022] Open
Abstract
Recent breakthroughs in human stem cell technologies have enabled the generation of 3D brain organoid platforms for modeling human neurodevelopment and disease. Here, we review advances in brain organoid development, approaches for generating whole-brain or cerebral organoids and region-specific brain organoids, and their applications in disease modeling. We present a comprehensive overview of various brain organoid generation protocols, including culture steps, media, timelines, and technical considerations associated with each protocol, and highlight the advantages and disadvantages of each protocol. We also discuss the current limitations as well as increasing sophistication of brain organoid technology, and future directions for the field. These insights provide a valuable assessment of multiple commonly used brain organoid models and main considerations for investigators who are considering implementing brain organoid technologies in their laboratories.
Collapse
Affiliation(s)
- Christopher N Mayhew
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | - Richa Singhania
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
43
|
Gonzales-Aloy E, Ahmed-Cox A, Tsoli M, Ziegler DS, Kavallaris M. From cells to organoids: The evolution of blood-brain barrier technology for modelling drug delivery in brain cancer. Adv Drug Deliv Rev 2023; 196:114777. [PMID: 36931346 DOI: 10.1016/j.addr.2023.114777] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Brain cancer remains the deadliest cancer. The blood-brain barrier (BBB) is impenetrable to most drugs and is a complex 3D network of multiple cell types including endothelial cells, astrocytes, and pericytes. In brain cancers, the BBB becomes disrupted during tumor progression and forms the blood-brain tumor barrier (BBTB). To advance therapeutic development, there is a critical need for physiologically relevant BBB in vitro models. 3D cell systems are emerging as valuable preclinical models to accelerate discoveries for diseases. Given the versatility and capability of 3D cell models, their potential for modelling the BBB and BBTB is reviewed. Technological advances of BBB models and challenges of in vitro modelling the BBTB, and application of these models as tools for assessing therapeutics and nano drug delivery, are discussed. Quantitative, in vitro BBB models that are predictive of effective brain cancer therapies will be invaluable for accelerating advancing new treatments to the clinic.
Collapse
Affiliation(s)
- Estrella Gonzales-Aloy
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | - Aria Ahmed-Cox
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; Katharina Gaus Light Microscopy Facility, Mark Wainright Analytical Center, UNSW Sydney, NSW, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; Kids Cancer Center, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Center, UNSW Sydney, NSW, Australia; Australian Center for NanoMedicine, UNSW Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, NSW, Australia; UNSW RNA Institute, UNSW Sydney, NSW, Australia.
| |
Collapse
|
44
|
Advancing preclinical cancer models to assess clinically relevant outcomes. BMC Cancer 2023; 23:230. [PMID: 36899363 PMCID: PMC10007806 DOI: 10.1186/s12885-023-10715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Cancer models are indispensable research tools for elucidating the mechanisms involved in tumor onset, progression and treatment resistance. They are key in evaluating therapeutics prior clinical trials. In this editorial, we invite contributions for a BMC Cancer's Collection of articles addressing 'Advances in pre-clinical cancer models' towards relivable outcomes at the preclinical stage.
Collapse
|
45
|
Villar VH, Allega MF, Deshmukh R, Ackermann T, Nakasone MA, Vande Voorde J, Drake TM, Oetjen J, Bloom A, Nixon C, Müller M, May S, Tan EH, Vereecke L, Jans M, Blancke G, Murphy DJ, Huang DT, Lewis DY, Bird TG, Sansom OJ, Blyth K, Sumpton D, Tardito S. Hepatic glutamine synthetase controls N 5-methylglutamine in homeostasis and cancer. Nat Chem Biol 2023; 19:292-300. [PMID: 36280791 PMCID: PMC9974483 DOI: 10.1038/s41589-022-01154-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022]
Abstract
Glutamine synthetase (GS) activity is conserved from prokaryotes to humans, where the ATP-dependent production of glutamine from glutamate and ammonia is essential for neurotransmission and ammonia detoxification. Here, we show that mammalian GS uses glutamate and methylamine to produce a methylated glutamine analog, N5-methylglutamine. Untargeted metabolomics revealed that liver-specific GS deletion and its pharmacological inhibition in mice suppress hepatic and circulating levels of N5-methylglutamine. This alternative activity of GS was confirmed in human recombinant enzyme and cells, where a pathogenic mutation in the active site (R324C) promoted the synthesis of N5-methylglutamine over glutamine. N5-methylglutamine is detected in the circulation, and its levels are sustained by the microbiome, as demonstrated by using germ-free mice. Finally, we show that urine levels of N5-methylglutamine correlate with tumor burden and GS expression in a β-catenin-driven model of liver cancer, highlighting the translational potential of this uncharacterized metabolite.
Collapse
Affiliation(s)
- Victor H Villar
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Maria Francesca Allega
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ruhi Deshmukh
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Tobias Ackermann
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Mark A Nakasone
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | | | - Thomas M Drake
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | | | - Algernon Bloom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Miryam Müller
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Stephanie May
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Ee Hong Tan
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Lars Vereecke
- Host-Microbiota Interaction Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Maude Jans
- Host-Microbiota Interaction Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Gillian Blancke
- Host-Microbiota Interaction Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Daniel J Murphy
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Danny T Huang
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David Y Lewis
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
46
|
Duan J, Wang Y. Modeling nervous system tumors with human stem cells and organoids. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:4. [PMID: 36854987 PMCID: PMC9975125 DOI: 10.1186/s13619-022-00150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/05/2022] [Indexed: 03/02/2023]
Abstract
Nervous system cancers are the 10th leading cause of death worldwide, many of which are difficult to diagnose and exhibit varying degrees of treatment resistance. The limitations of existing cancer models, such as patient-derived xenograft (PDX) models and genetically engineered mouse (GEM) models, call for the development of novel preclinical cancer models to more faithfully mimic the patient's cancer and offer additional insights. Recent advances in human stem cell biology, organoid, and genome-editing techniques allow us to model nervous system tumors in three types of next-generation tumor models: cell-of-origin models, tumor organoids, and 3D multicellular coculture models. In this review, we introduced and compared different human stem cell/organoid-derived models, and comprehensively summarized and discussed the recently developed models for various primary tumors in the central and peripheral nervous systems, including glioblastoma (GBM), H3K27M-mutant Diffuse Midline Glioma (DMG) and H3G34R-mutant High-grade Glioma (HGG), Low-grade Glioma (LGG), Neurofibromatosis Type 1 (NF1), Neurofibromatosis Type 2 (NF2), Medulloblastoma (MB), Atypical Teratoid/rhabdoid Tumor (AT/RT), and meningioma. We further compared these models with PDX and GEM models, and discussed the opportunities and challenges of precision nervous cancer modeling with human stem cells and organoids.
Collapse
Affiliation(s)
- Jie Duan
- grid.412901.f0000 0004 1770 1022Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041 China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
47
|
A Simple 3D Cell Culture Method for Studying the Interactions between Human Mesenchymal Stromal/Stem Cells and Patients Derived Glioblastoma. Cancers (Basel) 2023; 15:cancers15041304. [PMID: 36831643 PMCID: PMC9954562 DOI: 10.3390/cancers15041304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
We have developed a 3D biosphere model using patient-derived cells (PDCs) from glioblastoma (GBM), the major form of primary brain tumors in adult, plus cancer-activated fibroblasts (CAFs), obtained by culturing mesenchymal stem cells with GBM conditioned media. The effect of MSC/CAFs on the proliferation, cell-cell interactions, and response to treatment of PDCs was evaluated. Proliferation in the presence of CAFs was statistically lower but the spheroids formed within the 3D-biosphere were larger. A treatment for 5 days with Temozolomide (TMZ) and irradiation, the standard therapy for GBM, had a marked effect on cell number in monocultures compared to co-cultures and influenced cancer stem cells composition, similar to that observed in GBM patients. Mathematical analyses of spheroids growth and morphology confirm the similarity with GBM patients. We, thus, provide a simple and reproducible method to obtain 3D cultures from patient-derived biopsies and co-cultures with MSC with a near 100% success. This method provides the basis for relevant in vitro functional models for a better comprehension of the role of tumor microenvironment and, for precision and/or personalized medicine, potentially to predict the response to treatments for each GBM patient.
Collapse
|
48
|
Chai C, Ji P, Xu H, Tang H, Wang Z, Zhang H, Zhou W. Targeting cancer drug resistance utilizing organoid technology. Biomed Pharmacother 2023; 158:114098. [PMID: 36528918 DOI: 10.1016/j.biopha.2022.114098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer organoids generated from 3D in vitro cell cultures have contributed to the study of drug resistance. Maintenance of genomic and transcriptomic similarity between organoids and parental cancer allows organoids to have the ability of accurate prediction in drug resistance testing. Protocols of establishing therapy-sensitive and therapy-resistant organoids are concluded in two aspects, which are generated directly from respective patients' cancer and by induction of anti-cancer drug. Genomic and transcriptomic analyses and gene editing have been applied to organoid studies to identify key targets in drug resistance and FGFR3, KHDRBS3, lnc-RP11-536 K7.3 and FBN1 were found to be key targets. Furthermore, mechanisms contributing to resistance have been identified, including metabolic adaptation, activation of DNA damage response, defects in apoptosis, reduced cellular senescence, cellular plasticity, subpopulation interactions and gene fusions. Additionally, cancer stem cells (CSCs) have been verified to be involved in drug resistance utilizing organoid technology. Reversal of drug resistance can be achieved by targeting key genes and CSCs in cancer organoids. In this review, we summarize applications of organoids to cancer drug resistance research, indicating prospects and limitations.
Collapse
Affiliation(s)
- Changpeng Chai
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China; The Forth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Pengfei Ji
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Hao Xu
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Huan Tang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Zhengfeng Wang
- The First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Hui Zhang
- The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China.
| | - Wence Zhou
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou 730000, Gansu, China; The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu, China.
| |
Collapse
|
49
|
Chen CC, Li HW, Wang YL, Lee CC, Shen YC, Hsieh CY, Lin HL, Chen XX, Cho DY, Hsieh CL, Guo JH, Wei ST, Wang J, Wang SC. Patient-derived tumor organoids as a platform of precision treatment for malignant brain tumors. Sci Rep 2022; 12:16399. [PMID: 36180511 PMCID: PMC9525286 DOI: 10.1038/s41598-022-20487-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
Malignant brain tumors consist of malignancies originated primarily within the brain and the metastatic lesions disseminated from other organs. In spite of intensive studies, malignant brain tumors remain to be a medical challenge. Patient-derived organoid (PDO) can recapitulate the biological features of the primary tumor it was derived from and has emerged as a promising drug-screening model for precision therapy. Here we show a proof-of-concept based on early clinical study entailing the organoids derived from the surgically resected tumors of 26 patients with advanced malignant brain tumors enrolled during December 2020 to October 2021. The tumors included nine glioma patients, one malignant meningioma, one primary lymphoma patient, and 15 brain metastases. The primary tumor sites of the metastases included five from the lungs, three from the breasts, two from the ovaries, two from the colon, one from the testis, one of melanoma origin, and one of chondrosarcoma. Out of the 26 tissues, 13 (50%) organoids were successfully generated with a culture time of about 2 weeks. Among these patients, three were further pursued to have the organoids derived from their tumor tissues tested for the sensitivity to different therapeutic drugs in parallel to their clinical care. Our results showed that the therapeutic effects observed by the organoid models were consistent to the responses of these patients to their treatments. Our study suggests that PDO can recapitulate patient responses in the clinic with high potential of implementation in personalized medicine of malignant brain tumors.
Collapse
Affiliation(s)
- Chun-Chung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan, ROC. .,School of Medicine, China Medical University, Taichung, Taiwan, ROC. .,Department of Neurosurgery, China Medical University Hospital, 2 Hsueh-Shih Road, Taichung City, 40402, Taiwan, ROC.
| | - Hong-Wei Li
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Yuan-Liang Wang
- School of Medicine, China Medical University, Taichung, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan, ROC.,Center for Molecular Medicine, China Medical University Hospital, Taichung, 404332, Taiwan, ROC
| | - Chuan-Chun Lee
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404332, Taiwan, ROC.,Research Center for Cancer Biology, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Yi-Chun Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan, ROC.,Center for Molecular Medicine, China Medical University Hospital, Taichung, 404332, Taiwan, ROC
| | - Ching-Yun Hsieh
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Hung-Lin Lin
- Department of Neurosurgery, China Medical University Hospital, 2 Hsueh-Shih Road, Taichung City, 40402, Taiwan, ROC
| | - Xian-Xiu Chen
- Department of Neurosurgery, China Medical University Hospital, 2 Hsueh-Shih Road, Taichung City, 40402, Taiwan, ROC.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan, ROC
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, 2 Hsueh-Shih Road, Taichung City, 40402, Taiwan, ROC
| | - Ching-Liang Hsieh
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan, ROC
| | - Jeng-Hung Guo
- Department of Neurosurgery, China Medical University Hospital, 2 Hsueh-Shih Road, Taichung City, 40402, Taiwan, ROC
| | - Sung-Tai Wei
- Department of Neurosurgery, China Medical University Hospital, 2 Hsueh-Shih Road, Taichung City, 40402, Taiwan, ROC
| | - John Wang
- Department of Pathology, China Medical University Hospital, Taichung, 40447, Taiwan, ROC
| | - Shao-Chun Wang
- School of Medicine, China Medical University, Taichung, Taiwan, ROC. .,Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 40402, Taiwan, ROC. .,Center for Molecular Medicine, China Medical University Hospital, Taichung, 404332, Taiwan, ROC. .,Research Center for Cancer Biology, China Medical University, Taichung, 40402, Taiwan, ROC. .,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan, ROC. .,Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
50
|
Gao W, Wang C, Li Q, Zhang X, Yuan J, Li D, Sun Y, Chen Z, Gu Z. Application of medical imaging methods and artificial intelligence in tissue engineering and organ-on-a-chip. Front Bioeng Biotechnol 2022; 10:985692. [PMID: 36172022 PMCID: PMC9511994 DOI: 10.3389/fbioe.2022.985692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Organ-on-a-chip (OOC) is a new type of biochip technology. Various types of OOC systems have been developed rapidly in the past decade and found important applications in drug screening and precision medicine. However, due to the complexity in the structure of both the chip-body itself and the engineered-tissue inside, the imaging and analysis of OOC have still been a big challenge for biomedical researchers. Considering that medical imaging is moving towards higher spatial and temporal resolution and has more applications in tissue engineering, this paper aims to review medical imaging methods, including CT, micro-CT, MRI, small animal MRI, and OCT, and introduces the application of 3D printing in tissue engineering and OOC in which medical imaging plays an important role. The achievements of medical imaging assisted tissue engineering are reviewed, and the potential applications of medical imaging in organoids and OOC are discussed. Moreover, artificial intelligence - especially deep learning - has demonstrated its excellence in the analysis of medical imaging; we will also present the application of artificial intelligence in the image analysis of 3D tissues, especially for organoids developed in novel OOC systems.
Collapse
Affiliation(s)
- Wanying Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Science Researching and Training Center, Beijing, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xijing Zhang
- Central Research Institute, United Imaging Group, Shanghai, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Group, Shanghai, China
| | - Dianfu Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- International Children’s Medical Imaging Research Laboratory, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|