1
|
Lim-Fat MJ, Bennett J, Ostrom Q, Touat M, Franceschi E, Schulte J, Bindra RS, Fangusaro J, Dhall G, Nicholson J, Jackson S, Davidson TB, Calaminus G, Robinson G, Whittle JR, Hau P, Ramaswamy V, Pajtler KW, Rudà R, Foreman NK, Hervey-Jumper SL, Das S, Dirks P, Bi WL, Huang A, Merchant TE, Fouladi M, Aldape K, Van den Bent MJ, Packer RJ, Miller JJ, Reardon DA, Chang SM, Haas-Kogan D, Tabori U, Hawkins C, Monje M, Wen PY, Bouffet E, Yeo KK. Central nervous system tumors in adolescents and young adults: A Society for Neuro-Oncology consensus review on diagnosis, management, and future directions. Neuro Oncol 2024:noae186. [PMID: 39441704 DOI: 10.1093/neuonc/noae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Adolescents and young adults (AYAs; ages 15-39 years) are a vulnerable population facing challenges in oncological care, including access to specialized care, transition of care, unique tumor biology, and poor representation in clinical trials. Brain tumors are the second most common tumor type in AYA, with malignant brain tumors being the most common cause of cancer-related death. The 2021 WHO Classification for central nervous system (CNS) Tumors highlights the importance of integrated molecular characterization with histologic diagnosis in several tumors relevant to the AYA population. In this position paper from the Society for Neuro-Oncology (SNO), the diagnosis and management of CNS tumors in AYA is reviewed, focusing on the most common tumor types in this population, namely glioma, medulloblastoma, ependymoma, and CNS germ cell tumor. Current challenges and future directions specific to AYA are also highlighted. Finally, possible solutions to address barriers in the care of AYA patients are discussed, emphasizing the need for multidisciplinary and collaborative approaches that span the pediatric and adult paradigms of care, and incorporating advanced molecular testing, targeted therapy, and AYA-centered care.
Collapse
Affiliation(s)
- Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario, Canada
| | - Julie Bennett
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Quinn Ostrom
- The Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, North Carolina, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
| | - Mehdi Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuro-oncologie, Paris, France
- Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna / AUSL di Bologna, Bologna, Italy
| | - Jessica Schulte
- Neurosciences Department, University of California San Diego, La Jolla, California, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, Emory University, and the Aflac Cancer Center, Atlanta, Georgia, USA
| | - Girish Dhall
- Department of Hematology and Oncology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - James Nicholson
- Paediatric Oncology, Cambridge University Hospitals and Department of Paediatrics, Cambridge University, UK
| | - Sadhana Jackson
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Tom Belle Davidson
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Gabriele Calaminus
- Paediatric Haematology and Oncology, University Hospital Bonn, Bonn, Germany
| | - Giles Robinson
- Department of Oncology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - James R Whittle
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Personalised Oncology Division, WEHI, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter Hau
- Department of Neurology and Wilhelm Sander-Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Roberta Rudà
- Division of Neuro-Oncology, Department Neuroscience Rita Levi Montalcini, University of Turin and City of Health and Science University Hospital, Turin, Italy
| | - Nicholas K Foreman
- Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Sunit Das
- Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Peter Dirks
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Annie Huang
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas E Merchant
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Maryam Fouladi
- Division of Hematology/Oncology, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Roger J Packer
- Brain Tumor Institute, Gilbert Family Neurofibromatosis Institute, Center for Neuroscience and Behavioral Medicine, Children's National Hospital, Washington, District of Columbia, USA
| | - Julie J Miller
- Center for Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David A Reardon
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Susan M Chang
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Daphne Haas-Kogan
- Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Mass General Brigham, Harvard Medical School, Boston, Massachusetts, USA
| | - Uri Tabori
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Department of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Bouffet
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kee Kiat Yeo
- Department of Pediatric Oncology, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Shibahara I, Nakashima T, Toyoda M, Inukai M, Matsumoto T, Fujitani K, Tanihata Y, Hide T, Fuse N, Suzuki H, Kumabe T. Evolving driver mutations in adult-onset SHH-medulloblastoma originated from radiological cerebellar abnormality. J Neuropathol Exp Neurol 2024; 83:791-794. [PMID: 38812094 DOI: 10.1093/jnen/nlae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Affiliation(s)
- Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takuma Nakashima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Mariko Toyoda
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Madoka Inukai
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
| | - Kazuko Fujitani
- Department of Gene Analysis Center, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoko Tanihata
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takuichiro Hide
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Japan
| | - Nobuo Fuse
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
3
|
Gupta T, Mani S, Chatterjee A, Dasgupta A, Epari S, Chinnaswamy G. Risk-stratification for treatment de-intensification in WNT-pathway medulloblastoma: finding the optimal balance between survival and quality of survivorship. Expert Rev Anticancer Ther 2024; 24:589-598. [PMID: 38761170 DOI: 10.1080/14737140.2024.2357807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
INTRODUCTION Advances in molecular biology have led to consensus classification of medulloblastoma into four broad molecular subgroups - wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4, respectively. Traditionally, children >3 years of age, with no/minimal residual tumor (<1.5 cm2) and lack of metastasis were classified as average-risk disease with >80% long-term survival. Younger age (<3 years), large residual disease (≥1.5 cm2), and leptomeningeal metastases either alone or in combination were considered high-risk features yielding much worse 5-year survival (30-60%). This clinico-radiological risk-stratification has been refined by incorporating molecular/genetic information. Contemporary multi-modality management for non-infantile medulloblastoma entails maximal safe resection followed by risk-stratified adjuvant radio(chemo)therapy. Aggressive multi-modality management achieves good survival but is associated with substantial dose-dependent treatment-related toxicity prompting conduct of subgroup-specific prospective clinical trials. AREAS COVERED We conducted literature search on PubMed from 1969 till 2023 to identify putative prognostic factors and risk-stratification for medulloblastoma, including molecular subgrouping. Based on previously published data, including our own institutional experience, we discuss molecular risk-stratification focusing on WNT-pathway medulloblastoma to identify candidates suitable for treatment de-intensification to strike the optimal balance between survival and quality of survivorship. EXPERT OPINION Prospective clinical trials and emerging biological information should further refine risk-stratification in WNT-pathway medulloblastoma.
Collapse
Affiliation(s)
- Tejpal Gupta
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shakthivel Mani
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Archya Dasgupta
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sridhar Epari
- Department of Pathology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Girish Chinnaswamy
- Department of Pediatric Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
4
|
Hou Y, Du Y, Wang J, Zhang X, Zhao X, Xian X, Yuan L, Li H, Wang Y, Xi S, Huang G, Zhu W, Wang J, Zhu J, Yu Q, Cao Y, Wu J, Zeng J, Dong G, Hu W. Pediatric central nervous system tumor with CIC::LEUTX fusion: a diagnostic challenge. Acta Neuropathol Commun 2024; 12:106. [PMID: 38926750 PMCID: PMC11210039 DOI: 10.1186/s40478-024-01824-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Yanghao Hou
- Department of Pathology, Center for Molecular Medicine Testing, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Yanru Du
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China
| | - Juan Wang
- Department of Pathology, Nanjing Brain Hospital, Nanjing, P. R. China
| | - Xinke Zhang
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xueyan Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Xinyi Xian
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children Medical Center, Guangzhou, P. R. China
| | - Haigang Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Guangzhou, P. R. China
| | - Yu Wang
- Department of Pathology, Zhujiang Hospital of Southern Medical University, Zhujiang, P. R. China
| | - Shaoyan Xi
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Guan Huang
- Department of Pathology, Longgang District Central Hospital of Shenzhen, Shenzhen, P. R. China
| | - Wenbiao Zhu
- Department of Pathology, Meizhou People's Hospital, Meizhou, P. R. China
| | - Juan Wang
- Department of Pediatric tumor, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jin Zhu
- Department of Pathology, Center for Molecular Medicine Testing, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, Children's hospital of Chongqing medical university, Chongqing, P. R. China
| | - Qiubo Yu
- Department of Pathology, Center for Molecular Medicine Testing, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Youde Cao
- Department of Pathology, Center for Molecular Medicine Testing, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - JingXian Wu
- Department of Pathology, Center for Molecular Medicine Testing, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Jing Zeng
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, P. R. China.
| | - Wanming Hu
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
5
|
Slika H, Shahani A, Wahi R, Miller J, Groves M, Tyler B. Overcoming Treatment Resistance in Medulloblastoma: Underlying Mechanisms and Potential Strategies. Cancers (Basel) 2024; 16:2249. [PMID: 38927954 PMCID: PMC11202166 DOI: 10.3390/cancers16122249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Medulloblastoma is the most frequently encountered malignant brain tumor in the pediatric population. The standard of care currently consists of surgical resection, craniospinal irradiation, and multi-agent chemotherapy. However, despite this combination of multiple aggressive modalities, recurrence of the disease remains a substantial concern, and treatment resistance is a rising issue. The development of this resistance results from the interplay of a myriad of anatomical properties, cellular processes, molecular pathways, and genetic and epigenetic alterations. In fact, several efforts have been directed towards this domain and characterizing the major contributors to this resistance. Herein, this review highlights the different mechanisms that drive relapse and are implicated in the occurrence of treatment resistance and discusses them in the context of the latest molecular-based classification of medulloblastoma. These mechanisms include the impermeability of the blood-brain barrier to drugs, the overactivation of specific molecular pathways, the resistant and multipotent nature of cancer stem cells, intratumoral and intertumoral heterogeneity, and metabolic plasticity. Subsequently, we build on that to explore potential strategies and targeted agents that can abrogate these mechanisms, undermine the development of treatment resistance, and augment medulloblastoma's response to therapeutic modalities.
Collapse
Affiliation(s)
- Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| | - Aanya Shahani
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| | - Riddhpreet Wahi
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
- Grant Government Medical College and Sir J.J Group of Hospitals, Mumbai 400008, India
| | - Jackson Miller
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
- Department of English, Rhetoric, and Humanistic Studies, Virginia Military Institute, Lexington, VA 24450, USA
| | - Mari Groves
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Department of Neurosurgery, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| |
Collapse
|
6
|
Keeling C, Davies S, Goddard J, Ramaswamy V, Schwalbe EC, Bailey S, Hicks D, Clifford SC. The clinical significance of sub-total surgical resection in childhood medulloblastoma: a multi-cohort analysis of 1100 patients. EClinicalMedicine 2024; 69:102469. [PMID: 38374970 PMCID: PMC10875250 DOI: 10.1016/j.eclinm.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Background Medulloblastoma patients with a sub-total surgical resection (STR; >1.5 cm2 primary tumour residuum post-surgery) typically receive intensified treatment. However, the association of STR with poor outcomes has not been observed consistently, questioning the validity of STR as a high-risk disease feature. Methods We collected extent of resection (EOR) data from 1110 patients (from UK CCLG centres (n = 416, collected between September 1990 and July 2014) and published (n = 694) cohorts), the largest cohort of molecularly and clinically annotated tumours assembled to specifically assess the significance of EOR. We performed association and univariable/multivariable survival analyses, assessing overall survival (OS) cohort-wide and with reference to the four consensus medulloblastoma molecular groups and clinical features. Findings STR was reported in 20% (226/1110) of patients. Non-WNT (p = 0.047), children <5 years at diagnosis (p = 0.021) and metastatic patients (p < 0.0001) were significantly more likely to have a STR. In cohort-wide analysis, STR was associated with worse survival in univariable analysis (p < 0.0001). Examination of specific disease contexts showed that STR was prognostic in univariate analysis for patients receiving cranio-spinal irradiation (CSI) and chemotherapy (p = 0.016) and for patients with Group 3 tumours receiving CSI (p = 0.039). STR was not independently prognostic in multivariable analyses; outcomes for patients who have STR as their only risk-feature are as per standard-risk disease. Specifically, STR was not prognostic in non-metastatic patients that received upfront CSI. Interpretation In a cohort of 1100 molecularly characterised medulloblastoma patients, STR (n = 226) predicted significantly lower OS in univariable analysis, but was not an independent prognostic factor. Our data suggest that maximal safe resection can continue to be carried out for patients with medulloblastoma and suggest STR should not inform patient management when observed as a sole, isolated risk-feature. Funding Cancer Research UK, Newcastle Hospitals Charity, Children's Cancer North, British Division of the International Academy of Pathology.
Collapse
Affiliation(s)
- Claire Keeling
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Simon Davies
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Jack Goddard
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Vijay Ramaswamy
- Neuro-oncology Section, Division of Hematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edward C. Schwalbe
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
- Great North Children's Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Debbie Hicks
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Steven C. Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Mehta A, Yadav M, Shilpakar SK, Bohara S, Yadav D. Extra-axial cerebellopontine angle nodular medulloblastoma mimicking meningioma: a case report with literature review. Ann Med Surg (Lond) 2024; 86:1669-1675. [PMID: 38463083 PMCID: PMC10923268 DOI: 10.1097/ms9.0000000000001713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 03/12/2024] Open
Abstract
Introduction Medulloblastoma, a highly malignant embryonal tumor predominantly found in the pediatric population, typically arises within the cerebellum. This case report holds particular importance due to the rarity of medulloblastoma within the cerebellopontine angle (CPA). The distinct anatomical challenge posed by the CPA complex neurovascular structures, along with the absence of pathognomonic clinical or radiographic features, highlights the unique diagnostic and management challenge of this case. Case presentation A 5-year-old boy presented with mild, progressively worsening headaches on CT/MRI imaging, which revealed a solid mass in the left CPA. Radiologically, the lesion closely resembled a CPA meningioma. The patient underwent a left retrosigmoid suboccipital craniectomy, utilizing a modified park bench position and careful burrhole creation. Intraoperatively, the tumor exhibited well-defined margins, firm adherence to cranial nerves, and complex tissue characteristics. Postoperatively, histopathological analysis identified nodular medulloblastoma, WHO grade IV, with immunohistochemical markers confirming its subtype. Discussion This case highlights the critical role of surgical intervention in addressing rare tumors, emphasizing the need for multidisciplinary collaboration in both diagnosis and management to achieve a favorable outcome. Uncommon tumor locations, such as the CPA, require tailored approaches, and the utilization of advanced diagnostic techniques, including immunohistochemistry, aids in accurate subtype classification. Conclusion This case highlights the critical role of surgical intervention in addressing rare tumors, emphasizing the need for multidisciplinary collaboration in both diagnosis and management to achieve a favorable outcome.
Collapse
Affiliation(s)
| | - Manish Yadav
- Maharajgunj Medical Campus, Tribhuvan University, Nepal
| | | | - Sandip Bohara
- Department of Neurosurgery, Tribhuvan University Teaching Hospital
| | - Digraj Yadav
- Maharajgunj Medical Campus, Tribhuvan University, Nepal
| |
Collapse
|
8
|
Sheng H, Li H, Zeng H, Zhang B, Lu Y, Liu X, Xu Z, Zhang J, Zhang L. Heterogeneity and tumoral origin of medulloblastoma in the single-cell era. Oncogene 2024; 43:839-850. [PMID: 38355808 PMCID: PMC10942862 DOI: 10.1038/s41388-024-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Medulloblastoma is one of the most common malignant pediatric brain tumors derived from posterior fossa. The current treatment includes maximal safe surgical resection, radiotherapy, whole cranio-spinal radiation and adjuvant with chemotherapy. However, it can only limitedly prolong the survival time with severe side effects and relapse. Defining the intratumoral heterogeneity, cellular origin and identifying the interaction network within tumor microenvironment are helpful for understanding the mechanisms of medulloblastoma tumorigenesis and relapse. Due to technological limitations, the mechanisms of cellular heterogeneity and tumor origin have not been fully understood. Recently, the emergence of single-cell technology has provided a powerful tool for achieving the goal of understanding the mechanisms of tumorigenesis. Several studies have demonstrated the intratumoral heterogeneity and tumor origin for each subtype of medulloblastoma utilizing the single-cell RNA-seq, which has not been uncovered before using conventional technologies. In this review, we present an overview of the current progress in understanding of cellular heterogeneity and tumor origin of medulloblastoma and discuss novel findings in the age of single-cell technologies.
Collapse
Affiliation(s)
- Hui Sheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haotai Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Han Zeng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xixi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwen Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liguo Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Mani S, Chatterjee A, Dasgupta A, Shirsat N, Pawar A, Epari S, Sahay A, Sahu A, Moiyadi A, Prasad M, Chinnaswamy G, Gupta T. Clinico-Radiological Outcomes in WNT-Subgroup Medulloblastoma. Diagnostics (Basel) 2024; 14:358. [PMID: 38396397 PMCID: PMC10888131 DOI: 10.3390/diagnostics14040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Medulloblastoma (MB) comprises four broad molecular subgroups, namely wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4, respectively, with subgroup-specific developmental origins, unique genetic profiles, distinct clinico-demographic characteristics, and diverse clinical outcomes. This is a retrospective audit of clinical outcomes in molecularly confirmed WNT-MB patients treated with maximal safe resection followed by postoperative standard-of-care risk-stratified adjuvant radio(chemo)therapy at a tertiary-care comprehensive cancer centre. Of the 74 WNT-MB patients registered in a neuro-oncology unit between 2004 to 2020, 7 patients accrued on a prospective clinical trial of treatment deintensification were excluded, leaving 67 patients that constitute the present study cohort. The median age at presentation was 12 years, with a male preponderance (2:1). The survival analysis was restricted to 61 patients and excluded 6 patients (1 postoperative mortality plus 5 without adequate details of treatment or outcomes). At a median follow-up of 72 months, Kaplan-Meier estimates of 5-year progression-free survival and overall survival were 87.7% and 91.2%, respectively. Traditional high-risk features, large residual tumour (≥1.5 cm2), and leptomeningeal metastases (M+) did not significantly impact upon survival in this molecularly characterized WNT-MB cohort treated with risk-stratified contemporary multimodality therapy. The lack of a prognostic impact of conventional high-risk features suggests the need for refined risk stratification and potential deintensification of therapy.
Collapse
Affiliation(s)
- Shakthivel Mani
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (S.M.); (A.C.); (A.D.)
| | - Abhishek Chatterjee
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (S.M.); (A.C.); (A.D.)
| | - Archya Dasgupta
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (S.M.); (A.C.); (A.D.)
| | - Neelam Shirsat
- Neuro-Oncology Laboratory, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India;
| | - Akash Pawar
- Clinical Research Secretariat, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India;
| | - Sridhar Epari
- Department of Pathology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (S.E.); (A.S.)
| | - Ayushi Sahay
- Department of Pathology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (S.E.); (A.S.)
| | - Arpita Sahu
- Department of Radio-Diagnosis, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India;
| | - Aliasgar Moiyadi
- Department of Neurosurgery, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India;
| | - Maya Prasad
- Department of Pediatric Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (M.P.); (G.C.)
| | - Girish Chinnaswamy
- Department of Pediatric Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (M.P.); (G.C.)
| | - Tejpal Gupta
- Department of Radiation Oncology, ACTREC/TMH, Tata Memorial Centre, Homi Bhabha National Institute, Kharghar, Navi Mumbai 410210, India; (S.M.); (A.C.); (A.D.)
| |
Collapse
|
10
|
Wagner MW, Jabehdar Maralani P, Bennett J, Nobre L, Lim-Fat MJ, Dirks P, Laughlin S, Tabori U, Ramaswamy V, Hawkins C, Ertl-Wagner BB. Brain Tumor Imaging in Adolescents and Young Adults: 2021 WHO Updates for Molecular-based Tumor Types. Radiology 2024; 310:e230777. [PMID: 38349246 DOI: 10.1148/radiol.230777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Published in 2021, the fifth edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS) introduced new molecular criteria for tumor types that commonly occur in either pediatric or adult age groups. Adolescents and young adults (AYAs) are at the intersection of adult and pediatric care, and both pediatric-type and adult-type CNS tumors occur at that age. Mortality rates for AYAs with CNS tumors have increased by 0.6% per year for males and 1% per year for females from 2007 to 2016. To best serve patients, it is crucial that both pediatric and adult radiologists who interpret neuroimages are familiar with the various pediatric- and adult-type brain tumors and their typical imaging morphologic characteristics. Gliomas account for approximately 80% of all malignant CNS tumors in the AYA age group, with the most common types observed being diffuse astrocytic and glioneuronal tumors. Ependymomas and medulloblastomas also occur in the AYA population but are seen less frequently. Importantly, biologic behavior and progression of distinct molecular subgroups of brain tumors differ across ages. This review discusses newly added or revised gliomas in the fifth edition of the CNS WHO classification, as well as other CNS tumor types common in the AYA population.
Collapse
Affiliation(s)
- Matthias W Wagner
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Pejman Jabehdar Maralani
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Julie Bennett
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Liana Nobre
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Mary Jane Lim-Fat
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Peter Dirks
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Suzanne Laughlin
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Uri Tabori
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Vijay Ramaswamy
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Cynthia Hawkins
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Birgit B Ertl-Wagner
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| |
Collapse
|
11
|
Rousseau J, Bennett J, Lim-Fat MJ. Brain Tumors in Adolescents and Young Adults: A Review. Semin Neurol 2023; 43:909-928. [PMID: 37949116 DOI: 10.1055/s-0043-1776775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Brain tumors account for the majority of cancer-related deaths in adolescents and young adults (AYAs), defined as individuals aged 15 to 39. AYAs constitute a distinct population in which both pediatric- and adult-type central nervous system (CNS) tumors can be observed. Clinical manifestations vary depending on tumor location and often include headaches, seizures, focal neurological deficits, and signs of increased intracranial pressure. With the publication of the updated World Health Organization CNS tumor classification in 2021, diagnoses have been redefined to emphasize key molecular alterations. Gliomas represent the majority of malignant brain tumors in this age group. Glioneuronal and neuronal tumors are associated with longstanding refractory epilepsy. The classification of ependymomas and medulloblastomas has been refined, enabling better identification of low-risk tumors that could benefit from treatment de-escalation strategies. Owing to their midline location, germ cell tumors often present with oculomotor and visual alterations as well as endocrinopathies. The management of CNS tumors in AYA is often extrapolated from pediatric and adult guidelines, and generally consists of a combination of surgical resection, radiation therapy, and systemic therapy. Ongoing research is investigating multiple agents targeting molecular alterations, including isocitrate dehydrogenase inhibitors, SHH pathway inhibitors, and BRAF inhibitors. AYA patients with CNS tumors should be managed by multidisciplinary teams and counselled regarding fertility preservation, psychosocial comorbidities, and risks of long-term comorbidities. There is a need for further efforts to design clinical trials targeting CNS tumors in the AYA population.
Collapse
Affiliation(s)
- Julien Rousseau
- Division of Neurology, Department of Medicine, Universite de Montreal, Montreal, Quebec, Canada
| | - Julie Bennett
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Canadian AYA Neuro-Oncology Network (CANON), Toronto, Ontario, Canada
| | - Mary Jane Lim-Fat
- Canadian AYA Neuro-Oncology Network (CANON), Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Park JW, Lee K, Kim EE, Kim SI, Park SH. Brain Tumor Classification by Methylation Profile. J Korean Med Sci 2023; 38:e356. [PMID: 37935168 PMCID: PMC10627723 DOI: 10.3346/jkms.2023.38.e356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
The goal of the methylation classifier in brain tumor classification is to accurately classify tumors based on their methylation profiles. Accurate brain tumor diagnosis is the first step for healthcare professionals to predict tumor prognosis and establish personalized treatment plans for patients. The methylation classifier can be used to perform classification on tumor samples with diagnostic difficulties due to ambiguous histology or mismatch between histopathology and molecular signatures, i.e., not otherwise specified (NOS) cases or not elsewhere classified (NEC) cases, aiding in pathological decision-making. Here, the authors elucidate upon the application of a methylation classifier as a tool to mitigate the inherent complexities associated with the pathological evaluation of brain tumors, even when pathologists are experts in histopathological diagnosis and have access to enough molecular genetic information. Also, it should be emphasized that methylome cannot classify all types of brain tumors, and it often produces erroneous matches even with high matching scores, so, excessive trust is prohibited. The primary issue is the considerable difficulty in obtaining reference data regarding the methylation profile of each type of brain tumor. This challenge is further amplified when dealing with recently identified novel types or subtypes of brain tumors, as such data are not readily accessible through open databases or authors of publications. An additional obstacle arises from the fact that methylation classifiers are primarily research-based, leading to the unavailability of charging patients. It is important to note that the application of methylation classifiers may require specialized laboratory techniques and expertise in DNA methylation analysis.
Collapse
Affiliation(s)
- Jin Woo Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Kwanghoon Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Eric Eunshik Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Ik Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Neuroscience, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
13
|
van den Bent MJ, Geurts M, French PJ, Smits M, Capper D, Bromberg JEC, Chang SM. Primary brain tumours in adults. Lancet 2023; 402:1564-1579. [PMID: 37738997 DOI: 10.1016/s0140-6736(23)01054-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 09/24/2023]
Abstract
The most frequent adult-type primary CNS tumours are diffuse gliomas, but a large variety of rarer CNS tumour types exists. The classification of these tumours is increasingly based on molecular diagnostics, which is reflected in the extensive molecular foundation of the recent WHO 2021 classification of CNS tumours. Resection as extensive as is safely possible is the cornerstone of treatment in most gliomas, and is now also recommended early in the treatment of patients with radiological evidence of histologically low-grade tumours. For the adult-type diffuse glioma, standard of care is a combination of radiotherapy and chemotherapy. Although treatment with curative intent is not available, combined modality treatment has resulted in long-term survival (>10-20 years) for some patients with isocitrate dehydrogenase (IDH) mutant tumours. Other rarer tumours require tailored approaches, best delivered in specialised centres. Targeted treatments based on molecular alterations still only play a minor role in the treatment landscape of adult-type diffuse glioma, and today are mainly limited to patients with tumours with BRAFV600E (ie, Val600Glu) mutations. Immunotherapy for CNS tumours is still in its infancy, and so far, trials with checkpoint inhibitors and vaccination studies have not shown improvement in patient outcomes in glioblastoma. Current research is focused on improving our understanding of the immunosuppressive tumour environment, the molecular heterogeneity of tumours, and the role of tumour microtube network connections between cells in the tumour microenvironment. These factors all appear to play a role in treatment resistance, and indicate that novel approaches are needed to further improve outcomes of patients with CNS tumours.
Collapse
Affiliation(s)
- Martin J van den Bent
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands.
| | - Marjolein Geurts
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands
| | - Pim J French
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands; Medical Delta, Delft, Netherlands
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium, Berlin, Germany; German Cancer Research Center, Heidelberg, Germany
| | - Jacoline E C Bromberg
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands
| | - Susan M Chang
- Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Wang Q, Xin X, Dai Q, Sun M, Chen J, Mostafavi E, Shen Y, Li X. Medulloblastoma targeted therapy: From signaling pathways heterogeneity and current treatment dilemma to the recent advances in development of therapeutic strategies. Pharmacol Ther 2023; 250:108527. [PMID: 37703952 DOI: 10.1016/j.pharmthera.2023.108527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Medulloblastoma (MB) is a major pediatric malignant brain tumor that arises in the cerebellum. MB tumors exhibit highly heterogeneous driven by diverse genetic alterations and could be divided into four major subgroups based on their different biological drivers and molecular features (Wnt, Sonic hedgehog (Shh), group 3, and group 4 MB). Even though the therapeutic strategies for each MB subtype integrate their pathogenesis and were developed to focus on their specific target sites, the unexpected drug non-selective cytotoxicity, low drug accumulation in the brain, and complexed MB tumor microenvironment still be huge obstacles to achieving satisfied MB therapeutic efficiency. This review discussed the current advances in modern MB therapeutic strategy development. Through the recent advances in knowledge of the origin, molecular pathogenesis of MB subtypes and their current therapeutic barriers, we particularly reviewed the current development in advanced MB therapeutic strategy committed to overcome MB treatment obstacles, focusing on novel signaling pathway targeted therapeutic agents and their combination discovery, advanced drug delivery systems design, and MB immunotherapy strategy development.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qihao Dai
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Mengjuan Sun
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinhua Chen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yan Shen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
15
|
Neth BJ, Raghunathan A, Kizilbash SH, Uhm JH, Breen WG, Johnson DR, Daniels DJ, Sener U, Carabenciov ID, Campian JL, Khatua S, Mahajan A, Ruff MW. Management and Long-term Outcomes of Adults With Medulloblastoma: A Single-Center Experience. Neurology 2023; 101:e1256-e1271. [PMID: 37524533 PMCID: PMC10516280 DOI: 10.1212/wnl.0000000000207631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/30/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Medulloblastomas are embryonal tumors predominantly affecting children. Recognition of molecularly defined subgroups has advanced management. Factors influencing the management and prognosis of adult patients with medulloblastoma remains poorly understood. METHODS We examined the management, prognostic factors, and, when possible, molecular subgroup differences (subset) in adult patients (aged 18 years or older) with medulloblastoma from our center (specialty Neuro-Oncology clinic within a large academic practice) diagnosed between 1992 and 2020. Molecular subtyping corresponding to the 2021 WHO Classification was performed. Kaplan-Meier estimates (with log-rank test) were performed for univariate survival analysis with Cox regression used for multivariate analyses. RESULTS We included 76 adult patients with medulloblastoma (62% male), with a median age of 32 years at diagnosis (range: 18-66) and median follow-up of 7.7 years (range: 0.6-27). A subset of 58 patients had molecular subgroup characterization-37 SHH-activated, 12 non-WNT/non-SHH, and 9 WNT-activated. Approximately 67% underwent gross total resection, 75% received chemotherapy at diagnosis, and 97% received craniospinal irradiation with boost. The median overall survival (OS) for the whole cohort was 14.8 years. The 2-, 5-, and 10-year OS rates were 93% (95% CI 88-99), 86% (78-94), and 64% (53-78), respectively. Survival was longer for younger patients (aged 30 years or older: 9.9 years; younger than 30 years: estimated >15.4 years; log-rank p < 0.001). There was no survival difference by molecular subgroup or extent of resection. Only age at diagnosis remained significant in multivariate survival analyses. DISCUSSION We report one of the largest retrospective cohorts in adult patients with medulloblastoma with molecular subtyping. Survival and molecular subgroup frequencies were similar to prior reports. Survival was better for adult patients younger than 30 years at diagnosis and was not significantly different by molecular subgroup or management characteristics (extent of resection, RT characteristics, or chemotherapy timing or regimen).
Collapse
Affiliation(s)
- Bryan J Neth
- From the Departments of Neurology (B.J.N., J.H.U., D.R.J., U.S., I.D.C., M.W.R.), Pathology (A.R.), Medical Oncology (S.H.K., J.H.U., U.S., I.D.C., J.L.C., M.W.R.), Radiation Oncology (W.G.B., A.M.), Radiology (D.R.J.), Neurosurgery (D.J.D.), and Pediatrics (S.K.), Mayo Clinic, Rochester, MN
| | - Aditya Raghunathan
- From the Departments of Neurology (B.J.N., J.H.U., D.R.J., U.S., I.D.C., M.W.R.), Pathology (A.R.), Medical Oncology (S.H.K., J.H.U., U.S., I.D.C., J.L.C., M.W.R.), Radiation Oncology (W.G.B., A.M.), Radiology (D.R.J.), Neurosurgery (D.J.D.), and Pediatrics (S.K.), Mayo Clinic, Rochester, MN
| | - Sani H Kizilbash
- From the Departments of Neurology (B.J.N., J.H.U., D.R.J., U.S., I.D.C., M.W.R.), Pathology (A.R.), Medical Oncology (S.H.K., J.H.U., U.S., I.D.C., J.L.C., M.W.R.), Radiation Oncology (W.G.B., A.M.), Radiology (D.R.J.), Neurosurgery (D.J.D.), and Pediatrics (S.K.), Mayo Clinic, Rochester, MN
| | - Joon H Uhm
- From the Departments of Neurology (B.J.N., J.H.U., D.R.J., U.S., I.D.C., M.W.R.), Pathology (A.R.), Medical Oncology (S.H.K., J.H.U., U.S., I.D.C., J.L.C., M.W.R.), Radiation Oncology (W.G.B., A.M.), Radiology (D.R.J.), Neurosurgery (D.J.D.), and Pediatrics (S.K.), Mayo Clinic, Rochester, MN
| | - William G Breen
- From the Departments of Neurology (B.J.N., J.H.U., D.R.J., U.S., I.D.C., M.W.R.), Pathology (A.R.), Medical Oncology (S.H.K., J.H.U., U.S., I.D.C., J.L.C., M.W.R.), Radiation Oncology (W.G.B., A.M.), Radiology (D.R.J.), Neurosurgery (D.J.D.), and Pediatrics (S.K.), Mayo Clinic, Rochester, MN
| | - Derek R Johnson
- From the Departments of Neurology (B.J.N., J.H.U., D.R.J., U.S., I.D.C., M.W.R.), Pathology (A.R.), Medical Oncology (S.H.K., J.H.U., U.S., I.D.C., J.L.C., M.W.R.), Radiation Oncology (W.G.B., A.M.), Radiology (D.R.J.), Neurosurgery (D.J.D.), and Pediatrics (S.K.), Mayo Clinic, Rochester, MN
| | - David J Daniels
- From the Departments of Neurology (B.J.N., J.H.U., D.R.J., U.S., I.D.C., M.W.R.), Pathology (A.R.), Medical Oncology (S.H.K., J.H.U., U.S., I.D.C., J.L.C., M.W.R.), Radiation Oncology (W.G.B., A.M.), Radiology (D.R.J.), Neurosurgery (D.J.D.), and Pediatrics (S.K.), Mayo Clinic, Rochester, MN
| | - Ugur Sener
- From the Departments of Neurology (B.J.N., J.H.U., D.R.J., U.S., I.D.C., M.W.R.), Pathology (A.R.), Medical Oncology (S.H.K., J.H.U., U.S., I.D.C., J.L.C., M.W.R.), Radiation Oncology (W.G.B., A.M.), Radiology (D.R.J.), Neurosurgery (D.J.D.), and Pediatrics (S.K.), Mayo Clinic, Rochester, MN
| | - Ivan D Carabenciov
- From the Departments of Neurology (B.J.N., J.H.U., D.R.J., U.S., I.D.C., M.W.R.), Pathology (A.R.), Medical Oncology (S.H.K., J.H.U., U.S., I.D.C., J.L.C., M.W.R.), Radiation Oncology (W.G.B., A.M.), Radiology (D.R.J.), Neurosurgery (D.J.D.), and Pediatrics (S.K.), Mayo Clinic, Rochester, MN
| | - Jian L Campian
- From the Departments of Neurology (B.J.N., J.H.U., D.R.J., U.S., I.D.C., M.W.R.), Pathology (A.R.), Medical Oncology (S.H.K., J.H.U., U.S., I.D.C., J.L.C., M.W.R.), Radiation Oncology (W.G.B., A.M.), Radiology (D.R.J.), Neurosurgery (D.J.D.), and Pediatrics (S.K.), Mayo Clinic, Rochester, MN
| | - Soumen Khatua
- From the Departments of Neurology (B.J.N., J.H.U., D.R.J., U.S., I.D.C., M.W.R.), Pathology (A.R.), Medical Oncology (S.H.K., J.H.U., U.S., I.D.C., J.L.C., M.W.R.), Radiation Oncology (W.G.B., A.M.), Radiology (D.R.J.), Neurosurgery (D.J.D.), and Pediatrics (S.K.), Mayo Clinic, Rochester, MN
| | - Anita Mahajan
- From the Departments of Neurology (B.J.N., J.H.U., D.R.J., U.S., I.D.C., M.W.R.), Pathology (A.R.), Medical Oncology (S.H.K., J.H.U., U.S., I.D.C., J.L.C., M.W.R.), Radiation Oncology (W.G.B., A.M.), Radiology (D.R.J.), Neurosurgery (D.J.D.), and Pediatrics (S.K.), Mayo Clinic, Rochester, MN
| | - Michael W Ruff
- From the Departments of Neurology (B.J.N., J.H.U., D.R.J., U.S., I.D.C., M.W.R.), Pathology (A.R.), Medical Oncology (S.H.K., J.H.U., U.S., I.D.C., J.L.C., M.W.R.), Radiation Oncology (W.G.B., A.M.), Radiology (D.R.J.), Neurosurgery (D.J.D.), and Pediatrics (S.K.), Mayo Clinic, Rochester, MN.
| |
Collapse
|
16
|
Manfreda L, Rampazzo E, Persano L, Viola G, Bortolozzi R. Surviving the hunger games: Metabolic reprogramming in medulloblastoma. Biochem Pharmacol 2023; 215:115697. [PMID: 37481140 DOI: 10.1016/j.bcp.2023.115697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Medulloblastoma is a highly malignant pediatric brain tumor characterized by its aggressive nature and limited treatment options. Metabolic changes have recently emerged as key factors in the development, progression, and response to therapy in various types of cancer. Cancer cells exhibit remarkable adaptability by modulating glucose, lipids, amino acids, and nucleotide metabolism to survive in nutrient- and oxygen-deprived environments. Although medulloblastoma has been extensively studied from a genomic perspective, leading to the identification of four subgroups and their respective subcategories, the investigation of its metabolic phenotype has remained relatively understudied. This review focus on the available literature, aiming to summarize the current knowledge about the main metabolic pathways that are deregulated in medulloblastoma tumors, while emphasizing the controversial aspects and the progress that is yet to be made. Furthermore, we underscored the insights gained so far regarding the impact of metabolism on the development of drug resistance in medulloblastoma and the therapeutic strategies employed to target specific metabolic pathways.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Elena Rampazzo
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Luca Persano
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Giampietro Viola
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy
| | - Roberta Bortolozzi
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Pediatric Research Institute, Padova, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
17
|
Liu G, Bu C, Guo G, Zhang Z, Sheng Z, Deng K, Wu S, Xu S, Bu Y, Gao Y, Wang M, Liu G, Kong L, Li T, Li M, Bu X. Genomic alterations of oligodendrogliomas at distant recurrence. Cancer Med 2023; 12:17171-17183. [PMID: 37533228 PMCID: PMC10501240 DOI: 10.1002/cam4.6327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Oligodendroglioma is known for its relatively better prognosis and responsiveness to radiotherapy and chemotherapy. However, little is known about the evolution of genetic changes as oligodendroglioma progresses. METHODS In this study, we evaluated gene evolution invivo during tumor progression based on deep whole-genome sequencing data (ctDNA). We analyzed longitudinal genomic data from six patients during tumor evolution, of which five patients developed distant recurrence. RESULTS Whole-exome sequencing demonstrated that the rate of shared mutations between the primary and recurrent samples was relatively low. In two cases, even well-known major driver mutations in CIC and FUBP1 that were detected in primary tumors were not detected in the relapse samples. Among these cases, two patients had a conversion from the IDH mutation in the originating state to the IDH1 wild state during the process of gene evolution under chemotherapy treatment, indicating that the cell phenotype and genetic characteristics of oligodendroglioma may change during tumor evolution. Two patients received long-term temozolomide (TMZ) treatment before the operation, and we found that recurrence tumors harbored mutations in the PI3K/AKT and Sonic hedgehog (SHh) signaling pathways. Hypermutation occurred with mutations in MMR genes in one patient, contributing to the rapid progression of the tumor. CONCLUSION Oligodendroglioma displayed great spatial and temporal heterogeneity during tumor evolution. The PI3K/AKT and SHh signaling pathways may play an important role in promoting treatment resistance and distant relapse during oligodendroglioma evolution. In addition, there was a tendency to increase the degree of tumor malignancy during evolution. Distant recurrence may be a later event duringoligodendroglioma progression. CLINICALTRIALS gov, Identifier: NCT05512325.
Collapse
Affiliation(s)
- Guanzheng Liu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Chaojie Bu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Guangzhong Guo
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Zhiyue Zhang
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Zhiyuan Sheng
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Kaiyuan Deng
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Shuang Wu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Sensen Xu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Yage Bu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Yushuai Gao
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Meiyun Wang
- Department of RadiologyHenan Provincial People's HospitalZhengzhouChina
| | - Gang Liu
- Department of Center for Clinical Single Cell Biomedicine, Department of Oncology, Clinical Research Center, Henan Provincial People's HospitalZhengzhou University People's HospitalZhengzhouChina
| | - Lingfei Kong
- Department of PathologyHenan Provincial People's HospitalZhengzhouChina
| | - Tianxiao Li
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Ming Li
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| | - Xingyao Bu
- Department of NeurosurgeryZhengzhou University People's Hospital, Henan Provincial People's HospitalZhengzhouChina
- Juha International Central Laboratory of NeurosurgeryHenan Provincial People's HospitalZhengzhouChina
| |
Collapse
|
18
|
Vuu YM, Kadar Shahib A, Rastegar M. The Potential Therapeutic Application of Simvastatin for Brain Complications and Mechanisms of Action. Pharmaceuticals (Basel) 2023; 16:914. [PMID: 37513826 PMCID: PMC10385015 DOI: 10.3390/ph16070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Statins are common drugs that are clinically used to reduce elevated plasma cholesterol levels. Based on their solubility, statins are considered to be either hydrophilic or lipophilic. Amongst them, simvastatin has the highest lipophilicity to facilitate its ability to cross the blood-brain barrier. Recent studies have suggested that simvastatin could be a promising therapeutic option for different brain complications and diseases ranging from brain tumors (i.e., medulloblastoma and glioblastoma) to neurological disorders (i.e., Alzheimer's disease, Parkinson's disease, and Huntington's disease). Specific mechanisms of disease amelioration, however, are still unclear. Independent studies suggest that simvastatin may reduce the risk of developing certain neurodegenerative disorders. Meanwhile, other studies point towards inducing cell death in brain tumor cell lines. In this review, we outline the potential therapeutic effects of simvastatin on brain complications and review the clinically relevant molecular mechanisms in different cases.
Collapse
Affiliation(s)
| | | | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
19
|
Manfreda L, Rampazzo E, Persano L. Wnt Signaling in Brain Tumors: A Challenging Therapeutic Target. BIOLOGY 2023; 12:biology12050729. [PMID: 37237541 DOI: 10.3390/biology12050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
The involvement of Wnt signaling in normal tissue homeostasis and disease has been widely demonstrated over the last 20 years. In particular, dysregulation of Wnt pathway components has been suggested as a relevant hallmark of several neoplastic malignancies, playing a role in cancer onset, progression, and response to treatments. In this review, we summarize the current knowledge on the instructions provided by Wnt signaling during organogenesis and, particularly, brain development. Moreover, we recapitulate the most relevant mechanisms through which aberrant Wnt pathway activation may impact on brain tumorigenesis and brain tumor aggressiveness, with a particular focus on the mutual interdependency existing between Wnt signaling components and the brain tumor microenvironment. Finally, the latest anti-cancer therapeutic approaches employing the specific targeting of Wnt signaling are extensively reviewed and discussed. In conclusion, here we provide evidence that Wnt signaling, due to its pleiotropic involvement in several brain tumor features, may represent a relevant target in this context, although additional efforts will be needed to: (i) demonstrate the real clinical impact of Wnt inhibition in these tumors; (ii) overcome some still unsolved concerns about the potential systemic effects of such approaches; (iii) achieve efficient brain penetration.
Collapse
Affiliation(s)
- Lorenzo Manfreda
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Elena Rampazzo
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| | - Luca Persano
- Department of Women and Children's Health, University of Padova, Via Giustininani, 3, 35128 Padova, Italy
- Pediatric Research Institute, Corso Stati Uniti, 4, 35127 Padova, Italy
| |
Collapse
|
20
|
Porter AB, Wen PY, Polley MYC. Molecular Profiling in Neuro-Oncology: Where We Are, Where We're Heading, and How We Ensure Everyone Can Come Along. Am Soc Clin Oncol Educ Book 2023; 43:e389322. [PMID: 37167580 DOI: 10.1200/edbk_389322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Advances in molecular profiling have led to improved understanding of glioma heterogeneity. Results have been used to inform diagnostic classification and targeted treatment strategies. Validation of these tests is necessary in the development of biomarkers that can aid in treatment decision, allowing for personalized medicine in neuro-oncologic diseases. Although not all populations have benefitted equally from awareness of and access to testing, opportunities arise regarding incorporating this testing into the standard of care for patients with glioma.
Collapse
Affiliation(s)
- Alyx B Porter
- Mayo Clinic and Mayo Clinic Alix School of Medicine, Phoenix, AZ
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Mei-Yin C Polley
- University of Chicago Biological Sciences, Department of Public Health Sciences, Chicago, IL
| |
Collapse
|
21
|
Jung S, Kim IY, Moon KS, Jung TY, Jang WY, Kim YJ, Lee TK, Park SJ, Lim SH. Distinct Specialized Center of Excellence, the Story of Hwasun Neurosurgery at Chonnam National University Hwasun Hospital. Brain Tumor Res Treat 2023; 11:94-102. [PMID: 37151151 PMCID: PMC10172013 DOI: 10.14791/btrt.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 05/09/2023] Open
Abstract
The paper provides a comprehensive overview of the growth and development of Hwasun Neurosurgery at Chonnam National University Hwasun Hospital over the past 18 years. As the first brain tumor center in Korea when it was established in April 2004, Hwasun Neurosurgery has since become one of the leading institutions in brain tumor education and research in the country. Its impressive clinical and basic research capabilities, dedication to professional education, and numerous academic achievements have all contributed to its reputation as a top-tier institution. We hope this will become a useful guide for other brain tumor centers or educational institutions by sharing the story of Hwasun Neurosurgery.
Collapse
Affiliation(s)
- Shin Jung
- Department of Neurosurgery, Chonnam National University Medical School & Chonnam National University Hwasun Hospital, Hwasun, Korea.
| | - In-Young Kim
- Department of Neurosurgery, Chonnam National University Medical School & Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Medical School & Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Medical School & Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Woo-Youl Jang
- Department of Neurosurgery, Chonnam National University Medical School & Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Yeong Jin Kim
- Department of Neurosurgery, Chonnam National University Medical School & Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Tae-Kyu Lee
- Department of Neurosurgery, Chonnam National University Medical School & Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sue Jee Park
- Department of Neurosurgery, Chonnam National University Medical School & Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sa-Hoe Lim
- Department of Neurosurgery, Chonnam National University Medical School & Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
22
|
Liserre R, Branzoli F, Pagani F, Gryzik M, Cominelli M, Miele E, Marjańska M, Doglietto F, Poliani PL. Exceptionally rare IDH1-mutant adult medulloblastoma with concurrent GNAS mutation revealed by in vivo magnetic resonance spectroscopy and deep sequencing. Acta Neuropathol Commun 2023; 11:47. [PMID: 36941703 PMCID: PMC10029199 DOI: 10.1186/s40478-023-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 03/23/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor occurring in childhood and rarely found in adults. Based on transcriptome profile, MB are currently classified into four major molecular groups reflecting a considerable biological heterogeneity: WNT-activated, SHH-activated, group 3 and group 4. Recently, DNA methylation profiling allowed the identification of additional subgroups within the four major molecular groups associated with different clinic-pathological and molecular features. Isocitrate dehydrogenase-1 and 2 (IDH1 and IDH2) mutations have been described in several tumors, including gliomas, while in MB are rarely reported and not routinely investigated. By means of magnetic resonance spectroscopy (MRS), we unequivocally assessed the presence the oncometabolite D-2-hydroxyglutarate (2HG), a marker of IDH1 and IDH2 mutations, in a case of adult MB. Immunophenotypical work-up and methylation profiling assigned the diagnosis of MB, subclass SHH-A, and molecular testing revealed the presence of the non-canonical somatic IDH1(p.R132C) mutation and an additional GNAS mutation, also rarely described in MB. To the best of our knowledge, this is the first reported case of MB simultaneously harboring both mutations. Of note, tumor exhibited a heterogeneous phenotype with a tumor component displaying glial differentiation, with robust GFAP expression, and a component with conventional MB features and selective presence of GNAS mutation, suggesting co-existence of two different major tumor subclones. These findings drew attention to the need for a deeper genetic characterization of MB, in order to get insights into their biology and improve stratification and clinical management of the patients. Moreover, our results underlined the importance of performing MRS for the identification of IDH mutations in non-glial tumors. The use of throughput molecular profiling analysis and advanced medical imaging will certainly increase the frequency with which tumor entities with rare molecular alterations will be identified. Whether these findings have any specific therapeutic implications or prognostic relevance requires further investigations.
Collapse
Affiliation(s)
- Roberto Liserre
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Francesca Branzoli
- Paris Brain Institute - Institut du Cerveau (ICM), Centre de NeuroImagerie de Recherche (CENIR), Paris, France
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
| | - Francesca Pagani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili 1, 25125, Brescia, BS, Italy
| | - Magdalena Gryzik
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili 1, 25125, Brescia, BS, Italy
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili 1, 25125, Brescia, BS, Italy
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Francesco Doglietto
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Catholic University School of Medicine, Rome, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, P.le Spedali Civili 1, 25125, Brescia, BS, Italy.
| |
Collapse
|
23
|
Bleeker L, Kouwenhoven MCM, de Heer I, Lissenberg-Witte BI, Gijsbers AH, Dubbink HJ, Kros JM, Gijtenbeek JMM, Kurt E, van der Rijt CCD, Swaak-Kragten AT, de Vos FY, van der Weide HL, French PJ, van den Bent MJ, Wesseling P, Bromberg JEC. Medulloblastoma in adults: evaluation of the Dutch society for neuro-oncology treatment protocol. J Neurooncol 2023; 162:225-235. [PMID: 36920679 PMCID: PMC10050065 DOI: 10.1007/s11060-023-04285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
PURPOSE Medulloblastoma is a rare tumor in adults. The objective of this nationwide, multicenter study was to evaluate the toxicity and efficacy of the Dutch treatment protocol for adult medulloblastoma patients. METHODS Adult medulloblastoma patients diagnosed between 2010 and 2018 were identified in the Dutch rare tumors registry or nationwide pathology database. Patients with intention to treat according to the national treatment protocol were included. Risk stratification was performed based on residual disease, histological subtype and extent of disease. All patients received postoperative radiotherapy [craniospinal axis 36 Gy/fossa posterior boost 19.8 Gy (14.4 Gy in case of metastases)]. High-risk patients received additional neoadjuvant (carboplatin-etoposide), concomitant (vincristine) and adjuvant chemotherapy (carboplatin-vincristine-cyclophosphamide) as far as feasible by toxicity. Methylation profiling, and additional next-generation sequencing in case of SHH-activated medulloblastomas, were performed. RESULTS Forty-seven medulloblastoma patients were identified, of whom 32 were treated according to the protocol. Clinical information and tumor material was available for 28 and 20 patients, respectively. The histological variants were mainly classic (43%) and desmoplastic medulloblastoma (36%). Sixteen patients (57%) were considered standard-risk and 60% were SHH-activated medulloblastomas. Considerable treatment reductions and delays in treatment occurred due to especially hematological and neurotoxicity. Only one high-risk patient could complete all chemotherapy courses. 5-years progression-free survival (PFS) and overall survival (OS) for standard-risk patients appeared worse than for high-risk patients (PFS 69% vs. 90%, OS 81% vs. 90% respectively), although this wasn't statistically significant. CONCLUSION Combined chemo-radiotherapy is a toxic regimen for adult medulloblastoma patients that may result in improved survival.
Collapse
Affiliation(s)
- L Bleeker
- Brain Tumor Center Amsterdam, Department of Neurology, Amsterdam UMC, Amsterdam, The Netherlands.
| | - M C M Kouwenhoven
- Brain Tumor Center Amsterdam, Department of Neurology, Amsterdam UMC, Amsterdam, The Netherlands
| | - I de Heer
- Brain Tumor Center, Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - B I Lissenberg-Witte
- Department of Epidemiology and Data Science, Amsterdam UMC, Amsterdam, The Netherlands
| | - A H Gijsbers
- The Nationwide Network and Registry of Histopathology and Cytopathology in the Netherlands (PALGA), Houten, The Netherlands
| | - H J Dubbink
- Brain Tumor Center, Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - J M Kros
- Brain Tumor Center, Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - J M M Gijtenbeek
- Department of Neurology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - E Kurt
- Department of Neurosurgery, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - C C D van der Rijt
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - A T Swaak-Kragten
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - F Y de Vos
- Cancer Center, Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H L van der Weide
- University Medical Center Groningen, Department of Radiation Oncology, University of Groningen, Groningen, The Netherlands
| | - P J French
- Brain Tumor Center, Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - M J van den Bent
- Brain Tumor Center, Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - P Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - J E C Bromberg
- Brain Tumor Center, Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Cai J, Wang Y, Wang X, Ai Z, Li T, Pu X, Yang X, Yao Y, He J, Cheng SY, Yu T, Liu C, Yue S. AMPK attenuates SHH subgroup medulloblastoma growth and metastasis by inhibiting NF-κB activation. Cell Biosci 2023; 13:15. [PMID: 36683064 PMCID: PMC9867863 DOI: 10.1186/s13578-023-00963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/13/2023] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Medulloblastoma (MB) is one of the most common malignant pediatric brain tumors. Metastasis and relapse are the leading causes of death in MB patients. The initiation of the SHH subgroup of MB (SHH-MB) is due to the aberrant activation of Sonic Hedgehog (Shh) signaling. However, the mechanisms for its metastasis are still unknown. RESULTS AMP-dependent protein kinase (AMPK) restrains the activation of Shh signaling pathway, thereby impeding the proliferation of SHH-MB cells. More importantly, AMPK also hinders the growth and metastasis of SHH-MB cells by regulating NF-κB signaling pathway. Furthermore, Vismodegib and TPCA-1, which block the Shh and NF-κB pathways, respectively, synergistically restrained the growth, migration, and invasion of SHH-MB cells. CONCLUSIONS This work demonstrates that AMPK functions through two signaling pathways, SHH-GLI1 and NF-κB. AMPK-NF-κB axis is a potential target for molecular therapy of SHH-MB, and the combinational blockade of NF-κB and Shh pathways confers synergy for SHH-MB therapy.
Collapse
Affiliation(s)
- Jing Cai
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Yue Wang
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Xinfa Wang
- grid.452511.6Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, 210093 China
| | - Zihe Ai
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Tianyuan Li
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Xiaohong Pu
- grid.428392.60000 0004 1800 1685Departments of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008 China
| | - Xin Yang
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Yixing Yao
- Department of Pathology, Suzhou Ninth People’s Hospital, Suzhou, 215200 China
| | - Junping He
- grid.452511.6Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, 210093 China
| | - Steven Y. Cheng
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166 China
| | - Tingting Yu
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Chen Liu
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China
| | - Shen Yue
- grid.89957.3a0000 0000 9255 8984Department of Medical Genetics, Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166 China ,grid.89957.3a0000 0000 9255 8984Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
25
|
Genetic alterations of TP53 and OTX2 indicate increased risk of relapse in WNT medulloblastomas. Acta Neuropathol 2022; 144:1143-1156. [PMID: 36181537 PMCID: PMC9637613 DOI: 10.1007/s00401-022-02505-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 01/26/2023]
Abstract
This study aimed to re-evaluate the prognostic impact of TP53 mutations and to identify specific chromosomal aberrations as possible prognostic markers in WNT-activated medulloblastoma (WNT-MB). In a cohort of 191 patients with WNT-MBs, mutations in CTNNB1, APC, and TP53 were analyzed by DNA sequencing. Chromosomal copy-number aberrations were assessed by molecular inversion probe technology (MIP), SNP6, or 850k methylation array hybridization. Prognostic impact was evaluated in 120 patients with follow-up data from the HIT2000 medulloblastoma trial or HIT registries. CTNNB1 mutations were present in 92.2%, and APC mutations in 6.8% of samples. One CTNNB1 wild-type tumor gained WNT activation due to homozygous FBXW7 deletion. Monosomy 6 was present in 78.6%, and more frequent in children than adults. 16.1% of tumor samples showed TP53 mutations, of those 60% with nuclear positivity for the p53 protein. Loss of heterozygosity at the TP53 locus (chromosome 17p13.1) was found in 40.7% (11/27) of TP53 mutant tumor samples and in 12.6% of TP53 wild-type cases (13/103). Patients with tumors harboring TP53 mutations showed significant worse progression-free survival (PFS; 5-year-PFS 68% versus 93%, p = 0.001), and were enriched for chromosomes 17p (p = 0.001), 10, and 13 losses. Gains of OTX2 (14q22.3) occurred in 38.9% of samples and were associated with poor PFS and OS (5-year-PFS 72% versus 93%, p = 0.017 resp. 5-year-OS 83% versus 97%, p = 0.006). Multivariable Cox regression analysis for PFS/OS identified both genetic alterations as independent prognostic markers. Our data suggest that patients with WNT-MB carrying TP53 mutations or OTX2 gains (58.1%) are at higher risk of relapse. Eligibility of these patients for therapy de-escalation trials needs to be debated.
Collapse
|
26
|
Lazow MA, Palmer JD, Fouladi M, Salloum R. Medulloblastoma in the Modern Era: Review of Contemporary Trials, Molecular Advances, and Updates in Management. Neurotherapeutics 2022; 19:1733-1751. [PMID: 35859223 PMCID: PMC9723091 DOI: 10.1007/s13311-022-01273-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Critical discoveries over the past two decades have transformed our understanding of medulloblastoma from a single entity into a clinically and biologically heterogeneous disease composed of at least four molecularly distinct subgroups with prognostically and therapeutically relevant genomic signatures. Contemporary clinical trials also have provided valuable insight guiding appropriate treatment strategies. Despite therapeutic and biological advances, medulloblastoma patients across the age spectrum experience tumor- and treatment-related morbidity and mortality. Using an updated risk stratification approach integrating both clinical and molecular features, ongoing research seeks to (1) cautiously reduce therapy and mitigate toxicity in low-average risk patients, and (2) thoughtfully intensify treatment with incorporation of novel, biologically guided agents for patients with high-risk disease. Herein, we review important historical and contemporary studies, discuss management updates, and summarize current knowledge of the biological landscape across unique pediatric, infant, young adult, and relapsed medulloblastoma populations.
Collapse
Affiliation(s)
- Margot A Lazow
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joshua D Palmer
- The Ohio State University College of Medicine, Columbus, OH, USA
- The James Cancer Centre, Ohio State University, Columbus, OH, USA
| | - Maryam Fouladi
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ralph Salloum
- Pediatric Brain Tumor Program, Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
27
|
Lim-Fat MJ, Macdonald M, Lapointe S, Climans SA, Cacciotti C, Chahal M, Perreault S, Tsang DS, Gao A, Yip S, Keith J, Bennett J, Ramaswamy V, Detsky J, Tabori U, Das S, Hawkins C. Molecular testing for adolescent and young adult central nervous system tumors: A Canadian guideline. Front Oncol 2022; 12:960509. [PMID: 36249063 PMCID: PMC9559579 DOI: 10.3389/fonc.2022.960509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
The 2021 World Health Organization (WHO) classification of CNS tumors incorporates molecular signatures with histology and has highlighted differences across pediatric vs adult-type CNS tumors. However, adolescent and young adults (AYA; aged 15–39), can suffer from tumors across this spectrum and is a recognized orphan population that requires multidisciplinary, specialized care, and often through a transition phase. To advocate for a uniform testing strategy in AYAs, pediatric and adult specialists from neuro-oncology, radiation oncology, neuropathology, and neurosurgery helped develop this review and testing framework through the Canadian AYA Neuro-Oncology Consortium. We propose a comprehensive approach to molecular testing in this unique population, based on the recent tumor classification and within the clinical framework of the provincial health care systems in Canada.
Collapse
Affiliation(s)
- Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- *Correspondence: Mary Jane Lim-Fat,
| | - Maria Macdonald
- Department of Oncology, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Sarah Lapointe
- Division of Neurology, Department of Medicine, Centre Hospitalier de l'Universite de Montreal, Montreal, QC, Canada
| | - Seth Andrew Climans
- Department of Oncology, London Health Sciences Centre, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Chantel Cacciotti
- Department of Paediatrics, Division of Pediatric Hematology/Oncology, London Health Sciences Centre, London, ON, Canada
| | - Manik Chahal
- Department of Medical Oncology, BC Cancer Vancouver Centre, Vancouver, BC, Canada
| | - Sebastien Perreault
- Department of Pediatrics, Division of Child Neurology, CHU Sainte-Justine, Montreal, QC, Canada
| | - Derek S. Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Andrew Gao
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Stephen Yip
- Department of Pathology & Laboratory Medicine, Faculty of Medicine, University of British Columbia, BC, Canada
| | - Julia Keith
- Department of Laboratory Medicine and Pathobiology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, ON, Canada
| | - Julie Bennett
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto ON, Canada
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto ON, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, ON, Canada
| | - Uri Tabori
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto ON, Canada
| | - Sunit Das
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto ON, Canada
| |
Collapse
|
28
|
Chen J, Kang Z, Li S, Wang C, Zheng X, Cai Z, Pan L, Chen F, Li W. Molecular profile reveals immune-associated markers of medulloblastoma for different subtypes. Front Immunol 2022; 13:911260. [PMID: 35967388 PMCID: PMC9367478 DOI: 10.3389/fimmu.2022.911260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
Medulloblastoma, a common pediatric malignant tumor, has been recognized to have four molecular subgroups [wingless (WNT), sonic hedgehog (SHH), group 3, group 4], which are defined by the characteristic gene transcriptomic and DNA methylomic profiles, and has distinct clinical features within each subgroup. The tumor immune microenvironment is integral in tumor initiation and progression and might be associated with therapeutic responses. However, to date, the immune infiltrative landscape of medulloblastoma has not yet been elucidated. Thus, we proposed MethylCIBERSORT to estimate the degree of immune cell infiltration and weighted correlation network analysis (WGCNA) to find modules of highly correlated genes. Synthesizing the hub genes in the protein–protein interaction (PPI) network and modules of the co-expression network, we identify three candidate biomarkers [GRB2-associated-binding protein 1 (GAB1), Abelson 1 (ABL1), and CXC motif chemokine receptor type 4 (CXCR4)] via the molecular profiles of medulloblastoma. Given this, we investigated the correlation between these three immune hub genes and immune checkpoint blockade response and the potential of drug prediction further. In addition, this study demonstrated a higher presence of endothelial cells and infiltrating immune cells in Group 3 tumor bulk. The above results will be conducive to better comprehending the immune-related pathogenesis and treatment of medulloblastoma.
Collapse
Affiliation(s)
- Jinyi Chen
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shenglan Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Zheng
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zehao Cai
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lexin Pan
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Feng Chen
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Franceschi E, Giannini C, Furtner J, Pajtler KW, Asioli S, Guzman R, Seidel C, Gatto L, Hau P. Adult Medulloblastoma: Updates on Current Management and Future Perspectives. Cancers (Basel) 2022; 14:cancers14153708. [PMID: 35954372 PMCID: PMC9367316 DOI: 10.3390/cancers14153708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Medulloblastoma (MB) is a malignant embryonal tumor of the posterior fossa belonging to the family of primitive neuro-ectodermic tumors (PNET). MB generally occurs in pediatric age, but in 14–30% of cases, it affects the adults, mostly below the age of 40, with an incidence of 0.6 per million per year, representing about 0.4–1% of tumors of the nervous system in adults. Unlike pediatric MB, robust prospective trials are scarce for the post-puberal population, due to the low incidence of MB in adolescent and young adults. Thus, current MB treatments for older patients are largely extrapolated from the pediatric experience, but the transferability and applicability of these paradigms to adults remain an open question. Adult MB is distinct from MB in children from a molecular and clinical perspective. Here, we review the management of adult MB, reporting the recent published literature focusing on the effectiveness of upfront chemotherapy, the development of targeted therapies, and the potential role of a reduced dose of radiotherapy in treating this disease.
Collapse
Affiliation(s)
- Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy
- Correspondence:
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 59005, USA;
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria;
| | - Kristian W. Pajtler
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
- Pituitary Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Via Altura 3, 40139 Bologna, Italy
| | - Raphael Guzman
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland;
| | - Clemens Seidel
- Department of Radiation Oncology, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Lidia Gatto
- Department of Oncology, AUSL of Bologna, 40139 Bologna, Italy;
| | - Peter Hau
- Wilhelm Sander NeuroOncology Unit & Department of Neurology, University Hospital Regensburg, 93055 Regensburg, Germany;
| |
Collapse
|
30
|
Chen B, Chen C, Zhao Y, Cui W, Xu J. The Role of Chemotherapy in the Treatment of Adult Medulloblastoma. World Neurosurg 2022; 163:e435-e449. [PMID: 35398321 DOI: 10.1016/j.wneu.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND The role of chemotherapy (CT) in the treatment of adult patients with medulloblastoma (MB) is unclear. The aim of this study is to compare the survival difference between adult patients with MB treated with and without chemotherapy. METHODS Data were derived from the SEER (Surveillance Epidemiology and End Results) database from 2010 to 2018. The Kaplan-Meier method with log-rank tests, univariate and multivariate Cox proportional hazard analyses, and propensity score matching (PSM) were used to investigate the association between chemotherapy and survival. We further conducted an exploratory subgroup analysis. The outcomes of interest were cancer-specific survival (CSS) and overall survival (OS). RESULTS We included 333 patients in this study, with 227 patients in the CT cohort and 106 in the nonchemotherapy cohort. The median follow-up time and the median age of the study population were 61 months and 30 years, respectively. The 5-year CSS of the CT cohort was superior to the nonchemotherapy cohort, whereas the 5-year OS was not. Kaplan-Meier curves after PSM supported the survival benefit of CT on CSS but not on OS. In the multivariate analysis after PSM, CT was the only prognostic factor for CSS, whereas there were no independent prognostic factors for OS. The survival of patients receiving CT who were diagnosed between 2010 and 2018 was better than that of previous patients. The subgroup analysis showed that there were interaction effects between CT and sex. CONCLUSIONS CT improved CSS for adult patients with MB. With therapeutic advances, adult patients with MB might benefit from the use of CT.
Collapse
Affiliation(s)
- Boran Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Chaoyue Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yanjie Zhao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Wenyao Cui
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
31
|
Horbinski C, Berger T, Packer RJ, Wen PY. Clinical implications of the 2021 edition of the WHO classification of central nervous system tumours. Nat Rev Neurol 2022; 18:515-529. [PMID: 35729337 DOI: 10.1038/s41582-022-00679-w] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 12/19/2022]
Abstract
A new edition of the WHO classification of tumours of the CNS was published in 2021. Although the previous edition of this classification was published just 5 years earlier, in 2016, rapid advances in our understanding of the molecular underpinnings of CNS tumours, including the diversity of clinically relevant molecular types and subtypes, necessitated a new classification system. Compared with the 2016 scheme, the new classification incorporates even more molecular alterations into the diagnosis of many tumours and reorganizes gliomas into adult-type diffuse gliomas, paediatric-type diffuse low-grade and high-grade gliomas, circumscribed astrocytic gliomas, and ependymal tumours. A number of new entities are incorporated into the 2021 classification, especially tumours that preferentially or exclusively arise in the paediatric population. Such a substantial revision of the WHO scheme will have major implications for the diagnosis and treatment of patients with CNS tumours. In this Perspective, we summarize the main changes in the classification of diffuse and circumscribed gliomas, ependymomas, embryonal tumours and meningiomas, and discuss how each change will influence post-surgical treatment, clinical trial enrolment and cooperative studies. Although the 2021 WHO classification of CNS tumours is a major conceptual advance, its implementation on a routine clinical basis presents some challenges that will require innovative solutions.
Collapse
Affiliation(s)
- Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Tamar Berger
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Roger J Packer
- Center for Neuroscience and Behavioral Medicine, Brain Tumour Institute, Gilbert Family Neurofibromatosis Type 1 Institute, Children's National Hospital, Washington, DC, USA
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Osborn AG, Louis DN, Poussaint TY, Linscott LL, Salzman KL. The 2021 World Health Organization Classification of Tumors of the Central Nervous System: What Neuroradiologists Need to Know. AJNR Am J Neuroradiol 2022; 43:928-937. [PMID: 35710121 DOI: 10.3174/ajnr.a7462] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Neuroradiologists play a key role in brain tumor diagnosis and management. Staying current with the latest classification systems and diagnostic markers is important to provide optimal patient care. Publication of the 2016 World Health Organization Classification of Tumors of the Central Nervous System introduced a paradigm shift in the diagnosis of CNS neoplasms. For the first time, both histologic features and genetic alterations were incorporated into the diagnostic framework, classifying and grading brain tumors. The newly published 2021 World Health Organization Classification of Tumors of the Central Nervous System, May 2021, 5th edition, has added even more molecular features and updated pathologic diagnoses. We present, summarize, and illustrate the most salient aspects of the new 5th edition. We have selected the key "must know" topics for practicing neuroradiologists.
Collapse
Affiliation(s)
- A G Osborn
- From the Department of Radiology and Imaging Sciences (A.G.O., K.L.S.), University of Utah School of Medicine, Salt Lake City, Utah
| | - D N Louis
- Department of Pathology (D.N.L.), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - T Y Poussaint
- Department of Radiology (T.Y.P.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - L L Linscott
- Intermountain Pediatric Imaging (L.L.L.), Primary Children's Hospital, University of Utah School of Medicine, Salt Lake City, Utah
| | - K L Salzman
- From the Department of Radiology and Imaging Sciences (A.G.O., K.L.S.), University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
33
|
Saraf A, Yock TI, Niemierko A, Oh KS, Curry WT, Butler WE, Forst DA, Arrillaga-Romany I, Ebb DH, Tarbell NJ, MacDonald S, Loeffler JS, Shih HA. Long-term outcomes and late toxicity of adult medulloblastoma treated with combined modality therapy: A contemporary single-institution experience. Neuro Oncol 2022; 24:2180-2189. [PMID: 35671386 PMCID: PMC9713502 DOI: 10.1093/neuonc/noac126] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) is a rare central nervous system malignancy of adults, with limited contemporary studies to define treatment guidelines and expected late toxicity. METHODS A single-center, retrospective study was conducted of patients age ≥18 years from 1997-2019 with MB and who were treated with postoperative radiotherapy. Late toxicity was defined as a minimum of 18 months from diagnosis. Overall survival (OS) and progression-free survival (PFS) were characterized using Kaplan-Meier and Cox regression analyses. RESULTS Fifty-nine patients met criteria, with median age of 25 years (range 18-62 y) and median follow-up of 6.5 years (range 0.7-23.1 y). At diagnosis, 68% were standard-risk, 88% Chang M0, and 22% with anaplastic histology. Gross total resection was achieved in 75%; median craniospinal irradiation dose was 30.6 Gy (relative biological effectiveness [RBE]), median total dose was 54.0 Gy (RBE), 80% received proton radiotherapy; 81% received chemotherapy. 5 year PFS and OS were 86.5% and 95.8%, respectively; 10 year PFS and OS were 83.9% and 90.7%, respectively. Anaplastic histology was associated with worse PFS (P = .04). Among eight recurrences, 25% presented after 5 years. Most common grade ≥2 late toxicities were anxiety/depressive symptoms (30%), motor dysfunction (25%), and ototoxicity (22%). Higher posterior fossa radiation dose was associated with increased risk of late toxicity, including worse cognitive dysfunction (P = .05). CONCLUSIONS Adults with MB have favorable survival outcomes, but late failures and toxicity are not uncommon. Better understanding of prognostic factors, possibly from molecular subtyping, may help to define more personalized treatments for patients with high risk of recurrence and long-term treatment sequelae.
Collapse
Affiliation(s)
- Anurag Saraf
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA,Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrzej Niemierko
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kevin S Oh
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - William T Curry
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - William E Butler
- Department of Pediatric Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Deborah A Forst
- Department of Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - David H Ebb
- Department of Pediatric Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nancy J Tarbell
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shannon MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jay S Loeffler
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA,Inspire Oncology, Naples, Florida, USA
| | - Helen A Shih
- Corresponding Author: Helen A. Shih, MD, MS, MPH, Massachusetts General Hospital, 30 Fruit St., Boston, MA 02114, USA ()
| |
Collapse
|
34
|
The Alliance AMBUSH Trial: Rationale and Design. Cancers (Basel) 2022; 14:cancers14020414. [PMID: 35053576 PMCID: PMC8773887 DOI: 10.3390/cancers14020414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Medulloblastoma, the most common embryonal tumor in children, can also arise in older patients. Clinical studies in children with medulloblastoma have increased our understanding of molecular pathways and improved treatment strategies. We now know that medulloblastoma has at least four subtypes and each maybe best suited to specific therapies. The sonic hedgehog (SHH) pathway is altered in a significant proportion of older patients with medulloblastoma. The Alliance for Clinical Trials in Oncology cooperative group is developing the AMBUSH trial: Comprehensive Management of Adolescent and Young Adult (AYA) and Adult Patients with Medulloblastoma or Pineal Embryonal Tumors With A Randomized Placebo Controlled Phase II Focusing on Sonic Hedgehog Pathway Inhibition in SHH Subgroup Patients (Adult & Adolescent MedulloBlastoma Using Sonic Hedgehog Trial). The trial gives treatment directions for all patients and randomizes patients with average risk SHH-activated medulloblastoma to maintenance sonidegib, a hedgehog signaling pathway inhibitor, or placebo. This trial will establish a baseline for future trial comparison and investigate the benefit of a novel targeted agent. Abstract Unlike medulloblastoma (MB) in children, robust prospective trials have not taken place for older patients due to the low incidence of MB in adults and adolescent and young adults (AYA). Current MB treatment paradigms for older patients have been extrapolated from the pediatric experience even though questions exist about the applicability of these approaches. Clinical and molecular classification of MB now provides better prognostication and is being incorporated in pediatric therapeutic trials. It has been established that genomic alterations leading to activation of the sonic hedgehog (SHH) pathway occur in approximately 60% of MB in patients over the age of 16 years. Within this cohort, protein patched homolog (PTCH) and smoothened (SMO) mutations are commonly found. Among patients whose tumors harbor the SHH molecular signature, it is estimated that over 80% of patients could respond to SHH pathway inhibitors. Given the advances in the understanding of molecular subgroups and the lack of robust clinical data for adult/AYA MB, the Alliance for Clinical Trial in Oncology group developed the AMBUSH trial: Comprehensive Management of AYA and Adult Patients with Medulloblastoma or Pineal Embryonal Tumors with a Randomized Placebo Controlled Phase II Focusing on Sonic Hedgehog Pathway Inhibition in SHH Subgroup Patients (Adult & Adolescent MedulloBlastoma Using Sonic Hedgehog Trial). This trial will enroll patients 18 years of age or older with MB (any molecular subgroup and risk stratification) or pineal embryonal tumor. Patients will be assigned to one of three cohorts: (1) average risk non-SHH-MB, (2) average risk SHH-MB, and (3) high risk MB or pineal embryonal tumors. All patients will receive protocol-directed comprehensive treatment with radiation therapy and chemotherapy. Patients with SHH-MB in cohort 1 will be randomized to a smoothened inhibitor or placebo as maintenance therapy for one year.
Collapse
|
35
|
Wesseling P, Rozowsky JS. Neurooncology: 2022 update. FREE NEUROPATHOLOGY 2022; 3:3-4. [PMID: 37284148 PMCID: PMC10209868 DOI: 10.17879/freeneuropathology-2022-3804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 06/08/2023]
Abstract
This 'Neurooncology: 2022 update' presents topics that were selected by the authors as top ten discoveries published in 2021 in the broader field of neurooncological pathology. This time, the spectrum of topics includes: papers with a direct impact on daily diagnostic practice of CNS tumors in general and with information on how to improve grading of meningiomas; studies shedding new light on the oncogenesis of gliomas (in particular 'optic gliomas' and H3-mutant gliomas); several 'multi-omic' investigations unraveling the intra-tumoral heterogeneity of especially glioblastomas further; a study indicating the potential of 'repurposing' Prozac® for the treatment of glioblastomas; liquid biopsy using CSF for assessment of residual medulloblastoma. In the last part of this review some other papers are mentioned that didn't make it to this (quite subjective) top ten list.
Collapse
Affiliation(s)
- Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081HV AmsterdamThe Netherlands
- Laboratory for Childhood Cancer Pathology, Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS UtrechtThe Netherlands
| | - Jacob S. Rozowsky
- Department of Pathology, Amsterdam University Medical Centers/VUmc, Brain Tumor Center Amsterdam, De Boelelaan 1117, 1081HV AmsterdamThe Netherlands
| |
Collapse
|
36
|
Wooley JR, Penas-Prado M. Pediatric versus Adult Medulloblastoma: Towards a Definition That Goes beyond Age. Cancers (Basel) 2021; 13:cancers13246313. [PMID: 34944933 PMCID: PMC8699201 DOI: 10.3390/cancers13246313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Medulloblastoma is a rare brain tumor that affects children and adults. Treatment with surgery, radiation, and chemotherapy currently cures most patients; however, ~30% of all patients have poor clinical outcomes despite treatment. Prospective clinical trials have historically excluded older patients, while recent advances in molecular diagnostics have enhanced our understanding of tumorigenesis. The aim of this literature review is to discuss the history of clinical trials in medulloblastoma and to argue in favor of prioritizing molecular drivers of disease as trial inclusion features rather than an arbitrary age cutoff. Abstract Medulloblastoma is a rare malignant brain tumor that predominantly affects children but also occurs in adults. The incidence declines significantly after age 15, and distinct tumor molecular features are seen across the age spectrum. Standard of care treatment consists of maximal safe surgical resection followed by adjuvant radiation and/or chemotherapy. Adjuvant treatment decisions are based on individual patient risk factors and have been informed by decades of prospective clinical trials. These trials have historically relied on arbitrary age cutoffs for inclusion (age 16, 18, or 21, for example), while trials that include adult patients or stratify patients by molecular features of disease have been rare. The aim of this literature review is to review the history of clinical trials in medulloblastoma, with an emphasis on selection criteria, and argue in favor of rational and inclusive trials based on molecular features of disease as opposed to chronological age. We performed a scoping literature review for medulloblastoma and clinical trials and include a summary of those results. We also discuss some of the significant advances made in understanding the molecular biology of medulloblastoma within the past decade, most notably the identification of four distinct subgroups based on gene expression profiling. We will also cite the recent experiences of childhood leukemia and the emergence of tissue-agnostic therapies as examples of successes of rationally designed, inclusive trials translating to improved clinical outcomes for patients across the age spectrum. Despite the prior trial history and recent molecular advances outcomes remain poor for ~30% of medulloblastoma patients. We believe that defining patients by the specific molecular alterations their tumors harbor is the best way to ensure they can access potentially efficacious therapies on clinical trials.
Collapse
|
37
|
Ramaswamy V, Coltin H. Molecular and clinical correlates of medulloblastoma subgroups: A narrative review. GLIOMA 2021. [DOI: 10.4103/glioma.glioma_18_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|