1
|
Goggans KR, Belyaeva OV, Klyuyeva AV, Studdard J, Slay A, Newman RB, VanBuren CA, Everts HB, Kedishvili NY. Epidermal retinol dehydrogenases cyclically regulate stem cell markers and clock genes and influence hair composition. Commun Biol 2024; 7:453. [PMID: 38609439 PMCID: PMC11014975 DOI: 10.1038/s42003-024-06160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
The hair follicle (HF) is a self-renewing adult miniorgan that undergoes drastic metabolic and morphological changes during precisely timed cyclic organogenesis. The HF cycle is known to be regulated by steroid hormones, growth factors and circadian clock genes. Recent data also suggest a role for a vitamin A derivative, all-trans-retinoic acid (ATRA), the activating ligand of transcription factors, retinoic acid receptors, in the regulation of the HF cycle. Here we demonstrate that ATRA signaling cycles during HF regeneration and this pattern is disrupted by genetic deletion of epidermal retinol dehydrogenases 2 (RDHE2, SDR16C5) and RDHE2-similar (RDHE2S, SDR16C6) that catalyze the rate-limiting step in ATRA biosynthesis. Deletion of RDHEs results in accelerated anagen to catagen and telogen to anagen transitions, altered HF composition, reduced levels of HF stem cell markers, and dysregulated circadian clock gene expression, suggesting a broad role of RDHEs in coordinating multiple signaling pathways.
Collapse
Affiliation(s)
- Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alla V Klyuyeva
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob Studdard
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aja Slay
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Regina B Newman
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA
| | - Christine A VanBuren
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA
| | - Helen B Everts
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA.
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Enhanced Loss of Retinoic Acid Network Genes in Xenopus laevis Achieves a Tighter Signal Regulation. Cells 2022; 11:cells11030327. [PMID: 35159137 PMCID: PMC8834563 DOI: 10.3390/cells11030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/10/2022] Open
Abstract
Retinoic acid (RA) is a major regulatory signal during embryogenesis produced from vitamin A (retinol) by an extensive, autoregulating metabolic and signaling network to prevent fluctuations that result in developmental malformations. Xenopus laevis is an allotetraploid hybrid frog species whose genome includes L (long) and S (short) chromosomes from the originating species. Evolutionarily, the X. laevis subgenomes have been losing either L or S homoeologs in about 43% of genes to generate singletons. In the RA network, out of the 47 genes, about 47% have lost one of the homoeologs, like the genome average. Interestingly, RA metabolism genes from storage (retinyl esters) to retinaldehyde production exhibit enhanced gene loss with 75% singletons out of 28 genes. The effect of this gene loss on RA signaling autoregulation was studied. Employing transient RA manipulations, homoeolog gene pairs were identified in which one homoeolog exhibits enhanced responses or looser regulation than the other, while in other pairs both homoeologs exhibit similar RA responses. CRISPR/Cas9 targeting of individual homoeologs to reduce their activity supports the hypothesis where the RA metabolic network gene loss results in tighter network regulation and more efficient RA robustness responses to overcome complex regulation conditions.
Collapse
|
3
|
Parihar M, Bendelac-Kapon L, Gur M, Abbou T, Belorkar A, Achanta S, Kinberg K, Vadigepalli R, Fainsod A. Retinoic Acid Fluctuation Activates an Uneven, Direction-Dependent Network-Wide Robustness Response in Early Embryogenesis. Front Cell Dev Biol 2021; 9:747969. [PMID: 34746144 PMCID: PMC8564372 DOI: 10.3389/fcell.2021.747969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 01/15/2023] Open
Abstract
Robustness is a feature of regulatory pathways to ensure signal consistency in light of environmental changes or genetic polymorphisms. The retinoic acid (RA) pathway, is a central developmental and tissue homeostasis regulatory signal, strongly dependent on nutritional sources of retinoids and affected by environmental chemicals. This pathway is characterized by multiple proteins or enzymes capable of performing each step and their integration into a self-regulating network. We studied RA network robustness by transient physiological RA signaling disturbances followed by kinetic transcriptomic analysis of the recovery during embryogenesis. The RA metabolic network was identified as the main regulated module to achieve signaling robustness using an unbiased pattern analysis. We describe the network-wide responses to RA signal manipulation and found the feedback autoregulation to be sensitive to the direction of the RA perturbation: RA knockdown exhibited an upper response limit, whereas RA addition had a minimal feedback-activation threshold. Surprisingly, our robustness response analysis suggests that the RA metabolic network regulation exhibits a multi-objective optimization, known as Pareto optimization, characterized by trade-offs between competing functionalities. We observe that efficient robustness to increasing RA is accompanied by worsening robustness to reduced RA levels and vice versa. This direction-dependent trade-off in the network-wide feedback response, results in an uneven robustness capacity of the RA network during early embryogenesis, likely a significant contributor to the manifestation of developmental defects.
Collapse
Affiliation(s)
- Madhur Parihar
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Liat Bendelac-Kapon
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Jerusalem, Israel
| | - Michal Gur
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Jerusalem, Israel
| | - Tali Abbou
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Jerusalem, Israel
| | - Abha Belorkar
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sirisha Achanta
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Keren Kinberg
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Jerusalem, Israel
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
An adverse outcome pathway on the disruption of retinoic acid metabolism leading to developmental craniofacial defects. Toxicology 2021; 458:152843. [PMID: 34186166 DOI: 10.1016/j.tox.2021.152843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022]
Abstract
Adverse outcome pathway (AOP) is a conceptual framework that links a molecular initiating event (MIE) via intermediate key events (KEs) with adverse effects (adverse outcomes, AO) relevant for risk assessment, through defined KE relationships (KERs). The aim of the present work is to describe a linear AOP, supported by experimental data, for skeletal craniofacial defects as the AO. This AO was selected in view of its relative high incidence in humans and the suspected relation to chemical exposure. We focused on inhibition of CYP26, a retinoic acid (RA) metabolizing enzyme, as MIE, based on robust previously published data. Conazoles were selected as representative stressors. Intermediate KEs are RA disbalance, aberrant HOX gene expression, disrupted specification, migration, and differentiation of neural crest cells, and branchial arch dysmorphology. We described the biological basis of the postulated events and conducted weight of evidence (WoE) assessments. The biological plausibility and the overall empirical evidence were assessed as high and moderate, respectively, the latter taking into consideration the moderate evidence for concordance of dose-response and temporal relationships. Finally, the essentiality assessment of the KEs, considered as high, supported the robustness of the presented AOP. This AOP, which appears of relevance to humans, thus contributes to mechanistic underpinning of selected test methods, thereby supporting their application in integrated new approach test methodologies and strategies and application in a regulatory context.
Collapse
|
5
|
Everts HB, Akuailou EN. Retinoids in Cutaneous Squamous Cell Carcinoma. Nutrients 2021; 13:E153. [PMID: 33466372 PMCID: PMC7824907 DOI: 10.3390/nu13010153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Animal studies as early as the 1920s suggested that vitamin A deficiency leads to squamous cell metaplasia in numerous epithelial tissues including the skin. However, humans usually die from vitamin A deficiency before cancers have time to develop. A recent long-term cohort study found that high dietary vitamin A reduced the risk of cutaneous squamous cell carcinoma (cSCC). cSCC is a form of nonmelanoma skin cancer that primarily occurs from excess exposure to ultraviolet light B (UVB). These cancers are expensive to treat and can lead to metastasis and death. Oral synthetic retinoids prevent the reoccurrence of cSCC, but side effects limit their use in chemoprevention. Several proteins involved in vitamin A metabolism and signaling are altered in cSCC, which may lead to retinoid resistance. The expression of vitamin A metabolism proteins may also have prognostic value. This article reviews what is known about natural and synthetic retinoids and their metabolism in cSCC.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX 76209, USA
| | | |
Collapse
|
6
|
Veit JGS, De Glas V, Balau B, Liu H, Bourlond F, Paller AS, Poumay Y, Diaz P. Characterization of CYP26B1-Selective Inhibitor, DX314, as a Potential Therapeutic for Keratinization Disorders. J Invest Dermatol 2020; 141:72-83.e6. [PMID: 32505549 DOI: 10.1016/j.jid.2020.05.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 01/15/2023]
Abstract
Inhibition of CYP450-mediated retinoic acid (RA) metabolism by RA metabolism blocking agents increases endogenous retinoids and is an alternative to retinoid therapy. Currently available RA metabolism blocking agents (i.e., liarozole and talarozole) tend to have fewer adverse effects than traditional retinoids but lack target specificity. Substrate-based inhibitor DX314 has enhanced selectivity for RA-metabolizing enzyme CYP26B1 and may offer an improved treatment option for keratinization disorders such as congenital ichthyosis and Darier disease. In this study, we used RT-qPCR, RNA sequencing, pathway, upstream regulator, and histological analyses to demonstrate that DX314 can potentiate the effects of all-trans-RA in healthy and diseased reconstructed human epidermis. We unexpectedly discovered that DX314, but not all-trans-RA or previous RA metabolism blocking agents, appears to protect epidermal barrier integrity. In addition, DX314-induced keratinization and epidermal proliferation effects are observed in a rhino mice model. Altogether, the results indicate that DX314 inhibits all-trans-RA metabolism with minimal off-target activity and shows therapeutic similarity to topical retinoids in vitro and in vivo. Findings of a barrier-protecting effect require further mechanistic study but may lead to a unique strategy in barrier-reinforcing therapies. DX314 is a promising candidate compound for further study and development in the context of keratinization disorders.
Collapse
Affiliation(s)
- Joachim G S Veit
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, USA
| | | | - Benoît Balau
- URPHYM-NARILIS, University of Namur, Namur, Belgium
| | - Haoming Liu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Florence Bourlond
- Service de Dermatologie, Hôpital Erasme, Université Libre de Bruxelles, Belgique
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yves Poumay
- URPHYM-NARILIS, University of Namur, Namur, Belgium
| | - Philippe Diaz
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, USA; DermaXon LLC, Missoula, Montana, USA.
| |
Collapse
|
7
|
Abstract
Generation of the autacoid all-trans-retinoic acid (ATRA) from retinol (vitamin A) relies on a complex metabolon that includes retinol binding-proteins and enzymes from the short-chain dehydrogenase/reductase and aldehyde dehydrogenase gene families. Serum retinol binding-protein delivers all-trans-retinol (vitamin A) from blood to cells through two membrane receptors, Stra6 and Rbpr2. Stra6 and Rbpr2 convey retinol to cellular retinol binding-protein type 1 (Crbp1). Holo-Crbp1 delivers retinol to lecithin: retinol acyl transferase (Lrat) for esterification and storage. Lrat channels retinol directly into its active site from holo-Crbp1 by protein-protein interaction. The ratio apo-Crbp1/holo-Crbp1 directs flux of retinol into and out of retinyl esters, through regulating esterification vs ester hydrolysis. Multiple retinol dehydrogenases (Rdh1, Rdh10, Dhrs9, Rdhe2, Rdhe2s) channel retinol from holo-Crbp1 to generate retinal for ATRA biosynthesis. β-Carotene oxidase type 1 generates retinal from carotenoids, delivered by the scavenger receptor-B1. Retinal reductases (Dhrs3, Dhrs4, Rdh11) reduce retinal into retinol, thereby restraining ATRA biosynthesis. Retinal dehydrogenases (Raldh1, 2, 3) dehydrogenate retinal irreversibly into ATRA. ATRA regulates its own concentrations by inducing Lrat and ATRA degradative enzymes. ATRA exhibits hormesis. Its effects relate to its concentration as an inverted J-shaped curve, transitioning from beneficial in the "goldilocks" zone to toxicity, as concentrations increase. Hormesis has distorted understanding physiological effects of ATRA post-nataly using chow-diet fed, ATRA-dosed animal models. Cancer, immune deficiency and metabolic abnormalities result from mutations and/or insufficiency in Crbp1 and retinoid metabolizing enzymes.
Collapse
Affiliation(s)
- Joseph L Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, University of California, Berkeley, CA, United States.
| |
Collapse
|
8
|
Miyazono S, Otani T, Ogata K, Kitagawa N, Iida H, Inai Y, Matsuura T, Inai T. The reduced susceptibility of mouse keratinocytes to retinoic acid may be involved in the keratinization of oral and esophageal mucosal epithelium. Histochem Cell Biol 2020; 153:225-237. [PMID: 32006103 DOI: 10.1007/s00418-020-01845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2020] [Indexed: 10/24/2022]
Abstract
Keratinocytes take up serum-derived retinol (vitamin A) and metabolize it to all-trans-retinoic acid (atRA), which binds to the nuclear retinoic acid receptor (RAR). We previously reported that serum-affected keratinocyte differentiation and function; namely, it inhibited keratinization, decreased loricrin (LOR) and claudin (CLDN) 1 expression, increased keratin (K) 4 and CLDN4 levels, and reduced paracellular permeability in three-dimensional (3D) cultures of mouse keratinocytes (COCA). Contrarily, RAR inhibition reversed these changes. Here, we aimed to examine whether atRA exerted the same effects as serum, and whether it was involved in the differential oral mucosa keratinization among animal species. Porcine oral mucosal keratinocytes, which form non-keratinized epithelium in vivo, established keratinized epithelium in 3D cultures. Both mouse and porcine sera induced non-keratinized epithelium at 0.1% in COCA 3D cultures. Although atRA caused the same changes as serum, its effective concentration differed. atRA inhibited keratinization at 0.1 nM and 1 nM in porcine or human keratinocytes and COCA, respectively. Furthermore, atRA upregulated CLDN7 in the cytoplasm but not in cell-cell contacts. These atRA-induced changes were reverted by RAR inhibition. The results indicate that serum-induced changes are probably due to the effect of serum-derived atRA, and that mouse keratinocytes require higher atRA concentrations to suppress keratinization than porcine and human keratinocytes. We propose that the lower susceptibility of mouse keratinocytes to atRA, rather than a lower retinol concentration, is a possible reason for the keratinization of mouse oral mucosal epithelium.
Collapse
Affiliation(s)
- Shoji Miyazono
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Takahito Otani
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Kayoko Ogata
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Norio Kitagawa
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Hiroshi Iida
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuko Inai
- Division of General Dentistry, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Matsuura
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Tetsuichiro Inai
- Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan.
| |
Collapse
|
9
|
Rhie A, Son HY, Kwak SJ, Lee S, Kim DY, Lew BL, Sim WY, Seo JS, Kwon O, Kim JI, Jo SJ. Genetic variations associated with response to dutasteride in the treatment of male subjects with androgenetic alopecia. PLoS One 2019; 14:e0222533. [PMID: 31525235 PMCID: PMC6746394 DOI: 10.1371/journal.pone.0222533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/31/2019] [Indexed: 12/30/2022] Open
Abstract
Dutasteride, a dual inhibitor of both type I and II 5α-reductases, is used to treat male pattern hair loss (MPHL). However, patient response to dutasteride varies in each individual, the cause of which is yet to be identified. To identify genetic variants associated with response to dutasteride treatment for MPHL, a total of 42 men with moderate MPHL who had been treated with dutasteride for 6 months were genotyped and analysed by quantitative linear regression, case-control association tests, and Fisher’s exact test. The synonymous single nucleotide polymorphism (SNP) rs72623193 in DHRS9 was most significantly associated with response to dutasteride, followed by the non-synonymous SNP rs2241057 in CYP26B1. Additionally, variants in ESR1, SRD5A1, CYP19A1, and RXRG are suggested to be associated with response to dutasteride. Cumulative effect and interaction among these SNPs were presented in both additive and non-additive models.
Collapse
Affiliation(s)
- Arang Rhie
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ho-Young Son
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Jung Kwak
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Seungbok Lee
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Young Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Bark-Lynn Lew
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woo-Young Sim
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Sun Seo
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
10
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
11
|
Ozaki A, Otani T, Kitagawa N, Ogata K, Iida H, Kojima H, Inai T. Serum affects keratinization and tight junctions in three-dimensional cultures of the mouse keratinocyte cell line COCA through retinoic acid receptor-mediated signaling. Histochem Cell Biol 2018; 151:315-326. [DOI: 10.1007/s00418-018-1741-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2018] [Indexed: 01/15/2023]
|
12
|
NSPc1 promotes cancer stem cell self-renewal by repressing the synthesis of all-trans retinoic acid via targeting RDH16 in malignant glioma. Oncogene 2017; 36:4706-4718. [DOI: 10.1038/onc.2017.34] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/17/2016] [Accepted: 01/05/2017] [Indexed: 12/26/2022]
|
13
|
Adamus J, Feng L, Hawkins S, Kalleberg K, Lee JM. Climbazole boosts activity of retinoids in skin. Int J Cosmet Sci 2017; 39:411-418. [DOI: 10.1111/ics.12390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
| | - L. Feng
- Unilever R&D; Trumbull CT 06611 USA
| | | | | | - J-M. Lee
- Unilever R&D; Trumbull CT 06611 USA
| |
Collapse
|
14
|
Mammadova A, Zhou H, Carels CE, Von den Hoff JW. Retinoic acid signalling in the development of the epidermis, the limbs and the secondary palate. Differentiation 2016; 92:326-335. [DOI: 10.1016/j.diff.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023]
|
15
|
Everts HB, Suo L, Ghim S, Bennett Jenson A, Sundberg JP. Retinoic acid metabolism proteins are altered in trichoblastomas induced by mouse papillomavirus 1. Exp Mol Pathol 2015; 99:546-51. [PMID: 26416148 DOI: 10.1016/j.yexmp.2015.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
Skin cancer burden is significant as treatment costs have skyrocketed to $8.1 million annually and some forms metastasize, such as cutaneous squamous cell carcinoma (cSCC) and melanoma. cSCC is caused by altered growth factor signaling induced by chemical carcinogens, ultraviolet light (UV) exposure, and infections with papillomaviruses (PVs). One of the few options for preventing cSCC in high-risk patients is oral retinoids. While much is understood about retinoid treatments and metabolism in mouse models of chemically and UV exposure induced cSCC, little is known about the role of retinoids in PV-induced cSCC. To better understand how retinoid metabolism is altered in cSCC, we examined the expression of this pathway in the newly discovered mouse papillomavirus (MmuPV1), which produces trichoblastomas in dorsal skin but not cSCC. We found significant increases in a rate-limiting enzyme involved in retinoic acid synthesis and retinoic acid binding proteins, suggestive of increased RA synthesis, in MmuPV1-induced tumors in B6.Cg-Foxn1(nu)/J mice. Similar increases in these proteins were seen after acute UVB exposure in Crl:SKH1-Hr(hr) mice and in regressing pre-cancerous lesions in a chemically-induced mouse model, suggesting a common mechanism in limiting the progression of papillomas to full blown cSCC.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Human Sciences (Nutrition), The Ohio State University, Columbus, OH, United States.
| | - Liye Suo
- Department of Human Sciences (Nutrition), The Ohio State University, Columbus, OH, United States
| | - Shinge Ghim
- The James Graham Brown Cancer Center, The University of Louisville, Louisville, KY, United States
| | - A Bennett Jenson
- The James Graham Brown Cancer Center, The University of Louisville, Louisville, KY, United States
| | | |
Collapse
|
16
|
Role of Retinoic Acid-Metabolizing Cytochrome P450s, CYP26, in Inflammation and Cancer. ADVANCES IN PHARMACOLOGY 2015; 74:373-412. [PMID: 26233912 DOI: 10.1016/bs.apha.2015.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vitamin A (retinol) and its active metabolite, all-trans-retinoic acid (atRA), play critical roles in regulating the differentiation, growth, and migration of immune cells. Similarly, as critical signaling molecules in the regulation of the cell cycle, retinoids are important in cancers. Concentrations of atRA are tightly regulated in tissues, predominantly by the availability of retinol, synthesis of atRA by ALDH1A enzymes and metabolism and clearance of atRA by CYP26 enzymes. The ALDH1A and CYP26 enzymes are expressed in several cell types in the immune system and in cancer cells. In the immune system, the ALDH1A and CYP26 enzymes appear to modulate RA concentrations. Consequently, alterations in the activity of ALDH1A and CYP26 enzymes are expected to change disease outcomes in inflammation. There is increasing evidence from various disease models of intestinal and skin inflammation that treatment with atRA has a positive effect on disease markers. However, whether aberrant atRA concentrations or atRA synthesis and metabolism play a role in inflammatory disease development and progression is not well understood. In cancers, especially in acute promyelocytic leukemia and neuroblastoma, increasing intracellular concentrations of atRA appears to provide clinical benefit. Inhibition of the CYP26 enzymes to increase atRA concentrations and combat therapy resistance has been pursued as a drug target in these cancers. This chapter covers the current knowledge of how atRA and retinol regulate the immune system and inflammation, how retinol and atRA metabolism is altered in inflammation and cancer, and what roles atRA-metabolizing enzymes have in immune responses and cancers.
Collapse
|
17
|
Abstract
In this issue, Hellmann-Regen et al. suggested that anti-acne effects of erythromycin and tetracyclines may be related to their inhibitory effect of cytochrome P450-mediated degradation of all-trans-retinoic acid (ATRA). We have recently proposed that all anti-acne agents function by attenuation of increased mTORC1 signalling. This commentary links the P450 system to mTORC1 regulation in acne. Drug-mediated induction of P450 activity or P450 mutants with increased catabolic activity may reduce cellular ATRA levels and FoxO1 expression, thus reducing FoxO-mediated mTORC1 inhibition. In contrast, agents blocking ATRA degradation such as erythromycin and tetracyclines may improve acne by increasing FoxO1 expression with consecutive inhibition of mTORC1 signalling.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
18
|
Gressel KL, Duncan FJ, Oberyszyn TM, La Perle KM, Everts HB. Endogenous Retinoic Acid Required to Maintain the Epidermis Following Ultraviolet Light Exposure in SKH-1 Hairless Mice. Photochem Photobiol 2015; 91:901-8. [PMID: 25715879 DOI: 10.1111/php.12441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/23/2015] [Indexed: 12/22/2022]
Abstract
Ultraviolet light B (UVB) exposure induces cutaneous squamous cell carcinoma (cSCC), one of the most prevalent human cancers. Reoccurrence of cSCC in high-risk patients is prevented by oral retinoids. But oral retinoid treatment causes significant side effects; and patients develop retinoid resistance. Exactly how retinoids prevent UVB-induced cSCC is currently not well understood. Retinoid resistance blocks mechanistic studies in the leading mouse model of cSCC, the UVB-exposed SKH-1 hairless mouse. To begin to understand the role of retinoids in UVB-induced cSCC we first examined the localization pattern of key retinoid metabolism proteins by immunohistochemistry 48 h after UVB treatment of female SKH-1 mice. We next inhibited retinoic acid (RA) synthesis immediately after UVB exposure. Acute UVB increased RA synthesis, signaling and degradation proteins in the stratum granulosum. Some of these proteins changed their localization; while other proteins just increased in intensity. In contrast, acute UVB reduced the retinoid storage protein lectin:retinol acyltransferase (LRAT) in the epidermis. Inhibiting RA synthesis disrupted the epidermis and impaired differentiation. These data suggest that repair of the epidermis after acute UVB exposure requires endogenous RA synthesis.
Collapse
Affiliation(s)
- Katherine L Gressel
- Department of Human Sciences (Nutrition), the Ohio State University, Columbus, OH
| | - F Jason Duncan
- Department of Human Sciences (Nutrition), the Ohio State University, Columbus, OH
| | | | - Krista M La Perle
- Department of Veterinary Biosciences, the Ohio State University, Columbus, OH
| | - Helen B Everts
- Department of Human Sciences (Nutrition), the Ohio State University, Columbus, OH
| |
Collapse
|
19
|
|
20
|
Nelson CH, Buttrick BR, Isoherranen N. Therapeutic potential of the inhibition of the retinoic acid hydroxylases CYP26A1 and CYP26B1 by xenobiotics. Curr Top Med Chem 2014; 13:1402-28. [PMID: 23688132 DOI: 10.2174/1568026611313120004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 02/21/2013] [Indexed: 12/27/2022]
Abstract
Retinoic acid (RA), the active metabolite of vitamin A, is an important endogenous signaling molecule regulating cell cycle and maintenance of epithelia. RA isomers are also used as drugs to treat various cancers and dermatological diseases. However, the therapeutic uses of RA isomers are limited due to side effects such as teratogenicity and resistance to treatment emerging mainly from autoinduction of RA metabolism. To improve the therapeutic usefulness of retinoids, RA metabolism blocking agents (RAMBAs) have been developed. These inhibitors generally target the cytochrome P450 (CYP) enzymes because RA clearance is predominantly mediated by P450s. Since the initial identification of inhibitors of RA metabolism, CYP26 enzymes have been characterized as the main enzymes responsible for RA clearance. This makes CYP26 enzymes an attractive target for the development of novel therapeutics for cancer and dermatological conditions. The basic principle of development of CYP26 inhibitors is that endogenous RA concentrations will be increased in the presence of a CYP26 inhibitor, thus, potentiating the activity of endogenous RA in a cell-type specific manner. This will reduce side effects compared to administration of RA and allow for more targeted therapy. In clinical trials, inhibitors of RA metabolism have been effective in treatment of psoriasis and other dermatological conditions as well as in some cancers. However, no CYP26 inhibitor has yet been approved for clinical use. This review summarizes the history of development of RAMBAs, the clinical and preclinical studies with the various structural series and the available knowledge of structure activity relationships of CYP26 inhibitors.
Collapse
Affiliation(s)
- Cara H Nelson
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
21
|
Gillbro JM, Al-Bader T, Westman M, Olsson MJ, Mavon A. Transcriptional changes in organoculture of full-thickness human skin following topical application of all-trans retinoic acid. Int J Cosmet Sci 2014; 36:253-61. [PMID: 24697191 PMCID: PMC4265278 DOI: 10.1111/ics.12121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/09/2014] [Indexed: 12/28/2022]
Abstract
Objective Retinoids are used as therapeutic agents for numerous skin diseases, for example, psoriasis, acne and keratinization disorders. The same substances have also been recognized in the treatment for hyperpigmentation disorders such as melasma. Other studies on photo-damaged skin have shown that retinoids reduce wrinkles, surface roughness, mottled pigmentation, and visual skin appearance as a whole. We tested the hypothesis that an organoculture of full-thickness human skin could be used as a preclinical model to investigate the retinoid transcriptional profile in human skin in vitro. Methods Full-thickness skin explants were exposed to topically applied all-trans retinoic acid (RA) for 24 h. The gene expression profile was analysed using oligonucleotide microarrays, and data were validated with real-time (RT) PCR. Results We showed that the expression of 93 genes was significantly altered more than twofold. Several of the altered genes, for example, KRT4, CYP26 and LCN2, have previously been shown to be affected by RA in keratinocyte monocultures, reconstructed epidermis and skin biopsies from patients treated topically or orally with RA. In addition, genes, such as SCEL, NRIP1, DGAT2, RDH12 EfnB2, MAPK14, SAMD9 and CEACAM6 not previously reported to be affected by RA in human skin, were identified for the first time in this study. Conclusion The results in the present study show that full-thickness human explants represent a valuable pre-clinical model for studying the effects of retinoids in skin. Résumé
Collapse
Affiliation(s)
- J M Gillbro
- Oriflame Skin Research Institute, Mäster Samuelsgatan 56, Stockholm, 11121, Sweden
| | | | | | | | | |
Collapse
|
22
|
Digiovanna JJ, Mauro T, Milstone LM, Schmuth M, Toro JR. Systemic retinoids in the management of ichthyoses and related skin types. Dermatol Ther 2013; 26:26-38. [PMID: 23384018 DOI: 10.1111/j.1529-8019.2012.01527.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The term retinoid includes both natural and synthetic derivatives of vitamin A. Retinoid-containing treatments have been used since ~1550BC by the early Egyptians. Treatment of ichthyosiform disorders with retinoids dates back at least to the 1930s. Early use of high-dose vitamin A demonstrated efficacy, but because vitamin A is stored in the liver, toxicity limited usefulness. Interest turned to synthetic retinoids in an effort to enhance efficacy and limit toxicity. Acetretin, isotretinoin and, in the past etretinate, have provided the most effective therapy for ichthyosiform conditions. They have been used for a variety of ages, including in newborns with severe ichthyosis and for decades in some patients. Careful surveillance and management of mucous membrane, laboratory, skeletal, and teratogenic side effects has made systemic retinoids the mainstay of therapy for ichthyosis and related skin types.
Collapse
Affiliation(s)
- John J Digiovanna
- DNA Repair Section, Dermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
23
|
Schmuth M, Martinz V, Janecke AR, Fauth C, Schossig A, Zschocke J, Gruber R. Inherited ichthyoses/generalized Mendelian disorders of cornification. Eur J Hum Genet 2013; 21:123-33. [PMID: 22739337 PMCID: PMC3548255 DOI: 10.1038/ejhg.2012.121] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 05/07/2012] [Accepted: 05/10/2012] [Indexed: 11/08/2022] Open
Abstract
Inherited ichthyoses, defined as the generalized form of Mendelian disorders of cornification, are characterized by visible scaling and/or hyperkeratosis of most or all of the skin. This etiologically and phenotypically heterogenous group of conditions is caused by mutations in various different genes important for keratinocyte differentiation and epidermal barrier function. Diagnosing a specific entity is a particular challenge for the nonspecialist presented with the common clinical scaling. For the clinician, this review outlines an algorithmic approach for utilizing diagnostic clues to narrow down the differential diagnosis and to guide further testing and treatment options.
Collapse
Affiliation(s)
- Matthias Schmuth
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Verena Martinz
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Andreas R Janecke
- Division of Human Genetics, Innsbruck Medical University, Innsbruck, Austria
- Department of Pediatrics II, Innsbruck Medical University, Innsbruck, Austria
| | - Christine Fauth
- Division of Human Genetics, Innsbruck Medical University, Innsbruck, Austria
| | - Anna Schossig
- Division of Human Genetics, Innsbruck Medical University, Innsbruck, Austria
| | - Johannes Zschocke
- Division of Human Genetics, Innsbruck Medical University, Innsbruck, Austria
| | - Robert Gruber
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
24
|
Kasimanickam VR, Kasimanickam RK. Retinoic acid signaling biomarkers after treatment with retinoic acid and retinoic acid receptor alpha antagonist (Ro 41-5253) in canine testis: an in vitro organ culture study. Theriogenology 2012; 79:10-6. [PMID: 23102850 DOI: 10.1016/j.theriogenology.2012.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/17/2012] [Accepted: 09/03/2012] [Indexed: 01/01/2023]
Abstract
Retinoic acid (RA) is an essential component for development and maintenance of the male genital tract and for spermatogenesis. Aldehyde dehydrogenase (ALDH)1, cytochrome P450 (CYP)26b1, RA receptor (RAR)α, cellular RA-binding protein (CRAB)II, and stimulated by RA gene (STRA)8 are involved in synthesis, metabolism signaling pathways, and as downstream effectors of RA. The objective was to elucidate the effects of exogenous RA and a RARα antagonist on gene expression of ALDH1, CYP26b1, RARα, cellular RA-binding protein II, and STRA8 in an in vitro organ culture model of canine testis. Testicular tissues from medium-sized mixed breed dogs (N = 5; age 8 ± 0.17 mo) were subjected to exogenous all trans-RA (final concentrations of 1, 2, and 10 μM, and DMSO as control) for 24 h. Similarly, testicular tissues were treated with Ro 41-5253 (RARα antagonist), at 1, 10, and 50 μM final concentrations (DMSO as control) for 24 h. Exogenous RA or the RARα antagonist decreased (P < 0.05) mRNA abundance of ALDH1 in a dose-dependent manner compared with control. The CRABII mRNA abundance was greater after RA treatment compared with control (P < 0.01), but only 50 μM Ro 41-5253 effectively decreased CRABII mRNA abundance compared with control (P < 0.01). Although RA did not affect RARα mRNA abundance, the RARα antagonist treatment lowered RARα mRNA abundance compared with control (P < 0.05). Abundance of CYP26b1and STRA8 mRNA were greater (P < 0.05) after RA treatment, but lower (P < 0.05) after RARα antagonist treatment compared with control. In conclusion, exogenous RA decreased mRNA abundance of ALDH1 and increased mRNA abundance of RA signaling molecules and its downstream effectors (CYP26b1, CRABII, and STRA8), whereas treatment with a RARα antagonist effectively decreased RARα and RA metabolism molecules and its downstream effectors in canine testis. Perhaps pharmacological intervention via the RA pathway would enable canine male contraception or treatment of testicular pathology.
Collapse
Affiliation(s)
- Vanmathy R Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| | | |
Collapse
|
25
|
Abstract
C57BL/6 mice develop dermatitis and scarring alopecia resembling human cicatricial alopecias (CA), particularly the central centrifugal cicatricial alopecia (CCCA) type. To evaluate the role of retinoids in CA, expression of retinoid metabolism components were examined in these mice with mild, moderate, or severe CA compared to hair cycle matched mice with no disease. Two feeding studies were performed with dams fed either NIH 31 diet (study 1) or AIN93G diet (study 2). Adult mice were fed AIN93M diet with 4 (recommended), 28, or 56 IU vitamin A/g diet. Feeding the AIN93M diet to adults increased CA frequency over NIH 31 fed mice. Increased follicular dystrophy was seen in study 1 and increased dermal scars in study 2 in mice fed the 28 IU diet. These results indicate that retinoid metabolism is altered in CA in C57BL/6J mice that require precise levels of dietary vitamin A. Human patients with CCCA, pseudopelade (end stage scarring), and controls with no alopecia were also studied. Many retinoid metabolism proteins were increased in mild CCCA, but were undetectable in pseudopelade. Studies to determine if these dietary alterations in retinoid metabolism seen in C57BL/6J mice are also involved in different types of human CA are needed.
Collapse
|
26
|
Zhou X, Dong X, Tong J, Xu P, Wang Z. High levels of vitamin E affect retinol binding protein but not CYP26A1 in liver and hepatocytes from laying hens. Poult Sci 2012; 91:1135-41. [DOI: 10.3382/ps.2011-01914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
27
|
Ross AC, Zolfaghari R. Cytochrome P450s in the regulation of cellular retinoic acid metabolism. Annu Rev Nutr 2011; 31:65-87. [PMID: 21529158 DOI: 10.1146/annurev-nutr-072610-145127] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The active metabolite of vitamin A, retinoic acid (RA), is a powerful regulator of gene transcription. RA is also a therapeutic drug. The oxidative metabolism of RA by certain members of the cytochrome P450 (CYP) superfamily helps to maintain tissue RA concentrations within appropriate bounds. The CYP26 family--CYP26A1, CYP26B1, and CYP26C1--is distinguished by being both regulated by and active toward all-trans-RA (at-RA) while being expressed in different tissue-specific patterns. The CYP26A1 gene is regulated by multiple RA response elements. CYP26A1 is essential for embryonic development, whereas CYP26B1 is essential for postnatal survival as well as germ cell development. Enzyme kinetic studies have demonstrated that several CYP proteins are capable of metabolizing at-RA; however, it is likely that CYP26A1 plays a major role in RA clearance. Thus, pharmacological approaches to limiting the activity of CYP26 enzymes may extend the half-life of RA and could be useful clinically in the future.
Collapse
Affiliation(s)
- A Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
28
|
Törmä H. Regulation of keratin expression by retinoids. DERMATO-ENDOCRINOLOGY 2011; 3:136-40. [PMID: 22110773 DOI: 10.4161/derm.3.3.15026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/25/2011] [Indexed: 11/19/2022]
Abstract
Vitamin A and its natural and synthetic metabolites (retinoids) affect growth and differentiation of human skin and among the genes affected by retinoids in epidermis are keratin genes. Keratins are intermediate filament proteins that have essential functions in maintaining the structural integrity of epidermis and its appendages. Their expressions are under strict control to produce keratins that are optimally adapted to their environment. In this article, retinoid regulation of keratin expression in cultured human epidermal keratinocytes and in human skin in vivo will be reviewed. The direct and indirect mechanisms involved will be discussed and novel therapeutic strategies will be proposed for utilizing retinoids in skin disorders due to keratin mutations (e.g., epidermolysis bullosa simplex and epidermolytic ichthyosis).
Collapse
Affiliation(s)
- Hans Törmä
- Department of Medical Sciences/Dermatology; Uppsala University; Uppsala, Sweden
| |
Collapse
|
29
|
Chamcheu JC, Pihl-Lundin I, Mouyobo CE, Gester T, Virtanen M, Moustakas A, Navsaria H, Vahlquist A, Törmä H. Immortalized keratinocytes derived from patients with epidermolytic ichthyosis reproduce the disease phenotype: a useful in vitro model for testing new treatments. Br J Dermatol 2011; 164:263-72. [PMID: 20977447 DOI: 10.1111/j.1365-2133.2010.10092.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Epidermolytic ichthyosis (EI) is a skin fragility disorder caused by mutations in genes encoding suprabasal keratins 1 and 10. While the aetiology of EI is known, model systems are needed for pathophysiological studies and development of novel therapies. OBJECTIVES To generate immortalized keratinocyte lines from patients with EI for studies of EI cell pathology and the effects of chemical chaperones as putative therapies. METHODS We derived keratinocytes from three patients with EI and one healthy control and established immortalized keratinocytes using human papillomavirus 16-E6/E7. Growth and differentiation characteristics, ability to regenerate organotypic epidermis, keratin expression, formation of cytoskeletal aggregates, and responses to heat shock and chemical chaperones were assessed. RESULTS The cell lines EH11 (K1_p.Val176_Lys197del), EH21 (K10_p.156Arg>Gly), EH31 (K10_p.Leu161_Asp162del) and NKc21 (wild-type) currently exceed 160 population doublings and differentiate when exposed to calcium. At resting state, keratin aggregates were detected in 9% of calcium-differentiated EH31 cells, but not in any other cell line. Heat stress further increased this proportion to 30% and also induced aggregates in 3% of EH11 cultures. Treatment with trimethylamine N-oxide and 4-phenylbutyrate (4-PBA) reduced the fraction of aggregate-containing cells and affected the mRNA expression of keratins 1 and 10 while 4-PBA also modified heat shock protein 70 (HSP70) expression. Furthermore, in situ proximity ligation assay suggested a colocalization between HSP70 and keratins 1 and 10. Reconstituted epidermis from EI cells cornified but EH21 and EH31 cells produced suprabasal cytolysis, closely resembling the in vivo phenotype. CONCLUSIONS These immortalized cell lines represent a useful model for studying EI biology and novel therapies.
Collapse
Affiliation(s)
- J C Chamcheu
- Department of Medical Sciences, Dermatology and Venereology, University Hospital, Uppsala University, SE-751 85 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lee SA, Belyaeva OV, Wu L, Kedishvili NY. Retinol dehydrogenase 10 but not retinol/sterol dehydrogenase(s) regulates the expression of retinoic acid-responsive genes in human transgenic skin raft culture. J Biol Chem 2011; 286:13550-60. [PMID: 21345790 DOI: 10.1074/jbc.m110.181065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoic acid is essential for skin growth and differentiation, and its concentration in skin is controlled tightly. In humans, four different members of the short-chain dehydrogenase/reductase (SDR) superfamily of proteins were proposed to catalyze the rate-limiting step in the biosynthesis of retinoic acid (the oxidation of retinol to retinaldehyde). Epidermis contains at least three of these enzymes, but their relative importance for retinoic acid biosynthesis and regulation of gene expression during growth and differentiation of epidermis is not known. Here, we investigated the effect of the four human SDRs on retinoic acid biosynthesis, and their impact on growth and differentiation of keratinocytes using organotypic skin raft culture model of human epidermis. The results of this study demonstrate that ectopic expression of retinol dehydrogenase 10 (RDH10, SDR16C4) in skin rafts dramatically increases proliferation and inhibits differentiation of keratinocytes, consistent with the increased steady-state levels of retinoic acid and activation of retinoic acid-inducible genes in RDH10 rafts. In contrast, SDRs with dual retinol/sterol substrate specificity, namely retinol dehydrogenase 4 (RoDH4, SDR9C8), RoDH-like 3α-hydroxysteroid dehydrogenase (RL-HSD, SDR9C6), and RDH-like SDR (RDHL, SDR9C4) do not affect the expression of retinoic acid-inducible genes but alter the expression levels of several components of extracellular matrix. These results reveal essential differences in the metabolic contribution of RDH10 versus retinol/sterol dehydrogenases to retinoic acid biosynthesis and provide the first evidence that non-retinoid metabolic products of retinol/sterol dehydrogenases affect gene expression in human epidermis.
Collapse
Affiliation(s)
- Seung-Ah Lee
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
31
|
Ross AC, Cifelli CJ, Zolfaghari R, Li NQ. Multiple cytochrome P-450 genes are concomitantly regulated by vitamin A under steady-state conditions and by retinoic acid during hepatic first-pass metabolism. Physiol Genomics 2010; 43:57-67. [PMID: 21045116 DOI: 10.1152/physiolgenomics.00182.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vitamin A (retinol) is an essential precursor for the production of retinoic acid (RA), which in turn is a major regulator of gene expression, affecting cell differentiation throughout the body. Understanding how vitamin A nutritional status, as well as therapeutic retinoid treatment, regulates the expression of retinoid homeostatic genes is important for improvement of dietary recommendations and therapeutic strategies using retinoids. This study investigated genes central to processes of retinoid uptake and storage, release to plasma, and oxidation in the liver of rats under steady-state conditions after different exposures to dietary vitamin A (deficient, marginal, adequate, and supplemented) and acutely after administration of a therapeutic dose of all-trans-RA. Over a very wide range of dietary vitamin A, lecithin:retinol acyltransferase (LRAT) as well as multiple cytochrome P-450s (CYP26A1, CYP26B1, and CYP2C22) differed by diet and were highly correlated with one another and with vitamin A status assessed by liver retinol concentration (all correlations, P < 0.05). After acute treatment with RA, the same genes were rapidly and concomitantly induced, preceding retinoic acid receptor (RAR)β, a classical direct target of RA. CYP26A1 mRNA exhibited the greatest dynamic range (change of log 2(6) in 3 h). Moreover, CYP26A1 increased more rapidly in the liver of RA-primed rats than naive rats, evidenced by increased CYP26A1 gene expression and increased conversion of [(3)H]RA to polar metabolites. By in situ hybridization, CYP26A1 mRNA was strongly regulated within hepatocytes, closely resembling retinol-binding protein (RBP)4 in location. Overall, whether RA is produced endogenously from retinol or administered exogenously, changes in retinoid homeostatic gene expression simultaneously favor both retinol esterification and RA oxidation, with CYP26A1 exhibiting the greatest dynamic change.
Collapse
Affiliation(s)
- A Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University,University Park, Pennsylvania 16802, USA.
| | | | | | | |
Collapse
|
32
|
Virtanen M, Sirsjö A, Vahlquist A, Törmä H. Keratins 2 and 4/13 in reconstituted human skin are reciprocally regulated by retinoids binding to nuclear receptor RARalpha. Exp Dermatol 2010; 19:674-81. [PMID: 20456496 DOI: 10.1111/j.1600-0625.2010.01079.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Disorders of keratinization are often treated with vitamin A derivatives (retinoids) which affect keratinocyte differentiation, including keratin (KRT) gene expression. In vivo, suprabasal keratinocytes normally express only keratin (K) 1, K2 and K10, but after topical application of all-trans retinoic acid (ATRA), the granular cells will additionally express K4 and K13, i.e. keratins normally present in oral mucosa and in cultured epidermal keratinocytes. To learn more about the retinoid regulation of keratin expression under in vivo-like conditions, we cultured keratinocytes on de-epidermized dermis in only 0.5% serum. These cells produce a normal-looking epidermis that expresses high mRNA levels of KRT1, KRT2 and KRT10, but minimal amounts of KRT4 and KRT13. Addition of ATRA to the medium for 48 h caused a dose-dependent increase in KRT4/KRT13 and a down-regulation of KRT2 mRNA. An increase in K4 protein was also found. The response was greater than the up-regulation of another retinoid-regulated gene, CRABPII. By studying 10 retinoids with different affinities for the retinoic acid receptors (RAR) and retinoid X receptors (RXR) isoforms, the reciprocal expression of KRT2 and KRT4/KRT13 could be connected with agonists for RARalpha. Two of these agonists, CD336/Am580 and CD2081, altered the expression profile with similar potency as the pan-RAR agonists ATRA and CD367. Co-addition of a pan-RAR antagonist (CD3106/AGN193109) markedly inhibited the induction of KRT4/KRT13 expression, whereas the down-regulation of KRT2 was less affected. In conclusion, RARalpha agonists elicit a reciprocal modulation of KRT2 and KRT4/KRT13 expression in human epidermis, but whether or not the keratin genes also possess RARalpha-specific regulatory elements is still unclear.
Collapse
Affiliation(s)
- Marie Virtanen
- Department of Medical Sciences, Uppsala University, Sweden
| | | | | | | |
Collapse
|