1
|
Ridha Z, Fabi SG, Zubar R, Dayan SH. Decoding the Implications of Glucagon-like Peptide-1 Receptor Agonists on Accelerated Facial and Skin Aging. Aesthet Surg J 2024; 44:NP809-NP818. [PMID: 38874170 DOI: 10.1093/asj/sjae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024] Open
Abstract
Following the advent of glucagon-like peptide-1 receptor agonists (GLP-1RAs), subsequent unintended effects such as accelerated facial aging and altered skin health have been noted. This review delves deeper into the causative underlying mechanisms and provides insights into the intricate relationship between GLP-1RAs, adipose tissue, and premature facial aging, thereby highlighting the need for a nuanced understanding of their effects on facial alterations and skin health. Studies exploring the potential effects of GLP-1RAs on facial alterations and offering insights into the possible underlying mechanisms, causes, and clinical implications were included. The accelerated facial aging and altered skin health observed in GLP-1RA patients appears to be multifactorial, involving loss of dermal and subcutaneous white adipose tissue, and altered proliferation and differentiation of adipose-derived stem cells (ADSCs), and impacts on the production and secretion of hormonal and metabolic factors. These changes compromise the structural integrity and barrier function of the skin and may lead to diminished facial muscle mass, further exacerbating the appearance of aging. The insights presented call for a paradigm shift in the clinical management of facial changes induced by GLP-1RAs, with a focus on treatment strategies aimed at targeting ADSC stimulation. These include autologous fat transfers to reintroduce cells rich in ADSCs for rejuvenation, composite fat grafting combining autologous fat with/without stromal vascular fraction, and the strategic use of soft tissue fillers for volume restoration and biostimulation. This review highlights the potential role of GLP-1RAs in modulating adipose tissue dynamics, thereby contributing to accelerated aging through metabolic, structural, and hormonal pathways. LEVEL OF EVIDENCE: 5
Collapse
|
2
|
Alquraisy A, Wilar G, Mohammed AFA, El-Rayyes A, Suhandi C, Wathoni N. A Comprehensive Review of Stem Cell Conditioned Media Role for Anti-Aging on Skin. Stem Cells Cloning 2024; 17:5-19. [PMID: 39310304 PMCID: PMC11416772 DOI: 10.2147/sccaa.s480437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Various studies have been widely conducted on conditioned medium for the development of anti-aging preparations, including the utilization of stem cells, which present a promising alternative solution. This narrative review aims to understand the latest developments in various conditioned medium stem cell applications for anti-aging on the skin. A search of the Scopus database yielded publications of interest. The research focused on articles published without restrictions on the year. After finding 68 articles in the search results, they moved on to the checking phase. Upon comprehensive literature review, 23 articles met the inclusion criteria, while 45 articles were deemed ineligible for participation in this research. The results of the review indicate that conditioned medium from various stem cells has demonstrated success in reducing risk factors for skin aging, as proven in various tests. The successful reduction of the risk of skin aging has been established in vitro, in vivo, and in clinical trials. Given the numerous studies on the progress of exploring and utilizing conditioned medium, it is expected to provide a solution to the problem of skin aging.
Collapse
Affiliation(s)
- Ayatulloh Alquraisy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| | | | - Ali El-Rayyes
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
3
|
Badr OI, Anter A, Magdy I, Chukueggu M, Khorshid M, Darwish M, Farrag M, Elsayed M, Amr Y, Amgad Y, Mahmoud T, Kamal MM. Adipose-Derived Mesenchymal Stem Cells and Their Derived Epidermal Progenitor Cells Conditioned Media Ameliorate Skin Aging in Rats. Tissue Eng Regen Med 2024; 21:915-927. [PMID: 38913224 PMCID: PMC11286614 DOI: 10.1007/s13770-024-00643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Skin alterations are among the most prominent signs of aging, and they arise from both intrinsic and extrinsic factors that interact and mutually influence one another. The use of D-galactose as an aging model in animals has been widely employed in anti-aging research. Adipose tissue-derived mesenchymal stem cells (Ad-MSCs) are particularly promising for skin anti-aging therapy due to their capacity for effective re-epithelization and secretion of various growth factors essential for skin regeneration. Accordingly, we aimed to examine the potential utility of Ad-MSCs as a therapy for skin anti-aging. METHODS In this study, we isolated and characterized adipose-derived mesenchymal stem cells (Ad-MSCs) from the epididymal fat of male Sprague Dawley rats. We assessed the in vitro differentiation of Ad-MSCs into epidermal progenitor cells (EPCs) using ascorbic acid and hydrocoritsone. Additionally, we induced skin aging in female Sprague Dawley rats via daily intradermal injection of D-galactose over a period of 8 weeks. Then we evaluated the therapeutic potential of intradermal transplantation of Ad-MSCs and conditioned media (CM) derived from differentiated EPCs in the D-galactose-induced aging rats. Morphological assessments, antioxidant assays, and histopathological examinations were performed to investigate the effects of the treatments. RESULTS Our findings revealed the significant capability of Ad-MSCs to differentiate into EPCs. Notably, compared to the group that received CM treatment, the Ad-MSCs-treated group exhibited a marked improvement in morphological appearance, antioxidant levels and histological features. CONCLUSIONS These results underscore the effectiveness of Ad-MSCs in restoring skin aging as a potential therapy for skin aging.
Collapse
Affiliation(s)
- Omar I Badr
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Aya Anter
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Ihab Magdy
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Marvellous Chukueggu
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Moamen Khorshid
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Darwish
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Farrag
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Menna Elsayed
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Youmna Amr
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Yomna Amgad
- Final Year Pharmacy students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Tasnim Mahmoud
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed M Kamal
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
- Drug Research and Development Group, Faculty of Pharmacy, Health Research Center of Excellence, The British University in Egypt, Cairo, Egypt.
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Kiuchi S, Lopes TJ, Oishi T, Cho Y, Ochiai H, Gomi T. TSG-6 Is Involved in Fibrous Structural Remodeling after the Injection of Adipose-derived Stem Cells. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5990. [PMID: 39036595 PMCID: PMC11259393 DOI: 10.1097/gox.0000000000005990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/29/2024] [Indexed: 07/23/2024]
Abstract
Background Although aesthetic treatments can rejuvenate the skin, they often cause specific forms of tissue damage. Unlike wounding, which typically results in fibrotic scar tissue, damage from aesthetic treatments induces a distinct histological rejuvenation. The mechanisms that drive this rejuvenation are not yet fully understood. Here, we were interested in cellular responses following aesthetic treatments injecting adipose-derived stem cells (ASCs) subcutaneously. Through investigation with an ex vivo experimental model, a key gene was identified that orchestrates fibrous structural changes and tissue remodeling. Methods Using fresh human subcutaneous adipose tissue co-cultured with ASCs, the changes in the fibrous architecture of the tissue were sequentially mapped. The key regulatory genes involved in remodeling were identified using gene expression and computational analyses. Results We identified the regulatory elements that are crucial for tissue remodeling. Among those, we found that tumor necrosis factor-stimulated gene-6 (TSG-6) is a paracrine mediator essential for the collagen activity. It not only alleviates tissue inflammation but also promotes collagen replacement ex vivo. This is primarily achieved by inhibiting the formation of neutrophil extracellular traps, which are known to promote fibrosis. Conclusions TSG-6 is a key factor modulating tissue inflammation. As our results demonstrate, after ASCs treatment, this factor directs skin healing away from fibrosis by reducing neutrophil extracellular trap formation in subcutaneous adipose tissue and promotes fibrous rejuvenation.
Collapse
Affiliation(s)
- Satomi Kiuchi
- From POLA Chemical Industries, Inc., Yokohama, Japan
| | - Tiago J.S. Lopes
- Center of Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
- Nezu Life Sciences, Karlsruhe, Germany
| | - Takaya Oishi
- From POLA Chemical Industries, Inc., Yokohama, Japan
| | - Yuki Cho
- From POLA Chemical Industries, Inc., Yokohama, Japan
| | | | - Takamasa Gomi
- From POLA Chemical Industries, Inc., Yokohama, Japan
| |
Collapse
|
5
|
Verling SD, Mashoudy K, Gompels M, Goldenberg G. Regenerative Medicine in Clinical and Aesthetic Dermatology. A COMPREHENSIVE GUIDE TO MALE AESTHETIC AND RECONSTRUCTIVE PLASTIC SURGERY 2024:65-79. [DOI: 10.1007/978-3-031-48503-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Ru J, Zhang Q, Zhu S, Cai J, He Y, Lu F. Delivery of adipose-derived growth factors from heparinized adipose acellular matrix accelerates wound healing. Front Bioeng Biotechnol 2023; 11:1270618. [PMID: 37854882 PMCID: PMC10579818 DOI: 10.3389/fbioe.2023.1270618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Dermal white adipocytes are closely associated with skin homeostasis and wound healing. However, it has not been fully investigated whether adipose-derived products improve wound healing. Here, we obtained adipose acellular matrix (AAM) and adipose-derived growth factors (ADGFs) from human adipose tissue and fabricated an ADGF-loaded AAM via surface modification with heparin. The product, HEP-ADGF-AAM, contained an adipose-derived scaffold and released ADGFs in a controlled fashion. To test its efficacy in promoting wound healing, mice with full thickness wound received three different treatments: HEP-ADGF-AAM, AAM and ADM. Control mice received no further treatments. Among these treatments, HEP-ADGF-AAM best improved wound healing. It induced adipogenesis in situ after in vivo implantation and provided an adipogenic microenvironment for wounds by releasing ADGFs. HEP-ADGF-AAM not only induced adipocyte regeneration, but also enhanced fibroblast migration, promoted vessel formation, accelerated wound closure, and enhanced wound epithelialization. Moreover, there was a close interaction between HEP-ADGF-AAM and the wound bed, and collagen was turned over in HEP-ADGF-AAM. These results show that HEP-ADGF-AAM might substantially improve re-epithelialization, angiogenesis, and skin appendage regeneration, and is thus a promising therapeutic biomaterial for skin wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Yunfan He
- *Correspondence: Yunfan He, ; Feng Lu,
| | - Feng Lu
- *Correspondence: Yunfan He, ; Feng Lu,
| |
Collapse
|
7
|
Ortega-Cuartiella A. Therapeutic Potential of Adipose-Derived Stem Cells and Their Secretome in Reversible Alopecias: A Systematic Review. Int J Trichology 2023; 15:173-182. [PMID: 39170092 PMCID: PMC11335044 DOI: 10.4103/ijt.ijt_3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/19/2021] [Indexed: 08/23/2024] Open
Abstract
Androgenic alopecia (AGA) and alopecia areata (AA) are two highly prevalent conditions, affecting both men and women of a wide range of ages, which strongly impact their quality of life and self-esteem. Both pathologies are deemed to be reversible, although conventional therapies have shown limited scope and efficacy. New therapeutic approaches, focusing on the degenerative changes that take place in the hair follicle, are needed to achieve better outcomes. For instance, adipose-derived stem cells (ADSC), abundant and easy to obtain, hold great potential in follicular regeneration. ADSCs can be isolated as stromal vascular fraction (SVF) by the enzymatic digestion of the lipoaspirate or as nanofat by the mechanical breakdown of adipocytes. In addition, commercial preparations of the conditioned medium of the ADSCs secretome (ADSC-conditionate medium [CM]) have entered the market as an appealing alternative because of their comparatively lower cost and accessibility. A search was conducted, crossing relevant terms, on PubMed Central and Google Scholar. Criteria for inclusion were studies in the past 10 years on humans with AGA or AA, where either SVF, nanofat, or ADSC-CM was tested as the main treatment. Eleven publications qualified: two studied nanofat, three, ADSC-CM, and six, SVF, either individually or in combination with other therapies. Only one randomized controlled trial (RCT) was found and classified as evidence 2b according to the Sackett scale. The rest were case-control studies or case series with small samples and no control, graded as evidence 3b and 4. A meta-analysis could not be conducted due to the heterogenicity of the study designs. Given the evidence obtained, Level D NICE recommendation was established. However, we consider that the positive findings are sufficiently consistent to support the elaboration of further RCTs that share criteria and methods.
Collapse
Affiliation(s)
- Alexis Ortega-Cuartiella
- Ad Astra Clinic® Medical Director and Founder, Cl. Doctor Roux 67, Bajo. Barcelona, Spain, International Society for Stem Cell Applications: Platinum Member, Real Instituto Alfonso XIII: Academician
| |
Collapse
|
8
|
Aronowitz JA, Oheb D, Cai N, Pekcan A, Winterhalter B, Clayton J. Esthetic Surgery Applications for Adipose-Derived Stem Cells. Regen Med 2023. [DOI: 10.1007/978-3-030-75517-1_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
9
|
Sanchez MM, Tonmoy TI, Park BH, Morgan JT. Development of a Vascularized Human Skin Equivalent with Hypodermis for Photoaging Studies. Biomolecules 2022; 12:biom12121828. [PMID: 36551256 PMCID: PMC9775308 DOI: 10.3390/biom12121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Photoaging is an important extrinsic aging factor leading to altered skin morphology and reduced function. Prior work has revealed a connection between photoaging and loss of subcutaneous fat. Currently, primary models for studying this are in vivo (human samples or animal models) or in vitro models, including human skin equivalents (HSEs). In vivo models are limited by accessibility and cost, while HSEs typically do not include a subcutaneous adipose component. To address this, we developed an "adipose-vascular" HSE (AVHSE) culture method, which includes both hypodermal adipose and vascular cells. Furthermore, we tested AVHSE as a potential model for hypodermal adipose aging via exposure to 0.45 ± 0.15 mW/cm2 385 nm light (UVA). One week of 2 h daily UVA exposure had limited impact on epidermal and vascular components of the AVHSE, but significantly reduced adiposity by approximately 50%. Overall, we have developed a novel method for generating HSE that include vascular and adipose components and demonstrated potential as an aging model using photoaging as an example.
Collapse
|
10
|
Abstract
In cell-assisted lipotransfer, adipose-derived stem cells play a crucial role in enhancing fat graft retention. In vitro, human adipose-derived stem cells were modified with Bcl-2 gene. In vivo, aspirated fat was mixed with the Bcl-2-modified adipose-derived stem cells and then transplanted subcutaneously into nude mice. The retention of fat graft was evaluated. The surviving Bcl-2-modified adipose-derived stem cells were tracked after transplantation. Capillary density was quantified after transplantation. Transplantation with Bcl-2-modified adipose-derived stem cells enhanced fat graft retention by 49% and 114% at 6 weeks compared with the Fat + vector-modified adipose-derived stem cell group and Fat-only group, respectively. Transplants from the Fat + Bcl-2-modified adipose-derived stem cell group had significantly more intact adipocytes and lower levels of fat necrosis and fibrosis at 6 weeks. The survival of Bcl-2-modified adipose-derived stem cells increased by 33% at 3 weeks and 54% at 6 weeks, respectively, compared with vector-modified adipose-derived stem cells. The capillary density was 24% higher in Fat + Bcl-2-modified adipose-derived stem cell group than in Fat + vector-modified adipose-derived stem cell group or 60% higher than in Fat-only group at 3 weeks.
Collapse
Affiliation(s)
- Ziwei Cui
- Department of Aesthetic Surgery, the Daqing Oilfield General Hospital, Daqing, Heilongjiang, China.,Department of Burns and Plastic Surgery, The Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, The Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Burns and Plastic Surgery, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Paganelli A, Rossi E, Magnoni C. The dark side of adipose-derived mesenchymal stromal cells in cutaneous oncology: roles, expectations, and potential pitfalls. Stem Cells Dev 2022; 31:593-603. [PMID: 36066334 DOI: 10.1089/scd.2022.0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adipose-derived stromal cells (ADSCs) have well-established regenerative and immunomodulatory properties. For such reasons, ADSCs are currently under investigation for their use in the setting of both regenerative medicine and autoimmune diseases. As per dermatological disorders, MSC-based strategies represent potential therapeutic tools not only for chronic ulcers and wound healing, but also for immune-mediated dermatoses. However, a growing body of research has been focusing on the role of MSCs in human cancers, due to the potential oncological risk of using MSC-based strategies linked to their anti-apoptotic, pro-angiogenic and immunosuppressive properties. In the dermatological setting, ADSCs have shown not only to promote melanoma growth and invasiveness, but also to induce drug-resistance. On the other hand, genetically modified ADSCs have been demonstrated to efficiently target therapies at tumor sites, due to their migratory properties and their peculiar tropism for cancer microenvironment. The present review briefly summarizes the findings published so far on the use of ADSCs in the dermato-oncological setting, with the majority of data being available for melanoma.
Collapse
Affiliation(s)
- Alessia Paganelli
- Universita degli Studi di Modena e Reggio Emilia, Dermatology, Modena, Italy, 41124;
| | - Elena Rossi
- Universita degli Studi di Modena e Reggio Emilia, Dermatology, Modena, Italy;
| | - Cristina Magnoni
- Universita degli Studi di Modena e Reggio Emilia, Dermatology, Modena, Italy;
| |
Collapse
|
12
|
Sharun K, Jambagi K, Kumar R, Gugjoo MB, Pawde AM, Tuli HS, Dhama K, Amarpal. Clinical applications of adipose-derived stromal vascular fraction in veterinary practice. Vet Q 2022; 42:151-166. [PMID: 35841195 PMCID: PMC9364732 DOI: 10.1080/01652176.2022.2102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Adipose tissue-derived stromal vascular fraction (AdSVF) comprises a heterogeneous cell population, including the multipotent mesenchymal stem cells, hematopoietic stem cells, immune cells, endothelial cells, fibroblasts, and pericytes. As such, multipotent adipose tissue-derived mesenchymal stem cells (AdMSCs), are one of the important components of AdSVF. Commonly used techniques to harvest AdSVF involve enzymatic or non-enzymatic methods. The enzymatic method is considered to be the gold standard technique due to its higher yield. The cellular components of AdSVF can be resuspended in normal saline, platelet-rich plasma, or phosphate-buffered saline to produce a ready-to-use solution. Freshly isolated AdSVF has exhibited promising osteogenic and vasculogenic capacity. AdSVF has already been proven to possess therapeutic potential for osteoarthritis management. It is also an attractive therapeutic option for enhancing wound healing. In addition, the combined use of AdSVF and platelet-rich plasma has an additive stimulatory effect in accelerating wound healing and can be considered an alternative to AdMSC treatment. It is also widely used for managing various orthopaedic conditions in clinical settings and has the potential for regenerating bone, cartilage, and tendons. Autologous AdSVF cells are used along with bone substitutes and other biological factors as an alternative to conventional bone grafting techniques owing to their promising osteogenic and vasculogenic capacity. It can also be used for treating osteonecrosis, meniscus tear, chondromalacia, and tendon injuries in veterinary practice. It has several advantages over in vitro expanded AdMSC, including precluding the need for culturing, reduced risk of cell contamination, and cost-effectiveness, making it ideal for clinical use.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Kaveri Jambagi
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Rohit Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar, Jammu and Kashmir-190006, India
| | - Abhijit M Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh-243122, India
| |
Collapse
|
13
|
Wang J, Chen Y, He J, Li G, Chen X, Liu H. Anti-Aging Effect of the Stromal Vascular Fraction/Adipose-Derived Stem Cells in a Mouse Model of Skin Aging Induced by UVB Irradiation. Front Surg 2022; 9:950967. [PMID: 35874134 PMCID: PMC9304656 DOI: 10.3389/fsurg.2022.950967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Adipose-derived stem cells(ADSCs) have been used for anti-photo-aging. But the purification of ADSCs requires in vitro amplification and culture, there is considerable risk of direct treatment for patients. Stromal vascular fraction(SVF) is a biologically and clinically interesting heterogeneous cell population contains ADSCs. There are few reports on anti-aging effects of SVF in photo-aging skin. The present study investigated the anti-aging effect of stromal vascular fraction (SVF) and adipose-derived stem cells (ADSCs) injection in photo-aging skin. The relationship between the dosage of injection and effect was also discussed. Thirty healthy, 6-week-old, nude rats were randomly divided into the control and experimental groups. The experimental group needing ultraviolet B (UVB) irradiation five days per week, and a duration of 8 weeks. According to different dose regimens of SVF and ADSCs, experiment rats were randomly grouped as the model control group, low-dose (LD) treatment group, middle-dose (MD) treatment group and high-dose (HD) treatment group. At 7 and 28 days post-treatment, specimens were harvested for histological and immunohistochemical analysis. We found that certain concentrations of cells (MD and HD groups) could improve the texture of photoaged skin. Changes in the epidermal cell layer were clearly observed after 7 days of treatment. The epidermal layer becomes thinner and more tender. After 28 days of treatment, the dermal tissue was thickened and the collagen content and proportion were improved. All these indicators showed no significant difference between the same dosages in the two treatment groups. Our results demonstrate that SVF may have anti-aging potential in photo-aging skin and the ADSCs play an important role in SVF. SVF maybe a potential agent for photo-anging skin and the most effective dose of SVF was 106 cells /100 µl/injection point. The proper injection interval may be 1.5 cm.
Collapse
Affiliation(s)
- Jingru Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Burn Surgery, First People’s Hospital of Foshan, Foshan, China
| | - Yuanwen Chen
- Department of Burn and Plastic Surgery, The People's Hospital of Baoan shenzhen, Shenzhen, China
| | - Jia He
- Department of Burn Surgery, First People’s Hospital of Foshan, Foshan, China
| | - Guiqiang Li
- Department of Burn Surgery, First People’s Hospital of Foshan, Foshan, China
| | - Xiaodong Chen
- Department of Burn Surgery, First People’s Hospital of Foshan, Foshan, China
- Correspondence: Xiaodong Chen Hongwei Liu
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Correspondence: Xiaodong Chen Hongwei Liu
| |
Collapse
|
14
|
Lv J, Yang S, Lv M, Lv J, Sui Y, Guo S. Protective roles of mesenchymal stem cells on skin photoaging: A narrative review. Tissue Cell 2022; 76:101746. [PMID: 35182986 DOI: 10.1016/j.tice.2022.101746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 12/30/2022]
Abstract
Skin is a natural barrier of human body and a visual indicator of aging process. Exposure to ultraviolet (UV) radiation in the sunlight may injure the skin tissues and cause local damage. Besides, it is reported that repetitive or long-term exposure to UV radiation may reduce the collagen production, change the normal skin structure and cause premature skin aging. This is termed "photoaging". The classical symptoms of photoaging include increased roughness, wrinkle formation, mottled pigmentation or even precancerous changes. Mesenchymal stem cells (MSCs) are a kind of cells with the ability of self-renewal and multidirectional differentiation into many types of cells, like adipocytes, osteoblasts and chondrocytes. Researchers have explored diverse pharmacological actions of MSCs because of their migratory activity, paracrine actions and immunoregulation effects. In recent years, the huge potential of MSCs in preventing skin from photoaging has gained wide attention. MSCs exert their beneficial effects on skin photoaging via antioxidant effect, anti-apoptotic/anti-inflammatory effect, reduction of matrix metalloproteinases (MMPs) and activation of dermal fibroblasts proliferation. MSCs and MSC related products have demonstrated huge potential in the treatment of skin photoaging. This narrative review concisely sums up the recent research developments on the roles of MSCs in protection against photoaging and highlights the enormous potential of MSCs in skin photoaging treatment.
Collapse
Affiliation(s)
- Jiacheng Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jiarui Lv
- Department of Physiology, School of Life Science, China Medical University, Shenyang, China
| | - Yanan Sui
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
15
|
Dou S, Yang Y, Zhang J, He Z, Wu Z, Zhao Y, Zhang K, Liu Y, Li Y, Miao X, Miao G, Liu M. Exploring the Role and Mechanism of Adipose Derived Mesenchymal Stem Cells on Reversal of Pigmentation Model Effects. Aesthetic Plast Surg 2022; 46:1983-1996. [PMID: 35441235 DOI: 10.1007/s00266-022-02872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/13/2022] [Indexed: 11/01/2022]
Abstract
Interventions for extrinsic aging can be implemented, but these must address photoaging, which is the primary cause of extrinsic aging. Pigmentation due to photoaging depends on the duration and intensity of sun exposure. This study investigated the relationship between adipose-derived mesenchymal stem cells (ASCs) and photoaging pigmentation, and the underlying mechanism of action by establishing a photoaging pigmentation model using various treatments and exposure options in a guinea pigs. The energy dose of each UVB irradiation was 120 mJ/cm2 and the total dose of irradiation was 360 mJ/cm2. After successfully establishing the photoaging model, ASCs (1×106) in an balanced salt solution (0.9 ml), balanced salt solution (0.9 ml), and bFGF (9 μg) mixed with an balanced salt solution (0.9 ml) were injected intradermally in ten guinea pigs. ELISA, macroscopic skin and histological observations, and Masson-Fontana staining were done. At 2 and 4 weeks post-injection, noticeable changes were observed. Guinea pigs receiving ASCs injections displayed significantly lower visible skin scores while the melanin content continued to decrease. Somewhat improved histopathological morphology, including epidermal thinning, dermal thickening, and little inflammatory cell infiltration was observed immediately after and up to 4 weeks of ASCs injection. Melanocortin 1 receptor (MC1R) and alpha-melanocyte test hormone (alpha-MSH) levels reduced significantly, and basic fibroblast growth factor (bFGF) levels increased significantly immediately after and up to 4 weeks of ASCs injection. The MC1R and alpha-MSH levels reduced significantly immediately after and up to 4 weeks of bFGF injection. Briefly, intradermal ASCs injection can notably eliminate pigmentation in a guinea pig photoaging pigmentation model. This may be related to the fact that bFGF secreted by ASCs lowers MC1R and alpha-MSH levels, blocks the cAMP signalling pathway, and inhibits melanin synthesis. This finding may present new options for treating photoaging pigmentation.Level of Evidence: N/A.
Collapse
|
16
|
Abstract
BACKGROUND Regenerative aesthetics is an emerging branch of regenerative medicine with therapies aimed at recapturing youthful structure and function using the body's own systems. OBJECTIVE To introduce the field of regenerative aesthetics, and to explore themes and evidence surrounding current and emerging therapies in the field. MATERIALS AND METHODS A review of the literature was performed for each of the 3 pillars of regeneration; namely, stem cells, biochemical cues, and scaffolds. RESULTS Herein, we provide an overview of the field of regenerative aesthetics, a discussion surrounding the 3 pillars of regeneration, and an overview of the evidence supporting current and emerging therapeutic modalities that could play a pivotal role in the future of aesthetic treatments. CONCLUSION An enhanced understanding of this field can serve to further enhance our awareness about the regenerative effects of therapies we already offer, in addition to providing inspiration for future innovation.
Collapse
|
17
|
A Retrospective Study of SVF-gel Compared With Nanofat Combined With High-density Fat in the Treatment of Early Periorbital Aging. Ophthalmic Plast Reconstr Surg 2021; 38:340-347. [PMID: 34889312 DOI: 10.1097/iop.0000000000002103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To compare the effectiveness of transplantation with stromal vascular fraction (SVF)-gel or nanofat combined with high-density fat prepared with the Coleman technique (nanofat+high-density fat) to restore volume in the periorbital region or for periorbital rejuvenation in early periorbital aging. METHODS This retrospective study included 103 patients who received a transplant of SVF-gel (n = 58) or nanofat+high-density fat (n = 45) to restore volume in the periorbital region (n = 85) or for periorbital rejuvenation (n = 18) in our hospital between January 2016 and January 2020. Patient satisfaction and the reoperation rate were evaluated. RESULTS All patients had improved periorbital contouring and augmentation. Among the patients that received treatment to restore volume in the periorbital region, 17% and 65.9% of patients administered SVF-gel were very satisfied or satisfied, and 5.3% and 44.7% of patients administered nanofat+high-density fat were very satisfied or satisfied. PATIENTS administered SVF-gel were significantly more satisfied than patients administered nanofat+high-density fat with improvements in periorbital contouring (p < 0.05). Among the patients that received treatment for periorbital rejuvenation, 54.5% and 27.3% of patients administered SVF-gel were very satisfied or satisfied, and 28.6% and 42.8% of patients administered nanofat+high-density fat were very satisfied or satisfied. There was no significant difference between groups (p > 0.05). Some patients underwent a second operation after 3 to 8 months. Patients administered SVF-gel to restore volume in the periorbital region had a significantly lower reoperation rate than patients administered nanofat+high-density fat (12.7% [6/47] vs. 34.2% [13/38]; p < 0.05). There was no significant difference in the reoperation rate in patients treated for periorbital rejuvenation (9.1% [1/11] vs. 14.3% [1/7]; p > 0.05). CONCLUSION SVF-gel and nanofat+high-density fat are effective for restoring volume in the periorbital region and for periorbital rejuvenation in early periorbital aging. The reoperation rate was significantly lower and patient satisfaction scores were significantly higher in patients administered SVF-gel to restore volume in the periorbital region compared with patients administered nanofat+high-density fat.
Collapse
|
18
|
Protective effects of low-molecular-weight components of adipose stem cell-derived conditioned medium on dry eye syndrome in mice. Sci Rep 2021; 11:21874. [PMID: 34750552 PMCID: PMC8575953 DOI: 10.1038/s41598-021-01503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022] Open
Abstract
The present study demonstrated the protective effects of low-molecular-weight adipose-derived stem cell-conditioned medium (LADSC-CM) in a mouse model of dry eye syndrome. Mice subjected to desiccating stress and benzalkonium chloride had decreased tear secretion, impaired corneal epithelial tight junction with microvilli, and decreased conjunctival goblet cells. Topical application of adipose-derived stem cell-conditioned medium (ADSC-CM) stimulated lacrimal tear secretion, preserved tight junction and microvilli of the corneal epithelium, and increased the density of goblet cells and MUC16 expression in the conjunctiva. The low-molecular-weight fractions (< 10 kDa and < 3 kDa) of ADSC-CM (LADSC-CM) provided better protections than the > 10 kDa or > 3 kDa fractions of ADSC-CM. In the in vitro study, desiccation for 10 min or hyperosmolarity (490 osmols) for 24 h caused decreased viability of human corneal epithelial cells, which were reversed by LADSC-CM. The active ingredients in the LADSC-CM were lipophobic and stable after heating and lyophilization. Our study demonstrated that LADSC-CM had beneficial effects on experimental dry eye. It is worthy of further exploration for the active ingredient(s) and the mechanism.
Collapse
|
19
|
Abu-Shahba N, Mahmoud M, El-Erian AM, Husseiny MI, Nour-Eldeen G, Helwa I, Amr K, ElHefnawi M, Othman AI, Ibrahim SA, Azmy O. Impact of type 2 diabetes mellitus on the immunoregulatory characteristics of adipose tissue-derived mesenchymal stem cells. Int J Biochem Cell Biol 2021; 140:106072. [PMID: 34455058 DOI: 10.1016/j.biocel.2021.106072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder associated with several complications. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) represent an emerging type of MSCs with high plasticity and immunoregulatory capabilities and are useful for treating inflammation-related disorders such as T2DM. However, the pathogenic microenvironment of T2DM may affect their therapeutic potential. We aimed to examine the impact of the diabetic milieu on the immunomodulatory/anti-inflammatory potential of AT-MSCs. METHODS We assessed the proliferation potential, cell surface expression of MSC-characteristic markers and immunomodulatory markers, along with the gene expression and protein secretion of pro-inflammatory and anti-inflammatory cytokines and adipokines in AT-MSCs derived from T2DM patients (dAT-MSCs) vs. those derived from non-diabetic volunteers (ndAT-MSCs). Furthermore, we evaluated the IFN-γ priming effect on both groups. RESULTS Our data revealed comparable proliferative activities in both groups. Flow cytometric analysis results showed a lower expression of CD200 and CD276 on dAT-MSCs vs. ndAT-MSCs. qPCR demonstrated upregulation of IL-1β associated with a downregulation of IL-1RN in dAT-MSCs vs. ndAT-MSCs. IFN-γ priming induced an elevation in CD274 expression associated with IDO1 and ILRN overexpression and IL-1β downregulation in both groups. ELISA analysis uncovered elevated levels of secreted IL-1β, TNF, and visfatin/NAMPT in dAT-MSCs, whereas IL-1RA and IDO levels were reduced. ELISA results were also evident in the secretome of dAT-MSCs upon IFN-γ priming. CONCLUSIONS This study suggests that the T2DM milieu alters the immunomodulatory characteristics of AT-MSCs with a shift towards a proinflammatory phenotype which may restrain their autologous therapeutic use. Furthermore, our findings indicate that IFN-γ priming could be a useful strategy for enhancing dAT-MSC anti-inflammatory potential.
Collapse
Affiliation(s)
- Nourhan Abu-Shahba
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt; Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt.
| | - Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt; Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Alaa Mohammed El-Erian
- Department of Endocrine Surgery, National Institute of Diabetes and Endocrinology, Cairo, Egypt
| | - Mohamed Ibrahim Husseiny
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs DMRI, Beckman Research Institute, City of Hope, National Medical Center, Durate, CA, USA; Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ghada Nour-Eldeen
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt; Department of Molecular Genetics and Enzymology, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Iman Helwa
- Department of Immunogenetics, Human Genetics and Genome Research Division, National Resrearch Centre, Egypt
| | - Khalda Amr
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemoinformatics Group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
| | - Amel Ibrahim Othman
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | | | - Osama Azmy
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt; Department of Reproductive Health Research, Medical Research Division, National Research Centre, Cairo, Egypt; Egypt Center for Research and Regenerative Medicine, Cairo, Egypt
| |
Collapse
|
20
|
Kim MH, Chung C, Oh MH, Jun JH, Ko Y, Lee JH. Extracellular Vesicles From a Three-Dimensional Culture of Perivascular Cells Accelerate Skin Wound Healing in a Rat. Aesthetic Plast Surg 2021; 45:2437-2446. [PMID: 33821312 DOI: 10.1007/s00266-021-02254-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Soluble proteins and extracellular vesicles (EVs) are crucial wound repair mediators in cell-based therapy. Previous studies reported that EVs of perivascular cells stimulated migration and proliferation of cell types involved in the dermatological wound healing process. However, these studies only show effects of EVs from perivascular cells (PVCs) for in vitro models. METHODS EVs were collected from 3D-cultured PVC (PVC-3D-EV) and compared with EVs from 2D-culture PVC (PVC-2D-EV) to investigate effects on wound contraction, angiogenesis, activation of myofibroblast, and collagen deposition. RESULTS PVC-3D-EV was significantly improved in terms of wound contraction compared with PVC-2D-EV and the control. Activation of myofibroblast and collagen deposition in a rat skin wound model was significantly stimulated by PVC-3D-EV. In addition, angiogenesis and vascular endothelial growth factor expression were also highly stimulated by PVC-3D-EV. These results suggest that PVC-3D-EV was regulated in granulation tissue formation, angiogenesis, and wound contraction in healing of a rat skin wound. These results indicate a pivotal role of PVC-3D-EV in wound healing through multiple mechanisms. CONCLUSIONS 3D-culture using a polystyrene scaffold is demonstrated to be a better system for providing better physiological conditions than the 2D-culture system, and EVs from 3D-cultured PVC could be a promising option for healing skin wound. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Min Ho Kim
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc, Seoul, Republic of Korea
| | - Changho Chung
- Department of Plastic and Reconstructive Surgery, Nowon Eulji Medical Center, School of Medicine, Eulji University, 68, Hangeulbiseok-ro, Nowon-gu, Seoul, Republic of Korea
| | - Mun Ho Oh
- Eulji Medi-Bio Research Institute, Eulji University, Seoul, Republic of Korea
| | - Jin Hyun Jun
- Eulji Medi-Bio Research Institute, Eulji University, Seoul, Republic of Korea
- Department of Senior Healthcare, BK21 plus Program, Graduated School, Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Yong Ko
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jong Hun Lee
- Department of Plastic and Reconstructive Surgery, Nowon Eulji Medical Center, School of Medicine, Eulji University, 68, Hangeulbiseok-ro, Nowon-gu, Seoul, Republic of Korea.
- Eulji Medi-Bio Research Institute, Eulji University, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Jin X, Zhang Y, Zhang X, Li Y, Xu M, Liu K, Ru J, Ma C, Yao Y, He Y, Gao J. An Adipose-Derived Injectable Sustained-Release Collagen Scaffold of Adipokines Prepared Through a Fast Mechanical Processing Technique for Preventing Skin Photoaging in Mice. Front Cell Dev Biol 2021; 9:722427. [PMID: 34631708 PMCID: PMC8497903 DOI: 10.3389/fcell.2021.722427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Ultraviolet A (UVA) radiation is the major contributor to skin photoaging, associated with increased collagen degradation and reactive oxygen species (ROS) expression. Adipokines have been proven as promising therapeutic agents for skin photoaging. However, adipokine therapy is generally limited by the short in vivo release duration and biological instability. Therefore, developing a treatment that provides a sustained release of adipokines and enhanced therapeutic effects is desirable. In this study, we developed a novel mechanical processing technique to extract adipose tissue-derived ECM components, named the "adipose collagen fragment" (ACF). The physical characterization, injectability, collagen components, residual DNA/RNA and adipokine release pattern of ACF were identified in vitro. L929 cells were treated with ACF or phosphate-buffered saline for 24 h after UVA irradiation in vitro. The expression of senescence-associated xβ-galactosidase (SA-β-gal), ROS and antioxidase were investigated. Then, we evaluated its therapeutic efficacy by injecting ACF and phosphate-buffered saline, as a control, into the dermis of photoaging nude mice and harvesting skin samples at weeks 1, 2, and 4 after treatment for assessment. The content of adipokines released from ACF was identified in vivo. The collagen synthesis and collagen degradation in ACF implants were evaluated by immune staining. Dermal thickness, fibroblast expression, collagen synthesis, ROS level, antioxidase expression, capillary density, and apoptotic cell number were evaluated by histological assessment, immune staining, and polymerase chain reaction in the skin samples. We demonstrated that ACF is the concentrated adipose extracellular matrix collagen fragment without viable cells and can be injected through fine needles. The lower expression of SA-β-gal, ROS and higher expression of antioxidase were observed in the ACF-treated group. ACF undergoes collagen degradation and promotes neocollagen synthesis in ACF implants. Meanwhile, ACF serves as a sustained-release system of adipokines and exhibits a significantly higher therapeutic effect on mouse skin photoaging by enhancing angiogenesis, antioxidant abilities, antiapoptotic activities, and collagen synthesis through sustainedly releasing adipokines. To sum up, ACF is an adipokines-enriched, sustained-release extracellular matrix collagen scaffold that can prevent UVA-induced skin photoaging in mice. ACF may serve as a novel autologous skin filler for skin rejuvenation applications in the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yao Yao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunfan He
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhua Gao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Comparison of the Donor Age-Dependent and In Vitro Culture-Dependent Mesenchymal Stem Cell Aging in Rat Model. Stem Cells Int 2021; 2021:6665358. [PMID: 34093710 PMCID: PMC8140846 DOI: 10.1155/2021/6665358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/12/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Clinical experiments suggest that mesenchymal stem cells (MSCs) may be useful for tissue repair therapies or treatment of the autoimmune disorders. There is still lack of consensus concerning the age limit of MSC donors, majority of researchers suggest the autologous MSC therapies of patients not exceeding age limit of 55-60 yrs. The purpose of our study was to compare the selected parameters of MSCs from adipose tissue (adipose stem cell, ASC) collected from young and old rats of ages corresponding to patient's ages 25 yrs. and 80 yrs., respectively. The differences of parameters of ASCs from young and old animals were compared with the differences between ASCs from short-term (3 passage) and long-term (30 passage) in vitro culture. Cell morphology, surface marker expression, growth potential, metabolic activity, β-galactosidase activity, clonogenic potential, angiogenic potential, and differentiation ability of ASCs from young and aged animals and from in vitro cultures at 3rd and 30th passages were compared and analyzed. It may be concluded that ASCs may be applied for autologous transplantations in aged patients. Comparison of ASC aging dynamics depending on host aging or in vitro culture duration suggests that long-term in vitro culture may affect ASCs more than natural aging process of their host. We suggest that ASCs expanded in vitro prior to their clinical use must be carefully screened for the possible aging effects resulting not only from donor age, but from the duration of their in vitro culture.
Collapse
|
23
|
赵 健, 李 东, 安 阳. [Roles of ten eleven translocation proteins family and 5-hydroxymethylcytosine in epigenetic regulation of stem cells and regenerative medicine]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2021; 53:420-424. [PMID: 33879920 PMCID: PMC8072413 DOI: 10.19723/j.issn.1671-167x.2021.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 06/12/2023]
Abstract
The methylation of cytosine is one of the most fundamental epigenetic modifications in mammalian genomes, and is involved in multiple crucial processes including gene expression, cell differentiation, embryo development and oncogenesis. In the past, DNA methylation was thought to be an irreversible process, which could only be diluted passively through DNA replication. It is now becoming increa-singly obvious that DNA demethylation can be an active process and plays a crucial role in biological processes. Ten eleven translocation (TET) proteins are the key factors modulating DNA demethylation. This family contains three members: TET1, TET2 and TET3. Although three TET proteins have relatively conserved catalytic domains, their roles in organisms are not repeated, and their expression has significant cell/organ specificity. TET1 is mainly expressed in embryonic stem cells, TET2 is mainly expressed in hematopoietic system, and TET3 is widely expressed in cerebellum, cortex and hippocampus. This family catalyzes 5-methylcytosine to 5-hydroxymethylcytosine and other oxidative products, reactivates silenced-gene expression, in turn maintains stem cell pluripotency and regulates lineage specification. With the development of tissue engineering, organ transplantation, autologous tissue transplantation and artificial prosthesis have been widely used in clinical treatment, but these technologies have limitations. Regenerative medicine, which uses stem cells and stem cell related factors for treatment, may provide alternative therapeutic strategies for multiple diseases. Among all kinds of human stem cells, adipose-derived stem cells (ADSCs) are the most prospective stem cell lineage since they have no ethical issues and can be easily obtained with large quantities. To date, ADSCs have been shown to have strong proli-feration capacity, secrete numerous soluble factors and have multipotent differentiation ability. However, the underlying mechanism of the proliferation, secretion, acquired pluripotency, and lineage specific differentiation of ADSCs are still largely unknown. Some studies have explored the role of epigenetic regulation and TET protein in embryonic stem cells, but little is known about its role in ADSCs. By studying the roles of TET proteins and 5-hydroxymethylcytosine in ADSCs, we could provide new theoretical foundation for the clinical application of ADSCs and the stem cell-based therapy. In the future, combined with bioprinting technology, ADSCs may be used in tissue and organ regeneration, plastic surgery reconstruction and other broader fields.
Collapse
Affiliation(s)
- 健芳 赵
- 北京大学第三医院成形外科,北京 100191Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
- 北京大学第一医院整形烧伤外科,北京 100034Department of Plastic Surgery and Burns, Peking University First Hospital, Beijing 100034, China
| | - 东 李
- 北京大学第三医院成形外科,北京 100191Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| | - 阳 安
- 北京大学第三医院成形外科,北京 100191Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
24
|
An Update on the Potential of Mesenchymal Stem Cell Therapy for Cutaneous Diseases. Stem Cells Int 2021; 2021:8834590. [PMID: 33505474 PMCID: PMC7806381 DOI: 10.1155/2021/8834590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem or stromal cells (MSCs) are nonhematopoietic postnatal stem cells with self-renewal, multipotent differentiation, and potent immunomodulatory and anti-inflammatory capabilities, thus playing an important role in tissue repair and regeneration. Numerous clinical and preclinical studies have demonstrated the potential application of MSCs in the treatment of tissue inflammation and immune diseases, including inflammatory skin diseases. Therefore, understanding the biological and immunological characteristics of MSCs is important to standardize and optimize MSC-based regenerative therapy. In this review, we highlight the mechanisms underlying MSC-mediated immunomodulation and tissue repair/regeneration and present the latest development of MSC-based clinical trials on cutaneous diseases.
Collapse
|
25
|
Antiaging Properties of Exosomes from Adipose-Derived Mesenchymal Stem Cells in Photoaged Rat Skin. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6406395. [PMID: 33415151 PMCID: PMC7769639 DOI: 10.1155/2020/6406395] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 07/21/2020] [Accepted: 08/21/2020] [Indexed: 11/17/2022]
Abstract
Adipose-derived stem cells (ADSCs) have been documented as possible candidates for skin rejuvenation. However, the effects of ADSC-derived exosomes on photoaged skin remain to be fully elucidated. This study was aimed at determining the antiaging effects of ADSC-derived exosomes on photoaged skin. Human ADSCs were isolated from the adipose tissue of healthy women and cultured in vitro. Then, exosomes were extracted from the cultured ADSCs, purified by ultracentrifugation, and verified by examination of cell morphology using transmission electron microscopy and the identification of specific biomarkers. Meanwhile, the optimal exosome concentration and treatment time were selected. The photoaged skin model was created by subjecting Sprague-Dawley rats to ultraviolet B radiation. Exosomes were injected into the photoaged skin in a single therapeutic dose. The thickness of the epidermis and dermis was observed by HE staining. The relative mRNA expression of type I collagen, type III collagen, and matrix metalloproteinases (MMP-1 and MMP-3) was determined by real-time PCR. In the rat model of photoaged skin, the injected exosomes markedly decreased the epidermal thickness and increased the dermal thickness of the photoaged skin 7 days after treatment. Moreover, the proportion of the stratum corneum of the epidermis was decreased. Furthermore, real-time RT-PCR showed that the mRNA expression of type I collagen was increased and that of type III collagen, MMP-1, and MMP-3 was decreased. Our results demonstrate that ADSC-derived exosome treatment could significantly improve skin photodamage and that ADSC-derived exosomes may be a potential agent for photoaged skin treatment.
Collapse
|
26
|
Zhang X, Cai L, Yin B, Han X, Li F. Total breast reconstruction using large-volume condensed and viable fat grafting after mastectomy. J Plast Reconstr Aesthet Surg 2020; 74:966-973. [PMID: 33341385 DOI: 10.1016/j.bjps.2020.10.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/29/2020] [Accepted: 10/20/2020] [Indexed: 01/02/2023]
Abstract
Autologous fat grafting (AFG) has become a third alternative for breast reconstruction after mastectomy. However, total breast reconstruction using AFG remains a great challenge. We performed breast reconstruction using large-volume condensed and viable fat grafting in 30 postmastectomy patients (irradiated, n = 9; nonirradiated, n = 21). The grafts were purified and condensed by the washing and cotton gauze rolling technique. The surgical maneuver is designed to preserve the grafts viability. Three-dimensional expansion was applied where strong adhesions were present. Seven patients wore the Brava device for the expansion of the recipient site. The mean (SD) volume of fat grafted in each procedure was 230.5 (57.8) mL. The average number of sessions was 3.3 (0.7). The irradiated patients required more sessions than the nonirradiated patients (p=.017). The mean follow-up period was 12.8 (4.3) months. One patient (3%) developed postoperative cellulitis. Cysts and palpable nodules occurred in eight patients (27%) and one patient (3%), respectively. Severe dermatitis and skin pigmentation change occurred in one patient wearing the Brava device. The esthetic scores significantly improved after the treatments (p<.001). Approximately 90% of the patients were satisfied. No local recurrence or remote metastasis was documented during the follow-up period. Our study showed the success of total breast reconstruction using AFG. As a third alternative for breast reconstruction, total breast reconstruction using large volume condensed and viable fat grafting is an effective and safe approach for postmastectomy patients.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Body Contouring and Liposuction Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 6 Xiaozhuang Road, Chaoyang District, Beijing, 100026, China
| | - Lei Cai
- Department of Body Contouring and Liposuction Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 6 Xiaozhuang Road, Chaoyang District, Beijing, 100026, China
| | - Bo Yin
- Department of Body Contouring and Liposuction Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 6 Xiaozhuang Road, Chaoyang District, Beijing, 100026, China
| | - Xuefeng Han
- Department of Body Contouring and Liposuction Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 6 Xiaozhuang Road, Chaoyang District, Beijing, 100026, China.
| | - Facheng Li
- Department of Body Contouring and Liposuction Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 6 Xiaozhuang Road, Chaoyang District, Beijing, 100026, China.
| |
Collapse
|
27
|
Rezapour-Lactoee A, Yeganeh H, Gharibi R, Milan PB. Enhanced healing of a full-thickness wound by a thermoresponsive dressing utilized for simultaneous transfer and protection of adipose-derived mesenchymal stem cells sheet. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:101. [PMID: 33140201 DOI: 10.1007/s10856-020-06433-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
To boost the healing process in a full-thickness wound, a simple and efficient strategy based on adipose-derived mesenchymal stem cells (ADSCs) transplantation is described in this work. To increase the chance of ADSCs immobilization in the wound bed and prevent its migration, these cells are fully grown on the surface of a thermoresponsive dressing membrane under in vitro condition. Then, the cells sheet with their secreted extracellular matrix (ECM) is transferred to the damaged skin with the help of this dressing membrane. This membrane remains on wound bed and acts both as a cell sheet transfer vehicle, after external reduction of temperature, and protect wound during the healing process like a common wound dressing. The visual inspection of wounded skin (rat animal model) at selected time intervals shows a higher wound closure rate for ADSCs treated group. For this group of rats, the better quality of reconstructed tissue is approved by results of histological and immunohistochemical analysis since the higher length of the new epidermis, the higher thickness of re-epithelialization layer, a higher level of neovascularization and capillary density, and the least collagen deposition are detected in the healed tissue.
Collapse
Affiliation(s)
- Alireza Rezapour-Lactoee
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Tissue Engineering, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hamid Yeganeh
- Iran Polymer and Petrochemical Institute, Tehran, P.O. Box:14965/115, Iran.
| | - Reza Gharibi
- Faculty of Chemistry, Kharazmi University, Tehran, Iran
| | - Peiman Brouki Milan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Mazini L, Rochette L, Malka G. Adipose-Derived Stem Cells (ADSCs) and Growth Differentiation Factor 11 (GDF11): Regenerative and Antiaging Capacity for the Skin. Regen Med 2020. [DOI: 10.5772/intechopen.91233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
29
|
Xu P, Xin Y, Zhang Z, Zou X, Xue K, Zhang H, Zhang W, Liu K. Extracellular vesicles from adipose-derived stem cells ameliorate ultraviolet B-induced skin photoaging by attenuating reactive oxygen species production and inflammation. Stem Cell Res Ther 2020; 11:264. [PMID: 32611371 PMCID: PMC7329484 DOI: 10.1186/s13287-020-01777-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/20/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Large numbers of adipose-derived stem cells (ADSCs) are easily obtained and have been demonstrated to protect against ultraviolet B (UVB)-induced skin photoaging. Extracellular vesicles (EVs) exhibit some of the same effects as the cells from which they originate and have many advantages over stem cells. In particular, their application circumvents many safety concerns associated with cell therapy. Thus, as a cell-free agent, adipose-derived stem cell extracellular vesicles (ADSC-EVs) have anti-photoaging potential. However, the protective effects of ADSC-EVs in skin photoaging remain uncertain. METHODS To investigate the effect of ADSC-EVs on mice with UVB-induced photoaging, 150 μg and 300 μg ADSC-EVs were subcutaneously injected weekly into photoaging mice for 8 weeks. The protective effect was evaluated by gross assessment and hematoxylin and eosin, Masson's trichrome, and β-galactosidase staining. Proliferating cell nuclear antigen, CD68, and dihydroethidium staining were performed to evaluate cell proliferation, inflammation infiltration, and reactive oxygen species (ROS) production, respectively. In vitro, 100 μg/mL and 200 μg/mL ADSC-EVs were used to treat photoaging fibroblasts (FBs). β-galactosidase staining and collagen 1 and matrix metalloproteinase 3 (MMP-3) expression were analyzed to evaluate FB senescence. To explain the protective mechanism of ADSC-EVs, their role in regulating ROS production, antioxidant enzyme expression, cell cycle arrest, and inflammation was evaluated. RESULTS In vivo, we showed that ADSC-EVs decreased skin wrinkles in mice with UVB-induced photoaging, while promoting epidermal cell proliferation and attenuating macrophage infiltration and ROS production. In vitro, we showed that ADSC-EVs increased FB activity and protected FBs from UVB-induced senescence, attenuated raw 264.7 cell differentiation from M0 to M1 macrophages, reduced intracellular ROS production, promoted antioxidant enzyme expression, and rescued FBs from cell cycle arrest. CONCLUSION The anti-photoaging effect of ADSC-EVs was attributed to their ability to attenuate ROS production and the inflammatory response, which are key factors in MMP activation and collagen degradation.
Collapse
Affiliation(s)
- Peng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yu Xin
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiangyu Zou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ke Xue
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Huizhong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
30
|
Caviar Extract and Its Constituent DHA Inhibits UVB-Irradiated Skin Aging by Inducing Adiponectin Production. Int J Mol Sci 2020; 21:ijms21093383. [PMID: 32403430 PMCID: PMC7246982 DOI: 10.3390/ijms21093383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 01/29/2023] Open
Abstract
In this study, caviar (sturgeon eggs) was used to elucidate its roles in adiponectin production and skin anti-aging. Recently, caviar has been largely used not only as a nutritional food, but also in cosmetic products. In particular, it has been reported that docosahexaenoic acid (DHA), as one of the main phospholipid components of caviar extract, induces intracellular lipid accumulation and the expression of adiponectin in adipocytes. Although adipocytes are well known to be associated with the skin dermis by secreting various factors (e.g., adiponectin), the effects of caviar extract and DHA on the skin are not well studied. Here, we demonstrate the effects of caviar extract and DHA on adipocyte differentiation and adiponectin production, resulting in a preventive role in UV-irradiated skin aging. Caviar extract and DHA enhanced adipocyte differentiation and promoted the synthesis of transcription factors controlling adipocyte differentiation and adiponectin. In addition, the mRNA expression levels of matrix metalloproteinase-1 (MMP-1) were decreased in UVB-irradiated Hs68 fibroblasts that were cultured in conditioned medium from caviar extract or DHA-treated differentiated adipocytes. Taken together, these results indicate that caviar extract and DHA induce adipocyte differentiation and adiponectin production, thereby inhibiting UVB-induced premature skin aging via the suppression of MMP-1 production.
Collapse
|
31
|
Tissue Engineering and Regenerative Medicine in Craniofacial Reconstruction and Facial Aesthetics. J Craniofac Surg 2020; 31:15-27. [PMID: 31369496 DOI: 10.1097/scs.0000000000005840] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The craniofacial region is anatomically complex and is of critical functional and cosmetic importance, making reconstruction challenging. The limitations of current surgical options highlight the importance of developing new strategies to restore the form, function, and esthetics of missing or damaged soft tissue and skeletal tissue in the face and cranium. Regenerative medicine (RM) is an expanding field which combines the principles of tissue engineering (TE) and self-healing in the regeneration of cells, tissues, and organs, to restore their impaired function. RM offers many advantages over current treatments as tissue can be engineered for specific defects, using an unlimited supply of bioengineered resources, and does not require immunosuppression. In the craniofacial region, TE and RM are being increasingly used in preclinical and clinical studies to reconstruct bone, cartilage, soft tissue, nerves, and blood vessels. This review outlines the current progress that has been made toward the engineering of these tissues for craniofacial reconstruction and facial esthetics.
Collapse
|
32
|
Xia J, Minamino S, Kuwabara K, Arai S. Stem cell secretome as a new booster for regenerative medicine. Biosci Trends 2020; 13:299-307. [PMID: 31527327 DOI: 10.5582/bst.2019.01226] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Stem cells are an undifferentiated cell population that has the ability to develop into many different cell types and also has the ability to repair damaged tissues in some cases. For a long time, the stem cell regenerative paradigm has been based on the assumption that progenitor cells play a critical role in tissue repair by means of their plasticity and differentiation potential. However, recent works suggest that the mechanism underlying the benefits of stem cell transplantation might relate to a paracrine modulatory effect rather than the replacement of affected cells at the site of injury. This paracrine modulatory effect derives from secretome which comprises a diverse host of growth factors, cytokines, chemokines, angiogenic factors, and exosomes which are extracellular vesicles that are produced in the endosomal compartment of most eukaryotic cells and are from about 30 to several hundred nanometers in diameter. The role of these factors is being increasingly recognized as key to the regulation of many physiological processes including leading endogenous and progenitor cells to sites of injury as well as mediating apoptosis, proliferation, migration, and angiogenesis. In reality, the immunomodulatory and paracrine role of these factors may mainly account for the therapeutic effects of stem cells and a number of in vitro and in vivo researches have proved limited stem cell engraftment at the site of injury. As a cell-free way for regenerative medicine therapies, stem cell secretome has shown great potential in a variety of clinical applications including prevention of cardiac disfunction, neurodegenerative disease, type 1 diabetes, hair loss, tumors, and joint osteoarthritis.
Collapse
Affiliation(s)
- Jufeng Xia
- Graduate School of Frontier Science, The University of Tokyo.,Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Shuichi Minamino
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Kazuma Kuwabara
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Shunichi Arai
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| |
Collapse
|
33
|
Mazini L, Rochette L, Admou B, Amal S, Malka G. Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound Healing. Int J Mol Sci 2020; 21:E1306. [PMID: 32075181 PMCID: PMC7072889 DOI: 10.3390/ijms21041306] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue derived stem cells (ADSCs) are mesenchymal stem cells identified within subcutaneous tissue at the base of the hair follicle (dermal papilla cells), in the dermal sheets (dermal sheet cells), in interfollicular dermis, and in the hypodermis tissue. These cells are expected to play a major role in regulating skin regeneration and aging-associated morphologic disgraces and structural deficits. ADSCs are known to proliferate and differentiate into skin cells to repair damaged or dead cells, but also act by an autocrine and paracrine pathway to activate cell regeneration and the healing process. During wound healing, ADSCs have a great ability in migration to be recruited rapidly into wounded sites added to their differentiation towards dermal fibroblasts (DF), endothelial cells, and keratinocytes. Additionally, ADSCs and DFs are the major sources of the extracellular matrix (ECM) proteins involved in maintaining skin structure and function. Their interactions with skin cells are involved in regulating skin homeostasis and during healing. The evidence suggests that their secretomes ensure: (i) The change in macrophages inflammatory phenotype implicated in the inflammatory phase, (ii) the formation of new blood vessels, thus promoting angiogenesis by increasing endothelial cell differentiation and cell migration, and (iii) the formation of granulation tissues, skin cells, and ECM production, whereby proliferation and remodeling phases occur. These characteristics would be beneficial to therapeutic strategies in wound healing and skin aging and have driven more insights in many clinical investigations. Additionally, it was recently presented as the tool key in the new free-cell therapy in regenerative medicine. Nevertheless, ADSCs fulfill the general accepted criteria for cell-based therapies, but still need further investigations into their efficiency, taking into consideration the host-environment and patient-associated factors.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Régénération Cellulaire et Tissulaire, Centre interface Applications Médicales (CIAM), Université Mohammed VI Polytechnique, Ben-Guerir 43 150, Morocco;
| | - Luc Rochette
- Equipe d’Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France;
| | - Brahim Admou
- Laboratoire d’immunologie, Centre de Recherche Clinique, Faculté de Médecine et Pharmacie, Université Cadi Ayyad, Centre Hospitalier Universitaire, Marrakech 40 000, Morocco;
| | - Said Amal
- Service de dermatologie, Faculté de Médecine et Pharmacie, Université Cadi Ayyad, Centre hospitalier universitaire, Marrakech 40000, Morocco;
| | - Gabriel Malka
- Laboratoire Cellules Souches et Régénération Cellulaire et Tissulaire, Centre interface Applications Médicales (CIAM), Université Mohammed VI Polytechnique, Ben-Guerir 43 150, Morocco;
| |
Collapse
|
34
|
The Roles of Podoplanin-Positive/Podoplanin-Negative Cells from Adipose-Derived Stem Cells in Lymphatic Regeneration. Plast Reconstr Surg 2020; 145:420-431. [DOI: 10.1097/prs.0000000000006474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Kim KH, Kim YS, Lee S, An S. The effect of three-dimensional cultured adipose tissue-derived mesenchymal stem cell–conditioned medium and the antiaging effect of cosmetic products containing the medium. BIOMEDICAL DERMATOLOGY 2019. [DOI: 10.1186/s41702-019-0053-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abstract
Background
Recently, investigators have been trying to apply the by-products as well as stem cells themselves to various fields such as pharmaceuticals, medical devices, quasi-drug, cosmetis, etc. We aimed to comfirm the anti-senescence effect of 3D cultured adipose tissue-derived mesenchymal stem cell–conditioned medium (3D cultured ADMSCs-CM) and develop them as cosmetic raw materials for anti-aging purposes.
Methods
We investigated the effect of 3D cultured ADMSCs-CM on collagen production and performed efficacy tests to evaluate the effect of a cream-based cosmetic product containing the medium using various methods, such as dermal density, skin moisture retention, and so on.
Results
Analysis of the effect of ADMSCs-CM on skin regeneration and production of collagen showed 1.5-fold (2D cultured ADMSCs-CM) and 2.5-fold (3D cultured ADMSCs-CM) increase in expressions of procollagen and 4-fold (2D cultured ADMSCs-CM) and 5-fold (3D cultured ADMSCs-CM) increase in the expression of collagen compared with control. In addition, related gene expression was also increased. We conducted a human skin test using a cream-based product containing 3D cultured ADMSCs-CM. In skin texture assessment, skin roughness decreased by 11.94% at the application site and 3.74% at the non-application site after 3 weeks of use. Compared with before cream use, after 2 and 4 weeks of substance use, the skin elasticity analysis showed an increase in the elasticity value by 5.97% and 9.34%, respectively, and the improvement of small wrinkles was 5.01% and 6.23%, respectively. After 2 and 4 weeks of test substance use, dermal density analysis showed 6.97% and 12.53% increase, respectively. Skin moisture retention analysis showed skin moisture maintained at 543.60% and 452.38%, respectively, immediately after one-time use and after 20 min of cool breeze exposure compared with before application of the test substance.
Conclusions
As raw material for cosmetic products, 3D cultured ADMSCs-CM prevented skin aging by promoting collagen production, restoring damaged skin, and increasing dermal density. Therefore, 3D cultured ADMSCs-CM can be widely applied to maintain and improve skin condition.
Collapse
|
36
|
Culture of goat preantral follicles in situ associated with mesenchymal stem cell from bone marrow. ZYGOTE 2019; 28:65-71. [DOI: 10.1017/s0967199419000686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SummaryThis study aims to develop an in vitro co-culture system of in situ goat preantral follicles with bone marrow-derived mesenchymal stem cells (BM-MSC), evaluating the influence of these cells on follicular growth, rate of activation and morphologically normal follicles. Fragments of ovarian cortex were cultured for 1 or 7 days in the presence of BM-MSC (BM-MSC+) and absence of BM-MSC (BM-MSC−). Histological sections of the fragments were analysed and data were obtained regarding morphological classification, survival rate of morphologically normal follicles and rate of follicular activation. Culture medium on days 1 and 7 was also sampled for nitrite concentration and reduced glutathione activity. There was a reduction (P < 0.05) in the percentage of morphologically normal follicles in the BM-MSC+ compared with the fresh control only on the seventh day of culture. When comparing treatments, on the seventh day of culture, a higher rate of morphologically normal preantral follicles was observed in BM-MSC+ (P < 0.05). In both treatments, primordial and developing follicle rates were similar to the fresh control (P > 0.05). When comparing treatments with each other, as well as with the fresh control, no differences were observed in follicular diameter (P > 0.05) or nitrite concentration (P > 0.05). The concentration of reduced glutathione was lower on the seventh day of co-culture in both treatments (P < 0.05). In conclusion, co-culture had no influence on follicular or oocyte development. However, it was critical to maintain the survival of preantral follicles during 7 days of culture.
Collapse
|
37
|
Synergistic Effect of Adipose-Derived Stem Cells and Fat Graft on Wrinkles in Aged Mice. Plast Reconstr Surg 2019; 143:1637-1646. [PMID: 30907792 DOI: 10.1097/prs.0000000000005625] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The authors investigated the synergistic effects of adipose-derived stem cells and fat graft on skin wrinkles in a nude mouse model of chronologic aging. METHODS After 50 weeks of chronologic aging, 44 female BALB/c nude mice were classified into four groups: (1) negative control, (2) mice injected subcutaneously with fat on the back skin (0.5 cm), (3) mice injected with adipose-derived stem cells (1 × 10 cells in 0.5 cm Hanks balanced salt solution), and (4) mice injected with both fat (0.5 cm) and adipose-derived stem cells (1 × 10 cells in 0.5 cm Hanks balanced salt solution). The degree of wrinkling was evaluated using replica analysis, and skin biopsies were performed after 4 weeks. The dermal thickness and density of collagen were determined. Type I procollagen and matrix metalloproteinase levels were determined using real-time polymerase chain reaction and Western blot analysis. Tropoelastin, fibrillin-1, and CD31 levels were evaluated using immunohistochemistry. RESULTS Based on the total wrinkle area, there was significant wrinkle reduction in the fat-treated and adipose-derived stem cell with fat-treated groups. Type I procollagen mRNA and collagen levels were significantly higher in the adipose-derived stem cell with fat-treated group than in the adipose-derived stem cell-treated and the fat-treated groups. In addition, the adipose-derived stem cells with fat graft group exhibited significantly higher CD31 expression level than the adipose-derived stem cell-treated and the fat-treated groups. CONCLUSION Both adipose-derived stem cells and fat graft have a wrinkle-reducing effect and synergistically affect collagen synthesis and neovascularization.
Collapse
|
38
|
Wang Z, Li S, Wang Y, Zhang X, Chen L, Sun D. GDNF enhances the anti-inflammatory effect of human adipose-derived mesenchymal stem cell-based therapy in renal interstitial fibrosis. Stem Cell Res 2019; 41:101605. [PMID: 31706095 DOI: 10.1016/j.scr.2019.101605] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (AMSCs) are a type of adult stem cell from the mesoderm with the capacity to migrate and differentiate into other cell lineages. As a morphogenetic state of stem cells, glial-derived neurotrophic factor (GDNF) has been found to promote cell proliferation and differentiation of stem cells. The aims of our study were to investigate the biological activity of AMSCs and whether the GDNF gene can enhance the anti-inflammatory properties of stem cells. In this study, stable proliferative GDNF-overexpressing AMSC lines were successfully established and the AMSCs/GDNF-AMSCs were cocultured with macrophages (Mφ) derived from THP-1 cells in a transwell system. The mRNA expression levels of tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), interleukin (IL)-10 and IL-4 were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). In addition, the expressions of CD163 and CD206, two markers of M2 macrophages, were detected with flow cytometric analysis. In animal experiments, AMSCs/GDNF-AMSCs (5 × 105) were administered to unilateral ureteral obstruction (UUO) nude mice for 3 or 7 days. The expression levels of cyclooxygenase-2 (COX-2), IL-6, transforming growth factor β1 (TGF-β1) and α-Smooth muscle actin (α-SMA) were determined by Western blotting. Renal pathological changes of all groups were observed by hematoxylin and eosin (HE) and Masson staining. In conclusion, in vitro cultured AMSCs induced a shift in macrophage phenotype from the inflammatory (M1) phenotype to the reparative (M2) phenotype. In the UUO model, AMSC treatment was conducive to the recovery of renal function and interstitial fibrosis. Therefore, we determined that AMSC therapy could promote the phenotypic transformation of macrophages and reduce the progression of renal fibrosis by suppressing inflammation. GDNF could enhance the anti-inflammatory effect of AMSCs.
Collapse
Affiliation(s)
- Zhuojun Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yanping Wang
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou 221002, China
| | - Xiangyu Zhang
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou 221002, China
| | - Lu Chen
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou 221002, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
39
|
Zheng H, Qiu L, Su Y, Yi C. Conventional Nanofat and SVF/ADSC-Concentrated Nanofat: A Comparative Study on Improving Photoaging of Nude Mice Skin. Aesthet Surg J 2019; 39:1241-1250. [PMID: 30869120 DOI: 10.1093/asj/sjz066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nanofats could improve photoaging. Stromal vascular fraction (SVF) and adipose-derived stem cells (ADSCs) may play pivotal roles. However, SVFs and ADSCs in nanofats processed by conventional methods cannot be enriched. Some researchers have found that after centrifugation, the SVF/ADSC density increases from top to bottom. OBJECTIVES The authors hypothesized that centrifugation can be used to obtain SVF/ADSC-concentrated nanofats that are superior to conventional nanofats in improving the photoaging of skin. METHODS After a photoaging model was successfully established in nude mice, the back of each mouse was divided into 4 areas and randomly injected with conventional nanofat, centrifuged nanofat (either the middle or lower layer of centrifuged nanofat), or normal saline. Wrinkles, dermis thickness, dermal collagen content, and elastic fiber morphology were measured and compared at weeks 4 and 8. RESULTS Compared with the wrinkles in the physiological saline injection areas, the wrinkles in the areas injected with the 3 nanofats (lower and middle layers of centrifuged nanofat and conventional nanofat) were significantly reduced. All 3 nanofat groups showed increased dermal thickness, increased collagen content, and a more regular distribution of elastic fibers compared with the saline injection areas. CONCLUSIONS The study established the efficacy of nanofats in improving photoaging by reducing wrinkles and increasing the thickness of dermal collagen, making nanofats a promising novel treatment for photoaging. The SVF/ADSC-concentrated nanofats exhibited the most improvement.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lihong Qiu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yingjun Su
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chenggang Yi
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
40
|
Protective Effect of Fat Extract on UVB-Induced Photoaging In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6146942. [PMID: 31531185 PMCID: PMC6720842 DOI: 10.1155/2019/6146942] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/20/2019] [Indexed: 12/19/2022]
Abstract
Background Nanofat can protect against ultraviolet B- (UVB-) induced damage in nude mice. Fat extract (FE) is a cell-free fraction isolated from nanofat that is enriched with a variety of growth factors. Objective To determine whether FE can protect against UVB-induced photoaging in cultured dermal fibroblasts and in nude mice. Method For the in vitro study, human dermal skin fibroblasts were pretreated with FE 24 h prior to UVB irradiation. Generation of reactive oxygen species (ROS) was analyzed immediately following irradiation, while cell cycle analysis was performed 24 h after UVB irradiation. Senescence-associated β-galactosidase (SA-β-gal) expression, cell proliferation, and expression of glutathione peroxidase 1 (GPX-1), catalase, superoxide dismutase-1 (SOD-1), SOD-2, and collagen type 1 (COL-1) were investigated 72 h after UVB irradiation. For the in vivo study, the dorsal skin of nude mice was irradiated with UVB and mice were then treated with FE for 8 weeks. The thickness of the dermis, capillary density, and apoptotic cells in skin tissue sections were investigated after treatment. The expression of GPX-1, catalase, SOD-2, SOD-1, and COL-1 in the tissue was also measured. Result FE significantly increased cell proliferation and protected cells against UVB-induced cell death and cell cycle arrest. FE reduced ROS and the number of aged cells induced by UVB irradiation. FE promoted the expression of COL-1 and GPX-1 in cultured dermal fibroblasts. FE treatment of UVB-irradiated skin increased dermal thickness and capillary density, decreased the number of apoptotic cells, and promoted the expression of COL-1 and GPX-1. Conclusion FE protects human dermal fibroblasts and the skin of nude mice from UVB-induced photoaging through its antioxidant, antiapoptotic, and proangiogenic activities.
Collapse
|
41
|
Biological Aging Parameters Can Be Improved After Autologous Adipose-Derived Stem Cell Injection. J Craniofac Surg 2019; 30:652-658. [PMID: 30394974 DOI: 10.1097/scs.0000000000004932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Biological aging (BA) is a comprehensive assessment tool for elderly persons. The authors aimed to develop a rat model that can be used to assess BA by evaluating various blood, biochemical, and hormonal parameters and demonstrate that the intravenous administration of autologous adipose-derived stem cells (ADSCs) improves BA. Twelve elderly (aged 20 months) male Sprague-Dawley rats were used in this study and divided into 2 groups: autologous ADSC administration (n = 6) and saline administration (n = 6). The complete blood count, biochemical and hormonal parameters, and antioxidant potential were evaluated before harvesting the rat inguinal fat tissue and intravenous ADSC administration as well as at 1, 3, and 5 weeks after ADSC administration. Adipose-derived stem cells administration regulated blood content, biochemical parameters, renal function, and antioxidant enzymes in elderly rats. Furthermore, changes in several hormonal levels were identified in the ADSC administration group compared with the saline administration group. An assessment model of BA in elderly rats was successfully developed after the intravenous administration of autologous ADSCs. The authors suggest that intravenously injected ADSC treatment may be a valuable method to improve BA.
Collapse
|
42
|
Mesenchymal Stem Cell Conditioned Media Ameliorate Psoriasis Vulgaris: A Case Study. Case Rep Dermatol Med 2019; 2019:8309103. [PMID: 31186972 PMCID: PMC6521531 DOI: 10.1155/2019/8309103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 04/21/2019] [Indexed: 12/24/2022] Open
Abstract
Psoriasis, an autoimmune disease, affects a vast number of peoples around the world. In this report, we discuss our findings about a scalp psoriasis suffering patient with a Psoriasis Scalp Severity Index (PSSI) score of 28, who was treated with Mesenchymal stem cell conditioned media (MSC-CM). Remarkably, complete regression was recorded within a treatment period of one month only (PSSI score of 0). A number of bioactive factors like cytokines and growth factors secreted by MSCs in the conditioned medium are very likely to be the principle molecules which play a vital role in skin regeneration. Treatment using MSC-CM appears to be an effective tool for tackling the psoriatic problem and, thus, may offer a new avenue of therapy which could be considered as an alternative approach to overcome the limitations of the cell-based therapy.
Collapse
|
43
|
Abstract
Aging is the result of two overlapping processes, "intrinsic" and "extrinsic." Intrinsic structural changes occur as a consequence of physiologic aging and are genetically determined; extrinsic relates to exposure to harmful events and habits, like smoking, bad diet, alcohol consumption, lack of sleep, stress, sun exposure, environmental pollution, etc. Aging may be decelerated by improving bad habits or treating signs of aging with various esthetic methods, food supplements, and antioxidants. It is believed that we cannot stop aging entirely due to the intrinsic part, which leads to irreversible cell damage, as well as tissue and organ damage due to their limited ability to regenerate. Stem cells and their ability to exhibit telomerase activity, to self-renew, and to differentiate into all three embryonic tissues challenges aging as a process, which is not inevitable and can even possibly be reversed. Stem cells can promote regeneration of aged tissues and organs by replacing apoptotic and necrotic cells with healthy ones. In addition, they can have antiinflammatory and antiapoptotic properties by paracrine-secreting growth factors and cytokines on the site of administration. Autologous adipose-derived stem cells are the most promising because they can be easily harvested in huge numbers with minimally invasive liposuction and, as such, represent a powerful tool in anti-aging and regenerative medicine. In this contribution, the author discusses their properties and application in clinical practice.
Collapse
|
44
|
Kim KH, Lee S, Park HS. Inhibitory Effects of Three Dimensional Adipose Tissue-Derived Mesenchymal Stem Cell Conditioned Medium on Immune Response and Efficacy Evaluation of its Cream. ACTA ACUST UNITED AC 2019. [DOI: 10.20402/ajbc.2018.0255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Clinical Impact of Highly Condensed Stromal Vascular Fraction Injection in Surgical Management of Depressed and Contracted Scars. Aesthetic Plast Surg 2018; 42:1689-1698. [PMID: 30191279 DOI: 10.1007/s00266-018-1216-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/16/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent research on stromal vascular fraction (SVF) has demonstrated the presence of numerous growth factors that aid in tissue regeneration and suggest the potential for scar treatment. This study was conducted to clinically show that adding stem cells can improve the surgical outcomes of scar formation. METHODS Between March 2014 and February 2016, 17 patients underwent injections of fat and highly condensed SVF simultaneously with scar reduction surgeries and 15 patients received scar revision with or without simultaneous application of highly condensed SVF (4.90 × 107 stem cells/ml) at our institution. Clinical photographs were taken before and after surgery, and the scars were graded using the following standard scales: the Observer Scar Assessment Scale (OSAS), Stony Brook Scar Evaluation Scale (SBSES), Vancouver Scar Scale (VSS), and Visual Analog Scale (VAS). RESULTS All patients showed improvement, registering significant increases in scar tissue scores (P < 0.05 in all four scoring systems). Patients in the SVF group showed more improved outcomes than patients in the non-SVF group for all scar tissue scores except the SBSES (OSAS, P = 0.029; SBSES, P = 0.281; VSS, P = 0.001; VAS, P = 0.021). Subcategories of these scales reflected more favorable outcomes in terms of height and pliability; however, there was no significant change in vascularity. CONCLUSIONS SVF injections enhance tissue regeneration by contributing stem cells and growth factors to improve outcomes in scar revisions or tissue grafts. Harvesting the SVF through liposuction also provides a cosmetic benefit. Significant SVF-related gains in the scoring of scars indicate the merit of SVF as an aspect of conventional scar management. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
46
|
Preisner F, Leimer U, Sandmann S, Zoernig I, Germann G, Koellensperger E. Impact of Human Adipose Tissue-Derived Stem Cells on Malignant Melanoma Cells in An In Vitro Co-culture Model. Stem Cell Rev Rep 2018; 14:125-140. [PMID: 29064018 DOI: 10.1007/s12015-017-9772-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study focuses on the interactions of human adipose tissue-derived stem cells (ADSCs) and malignant melanoma cells (MMCs) with regard to future cell-based skin therapies. The aim was to identify potential oncological risks as ADSCs could unintentionally be sited within the proximity of the tumor microenvironment of MMCs. An indirect co-culture model was used to analyze interactions between ADSCs and four different established melanoma cell lines (G-361, SK-Mel-5, MeWo and A2058) as well as two low-passage primary melanoma cell cultures (M1 and M2). Doubling time, migration and invasion, angiogenesis, quantitative real-time PCR of 229 tumor-associated genes and multiplex protein assays of 20 chemokines and growth factors and eight matrix metalloproteinases (MMPs) were evaluated. Co-culture with ADSCs significantly increased migration capacity of G-361, SK-Mel-5, A2058, MeWo and M1 and invasion capacity of G-361, SK-Mel-5 and A2058 melanoma cells. Furthermore, conditioned media from all ADSC-MMC-co-cultures induced tube formation in an angiogenesis assay in vitro. Gene expression analysis of ADSCs and MMCs, especially of low-passage melanoma cell cultures, revealed an increased expression of various genes with tumor-promoting activities, such as CXCL12, PTGS2, IL-6, and HGF upon ADSC-MMC-co-culture. In this context, a significant increase (up to 5,145-fold) in the expression of numerous tumor-associated proteins could be observed, e.g. several pro-angiogenic factors, such as VEGF, IL-8, and CCL2, as well as different matrix metalloproteinases, especially MMP-2. In conclusion, the current report clearly demonstrates that a bi-directional crosstalk between ADSCs and melanoma cells can enhance different malignant properties of melanoma cells in vitro.
Collapse
Affiliation(s)
- Fabian Preisner
- ETHIANUM - Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine, Voßstraße 6, 69115, Heidelberg, Germany
| | - Uwe Leimer
- ETHIANUM - Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine, Voßstraße 6, 69115, Heidelberg, Germany
| | - Stefanie Sandmann
- ETHIANUM - Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine, Voßstraße 6, 69115, Heidelberg, Germany
| | - Inka Zoernig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Im Neuenheimer Feld 460, 60120, Heidelberg, Germany
| | - Guenter Germann
- ETHIANUM - Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine, Voßstraße 6, 69115, Heidelberg, Germany
| | - Eva Koellensperger
- ETHIANUM - Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery, Preventive Medicine, Voßstraße 6, 69115, Heidelberg, Germany.
| |
Collapse
|
47
|
Dubey NK, Mishra VK, Dubey R, Deng YH, Tsai FC, Deng WP. Revisiting the Advances in Isolation, Characterization and Secretome of Adipose-Derived Stromal/Stem Cells. Int J Mol Sci 2018; 19:ijms19082200. [PMID: 30060511 PMCID: PMC6121360 DOI: 10.3390/ijms19082200] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/08/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Adipose-derived stromal/stem cells (ASCs) seems to be a promising regenerative therapeutic agent due to the minimally invasive approach of their harvest and multi-lineage differentiation potential. The harvested adipose tissues are further digested to extract stromal vascular fraction (SVF), which is cultured, and the anchorage-dependent cells are isolated in order to characterize their stemness, surface markers, and multi-differentiation potential. The differentiation potential of ASCs is directed through manipulating culture medium composition with an introduction of growth factors to obtain the desired cell type. ASCs have been widely studied for its regenerative therapeutic solution to neurologic, skin, wound, muscle, bone, and other disorders. These therapeutic outcomes of ASCs are achieved possibly via autocrine and paracrine effects of their secretome comprising of cytokines, extracellular proteins and RNAs. Therefore, secretome-derivatives might offer huge advantages over cells through their synthesis and storage for long-term use. When considering the therapeutic significance and future prospects of ASCs, this review summarizes the recent developments made in harvesting, isolation, and characterization. Furthermore, this article also provides a deeper insight into secretome of ASCs mediating regenerative efficacy.
Collapse
Affiliation(s)
- Navneet Kumar Dubey
- Ceramics and Biomaterials Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Viraj Krishna Mishra
- Applied Biotech Engineering Centre (ABEC), Department of Biotechnology, Ambala College of Engineering and Applied Research, Ambala 133101, India.
| | - Rajni Dubey
- Graduate Institute Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yue-Hua Deng
- Stem Cell Research Center, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Life Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Feng-Chou Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Win-Ping Deng
- Stem Cell Research Center, Taipei Medical University, Taipei 11031, Taiwan.
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Basic medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| |
Collapse
|
48
|
Aboulhoda BE, Abd el Fattah S. Bone marrow-derived versus adipose-derived stem cells in wound healing: value and route of administration. Cell Tissue Res 2018; 374:285-302. [DOI: 10.1007/s00441-018-2879-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
|
49
|
Wang S, Zhong J, Li L. Protective effect of skin-derived precursors on photoaging in nude mice. Australas J Dermatol 2018; 60:e20-e28. [PMID: 29943461 DOI: 10.1111/ajd.12867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/20/2018] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Currently, innovative methods to prevent photoaging are needed. Skin-derived precursors (SKP) have been shown to play a crucial role in resisting UVB-induced apoptosis in vitro. The objective of this study was to explore the effect of SKP on preventing skin photoaging in vivo. METHODS Skin-derived precursors from neonatal BALB/c mice were isolated, identified and intradermally transplanted with a PKH26 label to track their survival. These were then injected at different concentrations into the buttock dermis of nude mice at 2-weekly intervals before UV irradiation. Photographs, assessment of live skin surface, histology with quantitative real-time polymerase chain reaction and immunohistochemistry were used to evaluate the impact of SKP on wrinkles and other relevant indicators of skin photoaging. RESULTS SKP exhibited a sphere-like structure and could survive for at least 2 weeks after intradermal transplantation. A large dose of SKP transplantation (105 SKP +UV) at 2-weekly intervals were able to ameliorate coarse UV-induced wrinkles. Moreover, the skin smoothness value, dermal thickness and collagen percentage were significantly increased in mice that received a large dose of SKP (105 SKP +UV). UV radiation induced the mRNA expression of MMP-13 and decreased the mRNA and protein expression of TβRII, but these effects were diminished by SKP transplantation. The transplantation of SKP could increase the mRNA of TIMP-1. CONCLUSIONS We found that transplanted SKP exert a beneficial impact on preventing UV-induced wrinkles in vivo, suggesting that SKP transplantation is a promising candidate for preventing photoaging.
Collapse
Affiliation(s)
- Siyu Wang
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China.,Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Jianqiao Zhong
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China.,Department of Dermatovenereology, Southwest Medical University, Luzhou, China
| | - Li Li
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Adipose Tissue-Derived Stromal Vascular Fraction Increases Osteogenesis in an Experimental Design Zygomatic Bone Defect Model. J Craniofac Surg 2018; 28:2179-2182. [PMID: 28938327 DOI: 10.1097/scs.0000000000003980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Facial bone defects are frequently encountered problems in clinical practice. Bone grafts, flaps, and alloplastic materials are often used in their treatment. This leads to donor site morbidity and prolongation of the operation. The authors have planned this study to examine whether adipose tissue derived stromal vascular fraction (SVF) has an osteogenic effect in the critical sized membranous bone defect of the zygomatic bone. MATERIALS AND METHODS Twenty male Wistar Albino rats were used. Bilateral zygomatic arches were opened with lateral incisions. A standard 3-mm bone defect was created bilaterally on the zygomatic arches of the rats. In the experiment side, the stem cell-rich SVF that was obtained by applying centrifugal process to the adipose tissue derived from the inguinal fat pad was injected into the site of the right zygomatic arch bone defect. In the control side, left zygomatic arch was left for secondary bone healing without any treatment after a 3-mm critical bone defect was created. In the postoperative 10th (n:5) and 20th weeks (n:13), the healing areas of bone defects were assessed by a 3-dimensional tomography, and then, the rats were sacrificed and bone healing was examined histologically. RESULTS There were no statistically significant differences on the 10th week results. At the 20th week new bone formation amount calculated from the 3-dimensional computed tomography results was significantly higher in the experiment side (P = 0.033). In the histological examination at the 20th week, there was significantly more callus formation in the experiment side (P = 0.0112). DISCUSSION Stem cells can increase the rate of bone healing by differentiating into certain tissues. It is predicted that adipose tissue-derived SVF rich with mesenchymal stem cells can increase bone healing in facial bone defects and this application could replace the use of bone grafts and flaps in clinical practice. As a result, it is concluded that adipose tissue-derived stem cells can potentiate osteogenesis and reduce the possibility of developing necrosis on the bone ends.
Collapse
|