1
|
Liu Z, Xian L, Li J, Zheng S, Xie H. Single-cell RNA sequencing analysis reveals the role of TXNDC5 in keloid formation. Cytojournal 2024; 21:40. [PMID: 39563670 PMCID: PMC11574684 DOI: 10.25259/cytojournal_58_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 11/21/2024] Open
Abstract
Objective Thioredoxin domain-containing protein 5 (TXNDC5) is associated with fibrosis in a variety of organs, but its mechanism of action in keloid is unclear. In this study, we aimed to investigate the mechanism of TXNDC5 in keloid. Material and Methods Single-cell RNA sequencing data of keloid and normal scar samples obtained from public databases were normalized and clustered using the Seurat package. Pathway enrich analysis was conducted using biological process enrichment analysis and Gene Set Enrichment Analysis (GSEA). In addition, TXNDC5 expression and its effects on migration and invasion of keloid fibroblasts (KFs) were validated based on cell function experiments. Results A total of five cell types were obtained. The KF clusters were further clustered into two fibroblast subtypes (Fibroblast cells 1 and Fibroblast cells 2). Biological process enrichment analysis showed that transforming growth factor beta (TGF-β) signaling pathway was enriched in the two fibroblast subtypes. GSEA analysis demonstrated that genes in TGF-β signaling pathway were mainly enriched in Fibroblast cells 1, and that genes involved in cell proliferation, migration, and the TGF-β signaling pathway were all high-expressed in fibroblast cells 1. TXNDC5 was positively correlated with fibroblast proliferation, migration and TGF-β signaling pathway, and AUCell score. The cellular experiment confirmed that the messenger RNA and protein levels of TXNDC5 and TGF-β1 were high-expressed in KFs cells (P<0.001), and that knockdown of TXNDC5 downregulated TGF-β1 expression and inhibited migration and invasion of KFs (P<0.0001). Conclusion Our study indicated that TGF-β signaling pathway was enriched in fibroblast cells, and TXNDC5 was positively correlated with proliferation, migration, and TGF-β signaling pathway. Cellular experiment demonstrated that knocking down TXNDC5 downregulated TGF-β1 expression, and suppressed migration and invasion of KFs. The current discoveries provided a new therapeutic strategy for the treatment of keloid.
Collapse
Affiliation(s)
- Zhikun Liu
- Department of Plastic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lining Xian
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianmin Li
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shudan Zheng
- Department of Plastic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Hongju Xie
- Department of Plastic Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
2
|
Kim J, Won C, Ham S, Han H, Shin S, Jang J, Lee S, Kwon C, Cho S, Park H, Lee D, Lee WJ, Lee T, Lee JH. Increased Susceptibility to Mechanical Stretch Drives the Persistence of Keloid Fibroblasts: An Investigation Using a Stretchable PDMS Platform. Biomedicines 2024; 12:2169. [PMID: 39457482 PMCID: PMC11504861 DOI: 10.3390/biomedicines12102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Keloids are a common fibrotic disease of the skin, with the pathological hallmark of excessive extracellular matrix synthesis due to abnormal fibroblast activity. Since keloids clinically arise in areas of high mechanical tension, the mechanotransductory pathway may be attributed to its pathogenesis. We aimed to establish a preclinical platform to elucidate the underlying mechanism of keloid development and its clinical persistence. METHODS We fabricated a mechanically stretchable polydimethylsiloxane cell culture platform; with its mimicry of the in vivo cyclic stretch of skeletal muscles, cells showed higher proliferation compared with conventional modalities. RESULTS In response to mechanical strain, TGF-β and type 1 collagen showed significant increases, suggesting possible TGF-β/Smad pathway activation via mechanical stimulation. Protein candidates selected by proteomic analysis were evaluated, indicating that key molecules involved in cell signaling and oxidative stress were significantly altered. Additionally, the cytoskeletal network of keloid fibroblasts showed increased expression of its components after periodic mechanical stimulation. CONCLUSIONS Herein, we demonstrated and validated the existing body of knowledge regarding profibrotic mechanotransduction signaling pathways in keloid fibroblasts. Cyclic stretch, as a driving force, could help to decipher the tension-mediated biomechanical processes, leading to the development of optimized therapeutic targets.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Chihyeong Won
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Seoyoon Ham
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Heetak Han
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Sungsik Shin
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Jieun Jang
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| | - Sanghyeon Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Chaebeen Kwon
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Sungjoon Cho
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Hyeonjoo Park
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Dongwon Lee
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (D.L.); (W.J.L.)
| | - Won Jai Lee
- Department of Plastic and Reconstructive Surgery, Institute for Human Tissue Restoration, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (D.L.); (W.J.L.)
| | - Taeyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea; (C.W.); (H.H.); (S.L.); (C.K.); (S.C.); (H.P.)
| | - Ju Hee Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.K.); (S.H.); (S.S.); (J.J.)
| |
Collapse
|
3
|
Kyriazidis I, Demiri E, Foroglou P. Familial Spontaneous Keloids: Examining Thoracic Manifestations in Two Brothers. Cureus 2024; 16:e64163. [PMID: 39119435 PMCID: PMC11309079 DOI: 10.7759/cureus.64163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Keloids are complex fibroproliferative disorders with diverse clinical presentations. Spontaneous keloids (SKs) represent a rare subtype that emerges without any known preceding traumatic event. This report presents a case of familial spontaneous keloids appearing on the thoracic region in two brothers with no prior history of trauma or keloid occurrence in other family members. The lesions exhibited progressive growth over several years but responded to cycles of triamcinolone treatment. This case underscores an unusual spontaneous occurrence of keloids in the thoracic region of two siblings, highlighting the potential genetic predisposition in the aetiology of these lesions. Additionally, this instance reinforces the concept that keloids can develop spontaneously without any apparent trauma in the affected area.
Collapse
Affiliation(s)
- Ioannis Kyriazidis
- Department of Plastic and Reconstructive Surgery, General Hospital Papageorgiou, Thessaloniki, GRC
| | - Efterpi Demiri
- Department of Plastic and Reconstructive Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GRC
- Department of Plastic and Reconstructive Surgery, General Hospital Papageorgiou, Thessaloniki, GRC
| | - Pericles Foroglou
- Department of Plastic and Reconstructive Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GRC
- Department of Plastic and Reconstructive Surgery, General Hospital Papageorgiou, Thessaloniki, GRC
| |
Collapse
|
4
|
Oh S, Yeo E, Shim J, Noh H, Park J, Lee KT, Kim SH, Lee D, Lee JH. Revealing the pathogenesis of keloids based on the status: Active vs inactive. Exp Dermatol 2024; 33:e15088. [PMID: 38685820 DOI: 10.1111/exd.15088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/05/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Recently, the pathomechanisms of keloids have been extensively researched using transcriptomic analysis, but most studies did not consider the activity of keloids. We aimed to profile the transcriptomics of keloids according to their clinical activity and location within the keloid lesion, compared with normal and mature scars. Tissue samples were collected (keloid based on its activity (active and inactive), mature scar from keloid patients and normal scar (NS) from non-keloid patients). To reduce possible bias, all keloids assessed in this study had no treatment history and their location was limited to the upper chest or back. Multiomics assessment was performed by using single-cell RNA sequencing and multiplex immunofluorescence. Increased mesenchymal fibroblasts (FBs) was the main feature in keloid patients. Noticeably, the proportion of pro-inflammatory FBs was significantly increased in active keloids compared to inactive ones. To explore the nature of proinflammatory FBs, trajectory analysis was conducted and CCN family associated with mechanical stretch exhibited higher expression in active keloids. For vascular endothelial cells (VECs), the proportion of tip and immature cells increased in keloids compared to NS, especially at the periphery of active keloids. Also, keloid VECs highly expressed genes with characteristics of mesenchymal activation compared to NS, especially those from the active keloid center. Multiomics analysis demonstrated the distinct expression profile of active keloids. Clinically, these findings may provide the future appropriate directions for development of treatment modalities of keloids. Prevention of keloids could be possible by the suppression of mesenchymal activation between FBs and VECs and modulation of proinflammatory FBs may be the key to the control of active keloids.
Collapse
Affiliation(s)
- Sejin Oh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eunhye Yeo
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Joonho Shim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyungrye Noh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jihye Park
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyeong-Tae Lee
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seok-Hyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dongyoun Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Hee Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Ten Kate CA, Koese HJH, Hop MJ, Rietman AB, Wijnen RMH, Vermeulen MJ, Keyzer-Dekker CMG. Psychometric Performance of the Stony Brook Scar Evaluation Scale and SCAR-Q Questionnaire in Dutch Children after Pediatric Surgery. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 21:57. [PMID: 38248522 PMCID: PMC10815752 DOI: 10.3390/ijerph21010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
Introduction: The growing population of survivors following pediatric surgery emphasizes the importance of long-term follow-up. The impact of surgical scars on daily life can be evaluated through patient-reported outcome measurements. The Stony Brook Scar Evaluation Scale (SBSES) and SCAR-Q questionnaire are two interesting instruments for this purpose. We evaluated their psychometric performance in Dutch children after pediatric surgery. Methods: After English-Dutch translation, we evaluated-following the COSMIN guidelines-the feasibility, reliability (internal and external), and validity (construct, criterion, and convergent) of the SBSES and SCAR-Q in Dutch patients < 18 years old with surgical scars. Results: Three independent observers completed the SB for 100 children (58% boys, median age 7.3 (IQR 2.5-12.1) years) in whom surgery had been performed a median of 2.8 (0.5-7.9) years ago. Forty-six of these children (61% boys, median age 12.1 (9.3-16.2) years) completed the SCAR-Q. Feasibility and internal reliability (Cronbach's alpha > 0.7) was good for both instruments. For the SB, external reliability was poor to moderate (interobserver variability: ICC 0.46-0.56; intraobserver variability: ICC 0.74). For the SCAR-Q, external reliability was good (test-retest agreement: ICC 0.79-0.93). Validity tests (construct, criterion, and convergent) showed poor to moderate results for both instruments. Conclusions: The Dutch-translated SBSES and SCAR-Q showed good feasibility and internal reliability. External reliability and validity were likely affected by differences in conceptual content between the questionnaires. Combining them would provide insight in the impact of scars on patients. Implementation of these instruments in longitudinal follow-up programs could provide new insights into the long-term psychological outcome after pediatric surgery.
Collapse
Affiliation(s)
- Chantal A. Ten Kate
- Department of Pediatric Surgery and Intensive Care Children, Erasmus MC Sophia Children’s Hospital, Wytemaweg 80, 3015 CD Rotterdam, The Netherlands; (C.A.T.K.); (H.J.H.K.); (A.B.R.); (R.M.H.W.)
| | - Hilde J. H. Koese
- Department of Pediatric Surgery and Intensive Care Children, Erasmus MC Sophia Children’s Hospital, Wytemaweg 80, 3015 CD Rotterdam, The Netherlands; (C.A.T.K.); (H.J.H.K.); (A.B.R.); (R.M.H.W.)
| | - M. Jenda Hop
- Department of Plastic and Reconstructive Surgery, Erasmus University Medical Center, 3015 CD Rotterdam, The Netherlands;
| | - André B. Rietman
- Department of Pediatric Surgery and Intensive Care Children, Erasmus MC Sophia Children’s Hospital, Wytemaweg 80, 3015 CD Rotterdam, The Netherlands; (C.A.T.K.); (H.J.H.K.); (A.B.R.); (R.M.H.W.)
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC Sophia Children’s Hospital, 3015 CD Rotterdam, The Netherlands
| | - René M. H. Wijnen
- Department of Pediatric Surgery and Intensive Care Children, Erasmus MC Sophia Children’s Hospital, Wytemaweg 80, 3015 CD Rotterdam, The Netherlands; (C.A.T.K.); (H.J.H.K.); (A.B.R.); (R.M.H.W.)
| | - Marijn J. Vermeulen
- Department of Pediatrics, Division of Neonatology, Erasmus MC Sophia Children’s Hospital, 3015 CD Rotterdam, The Netherlands;
| | - Claudia M. G. Keyzer-Dekker
- Department of Pediatric Surgery and Intensive Care Children, Erasmus MC Sophia Children’s Hospital, Wytemaweg 80, 3015 CD Rotterdam, The Netherlands; (C.A.T.K.); (H.J.H.K.); (A.B.R.); (R.M.H.W.)
| |
Collapse
|
6
|
Liu AH, Sun XL, Liu DZ, Xu F, Feng SJ, Zhang SY, Li LZ, Zhou JL, Wang YT, Zhang L, Lin X, Gao SB, Yue X, Liu XM, Jin GH, Xu B. Epidemiological and clinical features of hypertrophic scar and keloid in Chinese college students: A university-based cross-sectional survey. Heliyon 2023; 9:e15345. [PMID: 37123979 PMCID: PMC10130857 DOI: 10.1016/j.heliyon.2023.e15345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Background Hypertrophic scar (HS) and keloid (KD) are common dermal fibroproliferative growth caused by pathological wound healing. HS's prevalence is currently undetermined in China. Though it primarily occurs in dark-skinned individuals, KD can develop in all races, and its prevalence among Chinese people is poorly documented. Objective To explore the present epidemiological status of them in Chinese college students. Methods We conducted a university-based cross-sectional study at one university in Fujian, China. A total of 1785 participants aged 16-34 years (mean age, 20.0 ± 2.0; 58.7% female) were enrolled and statistical analyses were performed. Results HS and KD were observed in 5.2% (95% confidence interval [CI]: 4.2-6.2) and 0.6% (95% CI: 0.3-1.0) of the population respectively. There was a significant difference by sex in HS (P < 0.05), but not in KD. The prevalence of HS and KD both showed a significant difference by age (P < 0.05), but not in ethnic and native place distribution. The occurrence of HS and KD were both concentrated in individuals 9-20 years old (HS: 77.2%; KD: 81.8%). They were mainly distributed in the upper limbs (52.1%; 64.3%), and the main cause was trauma (51.0%; 35.7%). In addition, male sex was a risk factor for HS (adjusted P < 0.001), and KD was associated with age ≥22 years and family history (adjusted P < 0.050). Conclusion HS and KD are common in Chinese college students, and more attention and research is warranted.
Collapse
|
7
|
Abdelhakim M, Dohi T, Ogawa R. Congress Report on the Second World Congress of Global Scar Society with Scar Academy and Japan Scar Workshop. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e4921. [PMID: 37073255 PMCID: PMC10106224 DOI: 10.1097/gox.0000000000004921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Pathological scars (including keloids, hypertrophic scars, and scar contractures) are present with high severity among certain populations, particularly in Asians and Africans who are highly prone to develop scars. Understanding the patho-mechanism that underlies scarring, such as mechanosignaling, systemic, and genetic factors, as well as optimal surgical techniques and integrated noninvasive therapeutic methods can guide clinicians to develop treatment protocols that can overcome these issues. This report summarizes a congress at Pacifico Yokohama (Conference Center) on December 19, 2021 involving researchers and clinicians from diverse disciplines who convened to discuss current clinical, preclinical, and most recent research advances in understanding pathological scarring, keloid and hypertrophic scar management, and research progress in wound healing. Presenters described the advances in scar therapies, understanding scarring mechanisms, and scar prevention and assessments tools. Moreover, presenters addressed the challenges during the COVID-19 pandemic and using telemedicine in management of scar patients.
Collapse
Affiliation(s)
- Mohamed Abdelhakim
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Teruyuki Dohi
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Rei Ogawa
- From the Department of Plastic, Reconstructive, and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
8
|
Noishiki C, Hayasaka Y, Yoshida R, Ogawa R. Over 90% Percent of Childhood BCG Vaccine-Induced Keloids in Japan Occur in Women. Dermatol Ther (Heidelb) 2023; 13:1137-1147. [PMID: 36952124 PMCID: PMC10034230 DOI: 10.1007/s13555-023-00916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
INTRODUCTION Keloids are a fibroproliferative, multifactorial, cutaneous disorder whose pathophysiology is not completely understood. Various factors such as high blood pressure, pregnancy, female gender, mechanical tension of local sites, and prolonged wound healing are known to worsen keloids. Childhood-onset keloids are keloids that form before 10 years of age, before various factors in adulthood come into play, and thus studying childhood-onset keloids may provide additional insight into the underlying mechanisms that lead to keloid formation. METHODS Retrospective chart review was performed on all patients with childhood-onset keloids who were evaluated at our plastic surgery clinic (one of the largest keloid referral centers in Japan) over a 1-year period. RESULTS Of the 1443 patients with diagnosis of keloids, 131 patients had childhood-onset keloids. Of these, 106 patients (80.9%) were female, 38.9% of patients had family history of keloids, and 48.9% of patients had allergies or allergy-related conditions (asthma, atopic dermatitis, or allergic rhinitis). Vaccination (47.5%) and chickenpox (19.9%) were the most common triggers. Of vaccinations, BCG was the most common trigger. The majority of keloids from BCG were in female patients (92.9%). The most common location was the chest in male patients (30.0%) and the arm in female patients (41.1%). CONCLUSION To our knowledge, this is the largest report in the literature on childhood-onset keloids. There was overall female predominance in childhood-onset keloids, and even more significant female predominance in BCG-induced keloids.
Collapse
Affiliation(s)
- Chikage Noishiki
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, 1-1-5 Sendagi Bunkyo-Ku, Tokyo, 113-8603, Japan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ryu Yoshida
- Department of Orthopaedics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, 1-1-5 Sendagi Bunkyo-Ku, Tokyo, 113-8603, Japan.
| |
Collapse
|
9
|
Zhang W, Li X, Li X. Efficacy and Safety of Verapamil Versus Triamcinolone Acetonide in Treating Keloids and Hypertrophic Scars: A Systematic Review and Meta-Analysis. Aesthetic Plast Surg 2023; 47:473-482. [PMID: 36562775 DOI: 10.1007/s00266-022-03229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Keloids and hypertrophic scars can affect the appearance and normal function of patients, and may severely affect patients' physical and mental health. Many methods have been used for the treatment of keloids and hypertrophic scars, there is no standardized method so far. The aim of this study was to compare the efficacy and safety of verapamil and triamcinolone acetonide (TAC) in treating keloids and hypertrophic scars. METHODS All studies from their inception date up to August 2022 were searched using four databases (PubMed, Cochrane Library, MEDLINE, and EMBASE). The weighted mean differences and the risk ratio were calculated for comparing continuous variables and dichotomous variables, respectively. RESULTS A total of nine randomized controlled trials involving 567 patients were identified. This meta-analysis indicated that TAC group showed significantly better effects compared with verapamil group in the reduction of height at 3 and 9 weeks, pliability at 3, 9, and 18 weeks, vascularity at 3, 6, 9, 12, 18, and 24 weeks, whereas verapamil group showed significantly better effects compared with TAC group in the reduction of pliability at 21 and 24 weeks. Verapamil group showed a significantly lower incidence of skin atrophy, telangiectasia, and hypopigmentation compared with TAC group. However, the incidence of burning sensation in verapamil group was higher than that in TAC group. CONCLUSION Concerning the treatment of keloids and hypertrophic scars, TAC was more effective than verapamil for improving vascularity; TAC was superior to verapamil in improving height within 9 weeks of treatment; TAC produced superior result for improving pliability within 18 weeks of treatment, whereas verapamil produced superior result between 18 and 24 weeks of treatment. Verapamil had fewer adverse events than TAC and can be used as a safer alternative for the treatment of keloids and hypertrophic scars. LEVEL OF EVIDENCE II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Wei Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, 218# Ji-Xi Road, Hefei, 230022, Anhui, China
| | - Xiaojing Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, 218# Ji-Xi Road, Hefei, 230022, Anhui, China
| | - Xinyi Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, 218# Ji-Xi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
10
|
Tian F, Jiang Q, Chen J, Liu Z. Silicone gel sheeting for treating keloid scars. Cochrane Database Syst Rev 2023; 1:CD013878. [PMID: 36594476 PMCID: PMC9808890 DOI: 10.1002/14651858.cd013878.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Keloid scarring is one of the most common types of pathological scarring. Keloid scars that fail to heal can affect a person's physical and psychological function by causing pain, pruritus, contractures, and cosmetic disfigurement. Silicone gel sheeting (SGS) is made from medical-grade silicone reinforced with a silicone membrane backing and is one of the most commonly used treatments for keloid scars. However, there is no up-to-date systematic review assessing the effectiveness of SGS for keloid scars. A clear and rigorous review of current evidence is required to guide clinicians, healthcare managers and people with keloid scarring. OBJECTIVES To assess the effectiveness of silicone gel sheeting for the treatment of keloid scars compared with standard care or other therapies. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was December 2021. SELECTION CRITERIA We included randomised controlled trials (RCTs) that recruited people with any keloid scars and assessed the effectiveness of SGS. DATA COLLECTION AND ANALYSIS Two review authors independently performed study selection, risk of bias assessment, data extraction and GRADE assessment of the certainty of evidence. We resolved initial disagreements by discussion, or by consulting a third review author when necessary. MAIN RESULTS Two studies met the inclusion criteria. Study sample sizes were 16 and 20 participants. The trials were clinically heterogeneous with differences in causes for scarring (e.g. surgery, infected wounds, and trauma), site (e.g. chest and back), and ages of scars. The duration of follow-up was three and four and a half months. The included studies reported three comparisons; SGS compared with no treatment, SGS compared with non-silicone gel sheeting (a dressing similar to SGS but which does not contain silicone), and SGS compared with intralesional injections of triamcinolone acetonide. One trial had a split-body design and one trial had an unclear design (resulting in a mix of paired and clustered data). The included studies reported limited outcome data for the primary review outcome of scar severity measured by health professionals and no data were reported for severity of scar measured by patients or adverse events. For secondary outcomes some data on pain were reported, but health-related quality of life and cost-effectiveness were not reported. Both trials had suboptimal outcome reporting, thus many domains in the risk of bias were assessed as unclear. All evidence was rated as being very low-certainty, mainly due to risk of bias, indirectness, and imprecision. SGS compared with no treatment Two studies with 33 participants (76 scars) reported the severity of scar assessed by health professionals, and we are uncertain about the effect of SGS on scar severity compared with no treatment (very low-certainty evidence, downgraded once for risk of bias, once for inconsistency, once for indirectness, and once for imprecision). We are uncertain about the effect of SGS on pain compared with no treatment (21 participants with 40 scars; very low-certainty evidence, downgraded once for risk of bias, once for inconsistency, once for indirectness, and once for imprecision). No data were reported for other outcomes including scar severity assessed by patients, adverse events, adherence to treatment, health-related quality of life and cost-effectiveness. SGS compared with non-SGS One study with 16 participants (25 scars) was included in this comparison. We are uncertain about the effect of SGS on scar severity assessed by health professionals compared with non-SGS (very low-certainty evidence, downgraded once for risk of bias, once for indirectness, and once for imprecision). We are also uncertain about the effect of SGS on pain compared with non-SGS (very low-certainty evidence, downgraded once for risk of bias, once for indirectness, and once for imprecision). No data were reported for other outcomes including scar severity assessed by patients, adverse events, adherence to treatment, health-related quality of life and cost-effectiveness. SGS compared with intralesional injections of triamcinolone acetonide One study with 17 participants (51 scars) reported scar severity assessed by health professionals, and we are uncertain about the effect of SGS on scar severity compared with intralesional injections of triamcinolone acetonide (very low-certainty evidence, downgraded once for risk of bias, once for indirectness, and once for imprecision). This study also reported pain assessed by health professionals among 5 participants (15 scars) and we are uncertain about the effect of SGS on pain compared with intralesional injections of triamcinolone acetonide (very low-certainty evidence, downgraded once for risk of bias, once for indirectness, and twice for imprecision). No data were reported for other outcomes including scar severity assessed by patients, adverse events, adherence to treatment, health-related quality of life and cost-effectiveness. AUTHORS' CONCLUSIONS There is currently a lack of RCT evidence about the clinical effectiveness of SGS in the treatment of keloid scars. From the two studies identified, there is insufficient evidence to demonstrate whether the use of SGS compared with no treatment, non-SGS, or intralesional injections of triamcinolone acetonide makes any difference in the treatment of keloid scars. Evidence from the included studies is of very low certainty, mainly driven by the risk of bias, indirectness, and imprecision due to small sample size. Further well-designed studies that have good reporting methodologies and address important clinical, quality of life and economic outcomes are required to reduce uncertainty around decision-making in the use of SGS to treat keloid scars.
Collapse
Affiliation(s)
- Fan Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qingling Jiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Junjie Chen
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenmi Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Leszczynski R, da Silva CA, Pinto ACPN, Kuczynski U, da Silva EM. Laser therapy for treating hypertrophic and keloid scars. Cochrane Database Syst Rev 2022; 9:CD011642. [PMID: 36161591 PMCID: PMC9511989 DOI: 10.1002/14651858.cd011642.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hypertrophic and keloid scars are common skin conditions resulting from abnormal wound healing. They can cause itching, pain and have a negative physical and psychological impact on patients' lives. Different approaches are used aiming to improve these scars, including intralesional corticosteroids, surgery and more recently, laser therapy. Since laser therapy is expensive and may have adverse effects, it is critical to evaluate the potential benefits and harms of this therapy for treating hypertrophic and keloid scars. OBJECTIVES To assess the effects of laser therapy for treating hypertrophic and keloid scars. SEARCH METHODS In March 2021 we searched the Cochrane Wounds Specialised Register, CENTRAL, MEDLINE, Embase, CINAHL EBSCO Plus and LILACS. To identify additional studies, we also searched clinical trials registries for ongoing and unpublished studies, and scanned reference lists of relevant included studies as well as reviews, meta-analyses, and health technology reports. There were no restrictions with respect to language, date of publication, or study setting. SELECTION CRITERIA We included randomised controlled trials (RCTs) for treating hypertrophic or keloid scars (or both), comparing laser therapy with placebo, no intervention or another intervention. DATA COLLECTION AND ANALYSIS Two review authors independently selected studies, extracted the data, assessed the risk of bias of included studies and carried out GRADE assessments to assess the certainty of evidence. A third review author arbitrated if there were disagreements. MAIN RESULTS We included 15 RCTs, involving 604 participants (children and adults) with study sample sizes ranging from 10 to 120 participants (mean 40.27). Where studies randomised different parts of the same scar, each scar segment was the unit of analysis (906 scar segments). The length of participant follow-up varied from 12 weeks to 12 months. All included trials had a high risk of bias for at least one domain: all studies were deemed at high risk of bias due to lack of blinding of participants and personnel. The variability of intervention types, controls, follow-up periods and limitations with report data meant we pooled data for one comparison (and only two outcomes within this). Several review secondary outcomes - cosmesis, tolerance, preference for different modes of treatment, adherence, and change in quality of life - were not reported in any of the included studies. Laser versus no treatment: We found low-certainty evidence suggesting there may be more hypertrophic and keloid scar improvement (that is scars are less severe) in 585-nm pulsed-dye laser (PDL) -treated scars compared with no treatment (risk ratio (RR) 1.96; 95% confidence interval (CI): 1.11 to 3.45; two studies, 60 scar segments). It is unclear whether non-ablative fractional laser (NAFL) impacts on hypertrophic scar severity when compared with no treatment (very low-certainty evidence). It is unclear whether fractional carbon dioxide (CO2) laser impacts on hypertrophic and keloid scar severity compared with no treatment (very low-certainty evidence). Eight studies reported treatment-related adverse effects but did not provide enough data for further analyses. Laser versus other treatments: We are uncertain whether treatment with 585-nm PDL impacts on hypertrophic and keloid scar severity compared with intralesional corticosteroid triamcinolone acetonide (TAC), intralesional Fluorouracil (5-FU) or combined use of TAC plus 5-FU (very low-certainty evidence). It is also uncertain whether erbium laser impacts on hypertrophic scar severity when compared with TAC (very low-certainty evidence). Other comparisons included 585-nm PDL versus silicone gel sheeting, fractional CO2 laser versus TAC and fractional CO2 laser versus verapamil. However, the authors did not report enough data regarding the severity of scars to compare the interventions. As only very low-certainty evidence is available on treatment-related adverse effects, including pain, charring (skin burning so that the surface becomes blackened), telangiectasia (a condition in which tiny blood vessels cause thread-like red lines on the skin), skin atrophy (skin thinning), purpuric discolorations, hypopigmentation (skin colour becomes lighter), and erosion (loss of part of the top layer of skin, leaving a denuded surface) secondary to blistering, we are not able to draw conclusions as to how these treatments compare. Laser plus other treatment versus other treatment: It is unclear whether 585-nm PDL plus TAC plus 5-FU leads to a higher percentage of good to excellent improvement in hypertrophic and keloid scar severity compared with TAC plus 5-FU, as the certainty of evidence has been assessed as very low. Due to very low-certainty evidence, it is also uncertain whether CO2 laser plus TAC impacts on keloid scar severity compared with cryosurgery plus TAC. The evidence is also very uncertain about the effect of neodymium-doped yttrium aluminium garnet (Nd:YAG) laser plus intralesional corticosteroid diprospan plus 5-FU on scar severity compared with diprospan plus 5-FU and about the effect of helium-neon (He-Ne) laser plus decamethyltetrasiloxane, polydimethylsiloxane and cyclopentasiloxane cream on scar severity compared with decamethyltetrasiloxane, polydimethylsiloxane and cyclopentasiloxane cream. Only very low-certainty evidence is available on treatment-related adverse effects, including pain, atrophy, erythema, telangiectasia, hypopigmentation, regrowth, hyperpigmentation (skin colour becomes darker), and depigmentation (loss of colour from the skin). Therefore, we are not able to draw conclusions as to how these treatments compare. AUTHORS' CONCLUSIONS: There is insufficient evidence to support or refute the effectiveness of laser therapy for treating hypertrophic and keloid scars. The available information is also insufficient to perform a more accurate analysis on treatment-related adverse effects related to laser therapy. Due to the heterogeneity of the studies, conflicting results, study design issues and small sample sizes, further high-quality trials, with validated scales and core outcome sets should be developed. These trials should take into consideration the consumers' opinion and values, the need for long-term follow-up and the necessity of reporting the rate of recurrence of scars to determine whether lasers may achieve superior results when compared with other therapies for treating hypertrophic and keloid scars.
Collapse
Affiliation(s)
| | | | - Ana Carolina Pereira Nunes Pinto
- Cochrane Brazil, Health Technology Assessment Center, São Paulo, Brazil
- Post-graduation program in Evidence-Based Health, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Biological and Health Sciences Department, Federal University of Amapa, Macapá, Brazil
| | | | - Edina Mk da Silva
- Emergency Medicine and Evidence Based Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Xu H, Zhu Z, Hu J, Sun J, Wo Y, Wang X, Zou H, Li B, Zhang Y. Downregulated cytotoxic CD8 + T-cell identifies with the NKG2A-soluble HLA-E axis as a predictive biomarker and potential therapeutic target in keloids. Cell Mol Immunol 2022; 19:527-539. [PMID: 35039632 PMCID: PMC8975835 DOI: 10.1038/s41423-021-00834-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
Keloids are an abnormal fibroproliferative wound-healing disease with a poorly understood pathogenesis, making it difficult to predict and prevent this disease in clinical settings. Identifying disease-specific signatures at the molecular and cellular levels in both the blood circulation and primary lesions is urgently needed to develop novel biomarkers for risk assessment and therapeutic targets for recurrence-free treatment. There is mounting evidence of immune cell dysregulation in keloid scarring. In this study, we aimed to profile keloid scar tissues and blood cells and found that downregulation of cytotoxic CD8+ T cells is a keloid signature in the peripheral blood and keloid lesions. Single-cell RNA sequencing revealed that the NKG2A/CD94 complex was specifically upregulated, which might contribute to the significant reduction in CTLs within the scar tissue boundary. In addition, the NKG2A/CD94 complex was associated with high serum levels of soluble human leukocyte antigen-E (sHLA-E). We subsequently measured sHLA-E in our hospital-based study cohort, consisting of 104 keloid patients, 512 healthy donors, and 100 patients with an interfering disease. The sensitivity and specificity of sHLA-E were 83.69% (87/104) and 92.16% (564/612), respectively, and hypertrophic scars and other unrelated diseases exhibited minimal interference with the test results. Furthermore, intralesional therapy with triamcinolone combined with 5-fluorouracil drastically decreased the sHLA-E levels in keloid patients with better prognostic outcomes, while an incomplete reduction in the sHLA-E levels in patient serum was associated with higher recurrence. sHLA-E may effectively serve as a diagnostic marker for assessing the risk of keloid formation and a prognostic marker for the clinical outcomes of intralesional treatment.
Collapse
Affiliation(s)
- Heng Xu
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhu Zhu
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jiawei Sun
- Genekinder Medicaltech (Shanghai) Co., Ltd, Shanghai, China
| | - Yan Wo
- Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xianshu Wang
- Creative Biosciences (Guangzhou) Co., Ltd., Guangzhou, Guangdong, China
| | - Hongzhi Zou
- Creative Biosciences (Guangzhou) Co., Ltd., Guangzhou, Guangdong, China
- Department of Colorectal Surgery, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Bin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Fakhraei S, Sazgarnia A, Taheri A, Rajabi O, Hoseininezhad M, Zamiri F, Ahmadpour F. Evaluating the efficacy of photodynamic therapy with indocyanine green in the treatment of keloid. Photodiagnosis Photodyn Ther 2022; 38:102827. [PMID: 35339721 DOI: 10.1016/j.pdpdt.2022.102827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND This study aimed to evaluate the efficacy of photodynamic therapy (PDT) with topical indocyanine green (ICG) in the treatment of keloid lesions. METHODS In this pilot study, fifteen keloids (6 lesions on the sternal area, 3 on the shoulders, 2 on the abdomen, 2 on the legs, and 2 on the forearms) were selected. To enhance drug penetration, pretreatment with CO2 laser was performed. Then Lesions were covered with 0.2% transfersomal ICG gel with 1mm thickness and occluded with light-proof plastic nylon for 2 hours. Afterward, it was wiped off and underwent photodynamic therapy with source LumaCare with 730 nm probe and fluence of 23 J/cm2 every week for 6 sessions. Patients were also assessed 6 and 12 weeks after the treatment for any recurrences. The Patient and Observer Scar Assessment Scale (POSAS) was used to evaluate the scars. RESULTS The mean POSAS score significantly reduced by 23.69% from 46.86 at baseline to 35.76 at the 6th treatment session (P< 0.001). The mean scores of patient and observer overall opinion significantly decreased by 16.35% (P< 0.001) and 12.31 % (P= 0.001) respectively. No side effects were observed during treatment and after 3 months of follow-ups. After discontinuation of therapy, the mean score of POSAS significantly increased by 13.77% to 40.80. (P= 0.001) CONCLUSION: : According to our study, ICG-PDT is an effective and safe treatment for keloid. However, due to the recurrence following discontinuation of treatment, further studies are needed.
Collapse
Affiliation(s)
- Sara Fakhraei
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| | - Ameneh Sazgarnia
- Department and Research Center of Medical Physics, Mashhad University of Medical Sciences, Mashhad, Iran..
| | - Ahmadreza Taheri
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| | - Omid Rajabi
- Department of Drug and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran..
| | - Masoumeh Hoseininezhad
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| | - Fereshteh Zamiri
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| | - Farnaz Ahmadpour
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
14
|
Ud-Din S, Bayat A. Noninvasive Objective Tools for Quantitative Assessment of Skin Scarring. Adv Wound Care (New Rochelle) 2022; 11:132-149. [PMID: 33966482 DOI: 10.1089/wound.2020.1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Significance: Many treatments are utilized in the management of skin scarring; however, difficulties arise due to the high rates of recurrence and the identification of treatment efficacy in each patient, in particular, in the case of raised dermal scarring. Therefore, evaluation of treatments and the provision of objective scar assessment pre-therapy and post-therapy is of paramount importance to identify changes in scar characteristics using noninvasive devices. Recent Advances: There have been a number of emerging noninvasive objective quantitative devices, which assess specific scar parameters such as pliability, volume, color, perfusion, and depth. These can include three-dimensional imaging, optical coherence tomography, in vivo confocal microscopy, full-field laser perfusion imaging, and spectrophotometric intracutaneous analysis. Critical Issues: Clinical assessment and grading scales are most commonly used to assess scarring; however, there is a need for more objective quantitative measures to monitor their maturation and response to therapy. Currently, there is no consensus as to which objective measuring device is most optimal when assessing skin scarring. There is a need for a predictor tool that allows early implementation of treatment and addresses diagnosis, therapy, and prognosis. Future Directions: Validation of noninvasive objective scar assessment tools is essential as well as further development of technologies. There are currently more modalities that assess physical scar characteristics and only few that measure the physiological parameters. Therefore, the development of a technology that quantifies the metabolic and cellular activity in skin scars is necessary to allow for bespoke strategies for each patient.
Collapse
Affiliation(s)
- Sara Ud-Din
- Plastic and Reconstructive Surgery Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, England, United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, England, United Kingdom
- MRC-SA Wound Healing Unit, Division of Dermatology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
Chen H, Hou K, Wu Y, Liu Z. Use of Adipose Stem Cells Against Hypertrophic Scarring or Keloid. Front Cell Dev Biol 2022; 9:823694. [PMID: 35071247 PMCID: PMC8770320 DOI: 10.3389/fcell.2021.823694] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
Hypertrophic scars or keloid form as part of the wound healing reaction process, and its formation mechanism is complex and diverse, involving multi-stage synergistic action of multiple cells and factors. Adipose stem cells (ASCs) have become an emerging approach for the treatment of many diseases, including hypertrophic scarring or keloid, owing to their various advantages and potential. Herein, we analyzed the molecular mechanism of hypertrophic scar or keloid formation and explored the role and prospects of stem cell therapy, in the treatment of this condition.
Collapse
Affiliation(s)
| | | | | | - Zeming Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Abstract
INTRODUCTION Keloids are pathological wound healing responses to dermal injuries. These scars may lead to considerable morbidity, but treatments remain challenging for physicians. Interleukin 10 (IL-10), a potent anti-inflammatory cytokine, plays a prominent role in fetal scarless regenerative healing; therefore, it may become a more targeted and effective therapy for keloids. This review aimed to obtain an overview of the background of keloid and IL-10 functions as its promising forthcoming treatment. MATERIALS AND METHODS Studies were sought from Pubmed, ScienceDirect, PLOS, and Clinical Key. Keywords are interleukin 10, keloid, and wound healing as Medical Subject Headings terms. RESULTS AND DISCUSSION Keloids and fetal scarless healing represent 2 opposing ends of the tissue repair spectrum. Promising multiple animal models have demonstrated successful regenerative healing promotion through IL-10 overexpression by its ability to minimize inflammatory wound microenvironment, downregulate transforming growth factor β/SMAD signaling pathway, increase extracellular matrix breakdown, and regulate extracellular matrix. These results have led to the development of clinical trials investigating human recombinant IL-10. CONCLUSIONS Interleukin 10 has the potential to become a more targeted and promising therapy of keloids owing to its pleiotropic effects.
Collapse
|
17
|
Gao N, Lu L, Ma X, Liu Z, Yang S, Han G. Targeted inhibition of YAP/TAZ alters the biological behaviours of keloid fibroblasts. Exp Dermatol 2021; 31:320-329. [PMID: 34623712 DOI: 10.1111/exd.14466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
Abnormal activation of fibroblasts plays a crucial role in keloid development. However, the mechanism of fibroblast activation remains to be determined. YAP/TAZ are key molecules in the Hippo signalling pathway that promote cell proliferation and inhibit apoptosis. Here, we show that keloid fibroblasts have higher levels of YAP/TAZ mRNA and proteins on primary culture. Targeted knockdown of endogenous YAP or TAZ significantly inhibited cell proliferation, reduced cell migration, induced cell apoptosis and down-regulated collagen1a1 production by keloid fibroblasts. Moreover, we demonstrate that verteporfin, an inhibitor of YAP/TAZ, has similar but stronger inhibitory effects on fibroblasts compared to YAP/TAZ knockdown. Our study provides evidence that YAP/TAZ may be involved in the pathogenesis of keloids. Targeted inhibition of YAP/TAZ could change the biological behaviours of fibroblasts and can potentially be used as therapy for keloids.
Collapse
Affiliation(s)
- Na Gao
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Lulu Lu
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Xiaolei Ma
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Zhengyi Liu
- Department of Dermatology, Peking University International Hospital, Beijing, China
| | - Shuxia Yang
- Department of Dermatology and Venereology, National Clinical Research Center for Skin and Immune Diseases, Peking University First Hospital, Beijing, China
| | - Gangwen Han
- Department of Dermatology, Peking University International Hospital, Beijing, China
| |
Collapse
|
18
|
Abstract
BACKGROUND Each year, in high-income countries alone, approximately 100 million people develop scars. Excessive scarring can cause pruritus, pain, contractures, and cosmetic disfigurement, and can dramatically affect people's quality of life, both physically and psychologically. Hypertrophic scars are visible and elevated scars that do not spread into surrounding tissues and that often regress spontaneously. Silicone gel sheeting (SGS) is made from medical-grade silicone reinforced with a silicone membrane backing and is one of the most commonly used treatments for hypertrophic scars. OBJECTIVES To assess the effects of silicone gel sheeting for the treatment of hypertrophic scars in any care setting. SEARCH METHODS In April 2021 we searched the Cochrane Wounds Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE (including In-Process & Other Non-Indexed Citations); Ovid Embase and EBSCO CINAHL Plus. We also searched clinical trials registries for ongoing and unpublished studies, and scanned reference lists of relevant included studies as well as reviews, meta-analyses and health technology reports to identify additional studies. There were no restrictions with respect to language, date of publication or study setting. SELECTION CRITERIA We included randomised controlled trials (RCTs) that enrolled people with any hypertrophic scars and assessed the use of SGS. DATA COLLECTION AND ANALYSIS Two review authors independently performed study selection, 'Risk of bias' assessment, data extraction and GRADE assessment of the certainty of evidence. We resolved initial disagreements by discussion, or by consulting a third review author when necessary. MAIN RESULTS Thirteen studies met the inclusion criteria. Study sample sizes ranged from 10 to 60 participants. The trials were clinically heterogeneous with differences in duration of follow-up, and scar site. We report 10 comparisons, SGS compared with no SGS treatment and SGS compared with the following treatments: pressure garments; silicone gel; topical onion extract; polyurethane; propylene glycol and hydroxyethyl cellulose sheeting; Kenalog injection; flashlamp-pumped pulsed-dye laser; intense pulsed light and Gecko Nanoplast (a silicone gel bandage). Six trials had a split-site design and three trials had an unclear design (resulting in a mix of paired and clustered data). Included studies reported limited outcome data for the primary review outcomes of severity of scarring measured by health professionals and adverse events (limited data reported by some included studies, but further analyses of these data was not possible) and no data were reported for severity of scarring reported by patients. For secondary outcomes some pain data were reported, but health-related quality of life and cost effectiveness were not reported. Many trials had poorly-reported methodology, meaning the risk of bias was unclear. We rated all evidence as being either of low or very low certainty, often because of imprecision resulting from few participants, low event rates, or both, all in single studies. SGS compared with no SGS Seven studies with 177 participants compared SGS with no SGS for hypertrophic scars. Two studies with 31 participants (32 scars) reported severity of scarring assessed by health professionals, and it is uncertain whether there is a difference in severity of scarring between the two groups (mean difference (MD) -1.83, 95% confidence interval (CI) -3.77 to 0.12; very low-certainty evidence, downgraded once for risk of bias, and twice for serious imprecision). One study with 34 participants suggests SGS may result in a slight reduction in pain level compared with no SGS treatment (MD -1.26, 95% CI -2.26 to -0.26; low-certainty evidence, downgraded once for risk of bias and once for imprecision). SGS compared with pressure garments One study with 54 participants was included in this comparison. The study reported that SGS may reduce pain levels compared with pressure garments (MD -1.90, 95% CI -2.99 to -0.81; low-certainty evidence, downgraded once for risk of bias and once for imprecision). SGS compared with silicone gel One study with 32 participants was included in this comparison. It is unclear if SGS impacts on severity of scarring assessed by health professionals compared with silicone gel (MD 0.40, 95% CI -0.88 to 1.68; very low-certainty evidence, downgraded once for risk of bias, twice for imprecision). SGS compared with topical onion extract One trial (32 participants) was included in this comparison. SGS may slightly reduce severity of scarring compared with topical onion extract (MD -1.30, 95% CI -2.58 to -0.02; low-certainty evidence, downgraded once for risk of bias, and once for imprecision). SGS compared with polyurethane One study with 60 participants was included in this comparison. It is unclear if SGS impacts on the severity of scarring assessed by health professionals compared with polyurethane (MD 0.50, 95% CI -2.96 to 3.96; very low-certainty evidence, downgraded once for risk of bias, and twice for imprecision). SGS compared with self-adhesive propylene glycol and hydroxyethyl cellulose sheeting One study with 38 participants was included in this comparison. It is uncertain if SGS reduces pain compared with self-adhesive propylene glycol and hydroxyethyl cellulose sheeting (MD -0.12, 95% CI -0.18 to -0.06). This is very low-certainty evidence, downgraded once for risk of bias, once for imprecision and once for indirectness. SGS compared with Gecko Nanoplast One study with 60 participants was included in this comparison. It is unclear if SGS impacts on pain compared with Gecko Nanoplast (MD 0.70, 95% CI -0.28 to 1.68; very low-certainty evidence, downgraded once for risk of bias and twice for imprecision. There was a lack of reportable data from the other three comparisons of SGS with Kenalog injection, flashlamp-pumped pulsed-dye laser or intense pulsed light. AUTHORS' CONCLUSIONS There is currently limited rigorous RCT evidence available about the clinical effectiveness of SGS in the treatment of hypertrophic scars. None of the included studies provided evidence on severity of scarring validated by participants, health-related quality of life, or cost effectiveness. Reporting was poor, to the extent that we are not confident that most trials are free from risk of bias. The limitations in current RCT evidence suggest that further trials are required to reduce uncertainty around decision-making in the use of SGS to treat hypertrophic scars.
Collapse
Affiliation(s)
- Qingling Jiang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Junjie Chen
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zhenmi Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Yu Y, Wu H, Zhang Q, Ogawa R, Fu S. Emerging insights into the immunological aspects of keloids. J Dermatol 2021; 48:1817-1826. [PMID: 34549462 DOI: 10.1111/1346-8138.16149] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
A special kind of scar, keloid, sometimes grows huge, disturbing patients in different ways. We discussed the pathogenesis of keloids and found researches about fibroblasts and collagen disorders, with little emphasis on immunity. Coupled with few effective treatments in keloid at present, we have focused on the immunological mechanisms of keloids with an aim to unravel some new therapeutic approaches in the future. In this review, the immunological processes are separately illustrated by the classification of different immune cells. In addition, we also discuss possible reasons for the repeated recurrence of keloids, the phenomenon of cell talks, and inflammation-related signal pathways involved in the pathogenesis of keloids.
Collapse
Affiliation(s)
- Yangyiyi Yu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qing Zhang
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Siqi Fu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Awonuga AO, Chatzicharalampous C, Thakur M, Rambhatla A, Qadri F, Awonuga M, Saed G, Diamond MP. Genetic and Epidemiological Similarities, and Differences Between Postoperative Intraperitoneal Adhesion Development and Other Benign Fibro-proliferative Disorders. Reprod Sci 2021; 29:3055-3077. [PMID: 34515982 DOI: 10.1007/s43032-021-00726-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
Intraperitoneal adhesions complicate over half of abdominal-pelvic surgeries with immediate, short, and long-term sequelae of major healthcare concern. The pathogenesis of adhesion development is similar to the pathogenesis of wound healing in all tissues, which if unchecked result in production of fibrotic conditions. Given the similarities, we explore the published literature to highlight the similarities in the pathogenesis of intra-abdominal adhesion development (IPAD) and other fibrotic diseases such as keloids, endometriosis, uterine fibroids, bronchopulmonary dysplasia, and pulmonary, intraperitoneal, and retroperitoneal fibrosis. Following a literature search using PubMed database for all relevant English language articles up to November 2020, we reviewed relevant articles addressing the genetic and epidemiological similarities and differences in the pathogenesis and pathobiology of fibrotic diseases. We found genetic and epidemiological similarities and differences between the pathobiology of postoperative IPAD and other diseases that involve altered fibroblast-derived cells. We also found several genes and single nucleotide polymorphisms that are up- or downregulated and whose products directly or indirectly increase the propensity for postoperative adhesion development and other fibrotic diseases. An understanding of the similarities in pathophysiology of adhesion development and other fibrotic diseases contributes to a greater understanding of IPAD and these disease processes. At a very fundamental level, blocking changes in the expression or function of genes necessary for the transformation of normal to altered fibroblasts may curtail adhesion formation and other fibrotic disease since this is a prerequisite for their development. Similarly, applying measures to induce apoptosis of altered fibroblast may do the same; however, apoptosis should be at a desired level to simultaneously ameliorate development of fibrotic diseases while allowing for normal healing. Scientists may use such information to develop pharmacologic interventions for those most at risk for developing these fibrotic conditions.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Charalampos Chatzicharalampous
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mili Thakur
- Reproductive Genomics Program, The Fertility Center, Grand Rapids, MI, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Anupama Rambhatla
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Farnoosh Qadri
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Modupe Awonuga
- Division of Neonatology, Department of Pediatrics and Human Development, Michigan State University, 1355 Bogue Street, East Lansing, MI, USA
| | - Ghassan Saed
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Augusta University, 1120 15th Street, CJ-1036, Augusta, GA, 30912, USA
| |
Collapse
|
21
|
Barone N, Safran T, Vorstenbosch J, Davison PG, Cugno S, Murphy AM. Current Advances in Hypertrophic Scar and Keloid Management. Semin Plast Surg 2021; 35:145-152. [PMID: 34526861 PMCID: PMC8432993 DOI: 10.1055/s-0041-1731461] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypertrophic scars and keloids are caused by excessive tissue response to dermal injury due to local fibroblast proliferation and collagen overproduction. This response occurs because of pathologic wound healing due to dysregulation in the inflammatory, proliferative, and/or remodeling phase. Patients with hypertrophic scars or keloids report reduced quality of life, physical status, and psychological health. Hypertrophic scars or keloids will develop in 30 to 90% of individuals, and despite their prevalence, treatment remains a challenge. Of the treatments currently available for hypertrophic scars and keloids few have been adequately supported by studies with appropriate experimental design. Here, we aim to review the available literature to provide up-to-date information on the etiology, epidemiology, histology, pathophysiology, prevention, and management options available for the treatment of hypertrophic scars and keloids and highlight areas where further research is required.
Collapse
Affiliation(s)
- Natasha Barone
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Tyler Safran
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Canada
| | - Joshua Vorstenbosch
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Canada
| | - Peter G. Davison
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Canada
| | - Sabrina Cugno
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Canada
| | - Amanda M. Murphy
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Canada
- Division of Plastic and Reconstructive Surgery, Jewish General Hospital, Montreal, Canada
| |
Collapse
|
22
|
Harman RM, Theoret CL, Van de Walle GR. The Horse as a Model for the Study of Cutaneous Wound Healing. Adv Wound Care (New Rochelle) 2021; 10:381-399. [PMID: 34042536 DOI: 10.1089/wound.2018.0883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Significance: Cutaneous wounds are a major problem in both human and equine medicine. The economic cost of treating skin wounds and related complications in humans and horses is high, and in both species, particular types of chronic wounds do not respond well to current therapies, leading to suffering and morbidity. Recent Advances: Conventional methods for the treatment of cutaneous wounds are generic and have not changed significantly in decades. However, as more is learned about the mechanisms involved in normal skin wound healing, and how failure of these processes leads to chronic nonhealing wounds, novel therapies targeting the specific pathologies of hard-to-heal wounds are being developed and evaluated. Critical Issues: Physiologically relevant animal models are needed to (1) study the mechanisms involved in normal and impaired skin wound healing and (2) test newly developed therapies. Future Directions: Similarities in normal wound healing in humans and horses, and the natural development of distinct types of hard-to-heal chronic wounds in both species, make the horse a physiologically relevant model for the study of mechanisms involved in wound repair. Horses are also well-suited models to test novel therapies. In addition, studies in horses have the potential to benefit veterinary, as well as human medicine.
Collapse
Affiliation(s)
- Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
23
|
Zhang D, Li B, Zhao M. Therapeutic Strategies by Regulating Interleukin Family to Suppress Inflammation in Hypertrophic Scar and Keloid. Front Pharmacol 2021; 12:667763. [PMID: 33959031 PMCID: PMC8093926 DOI: 10.3389/fphar.2021.667763] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022] Open
Abstract
Hypertrophic scar (HS) and keloid are fibroproliferative disorders (FPDs) of the skin due to aberrant wound healing, which cause disfigured appearance, discomfort, dysfunction, psychological stress, and patient frustration. The unclear pathogenesis behind HS and keloid is partially responsible for the clinical treatment stagnancy. However, there are now increasing evidences suggesting that inflammation is the initiator of HS and keloid formation. Interleukins are known to participate in inflammatory and immune responses, and play a critical role in wound healing and scar formation. In this review, we summarize the function of related interleukins, and focus on their potentials as the therapeutic target for the treatment of HS and keloid.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Bo Li
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Muxin Zhao
- Department of Plastic and Cosmetic Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
24
|
Van Hove L, Lecomte K, Roels J, Vandamme N, Vikkula HK, Hoorens I, Ongenae K, Hochepied T, Donati G, Saeys Y, Quist SR, Watt FM, van Loo G, Hoste E. Fibrotic enzymes modulate wound-induced skin tumorigenesis. EMBO Rep 2021; 22:e51573. [PMID: 33780134 DOI: 10.15252/embr.202051573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/18/2023] Open
Abstract
Fibroblasts are a major component of the microenvironment of most solid tumours. Recent research elucidated a large heterogeneity and plasticity of activated fibroblasts, indicating that their role in cancer initiation, growth and metastasis is complex and context-dependent. Here, we performed genome-wide expression analysis comparing fibroblasts in normal, inflammatory and tumour-associated skin. Cancer-associated fibroblasts (CAFs) exhibit a fibrotic gene signature in wound-induced tumours, demonstrating persistent extracellular matrix (ECM) remodelling within these tumours. A top upregulated gene in mouse CAFs encodes for PRSS35, a protease capable of collagen remodelling. In human skin, we observed PRSS35 expression uniquely in the stroma of high-grade squamous cell carcinomas. Ablation of PRSS35 in mouse models of wound- or chemically-induced tumorigenesis resulted in aberrant collagen composition in the ECM and increased tumour incidence. Our results indicate that fibrotic enzymes expressed by CAFs can regulate squamous tumour initiation by remodelling the ECM.
Collapse
Affiliation(s)
- Lisette Van Hove
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kim Lecomte
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jana Roels
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, Ghent, Belgium
| | - Niels Vandamme
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, Ghent, Belgium
| | - Hanna-Kaisa Vikkula
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Isabelle Hoorens
- Department of Dermatology, University Hospital Ghent, Ghent, Belgium
| | - Katia Ongenae
- Department of Dermatology, University Hospital Ghent, Ghent, Belgium
| | - Tino Hochepied
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Center, University of Turin, Turin, Italy.,Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Yvan Saeys
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Sciences and Statistics, Ghent University, Ghent, Belgium
| | - Sven R Quist
- Department of Dermatology and Venereology, Otto-von-Guericke University, Magdeburg, Germany
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Geert van Loo
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| |
Collapse
|
25
|
Affiliation(s)
- Fan Tian
- West China School of Public Health and West China Fourth Hospital; Sichuan University; Chengdu China
| | - Qingling Jiang
- West China School of Public Health and West China Fourth Hospital; Sichuan University; Chengdu China
| | - Junjie Chen
- Department of Burns and Plastic Surgery; West China Hospital, Sichuan University; Chengdu China
| | - Zhenmi Liu
- West China School of Public Health and West China Fourth Hospital; Sichuan University; Chengdu China
| |
Collapse
|
26
|
Xie F, Teng L, Xu J, Lu J, Zhang C, Yang L, Ma X, Zhao M. Adipose-derived mesenchymal stem cells inhibit cell proliferation and migration and suppress extracellular matrix synthesis in hypertrophic-scar and keloid fibroblasts. Exp Ther Med 2021; 21:139. [PMID: 33456506 PMCID: PMC7791925 DOI: 10.3892/etm.2020.9571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Pathological scars occur during skin wound healing, and the use of adipose-derived stem cells (ADSCs) is one of the various treatments. The present study aimed to investigate the in vitro effects of ADSCs on the biological properties of hypertrophic scar fibroblasts (HSFs) and keloid fibroblasts (KFs), such as proliferation, migration, and the synthesis of extracellular matrix proteins. Transwell chambers were used to establish a co-culture system of ADSCs with normal skin fibroblasts (NFs), HSFs or KFs. The effect of ADSCs on the proliferation of fibroblasts was evaluated by CCK8 measurement, while the migration ability of fibroblasts was assessed using cell scratch assay. The expression of extracellular matrix proteins was measured by immunoblotting. Co-culture of NFs with ADSCs did not affect cell proliferation and migration, nor the expression of extracellular matrix proteins [collagen-I, collagen-III, fibronectin (FN) and α-smooth muscle actin (α-SMA)] in NFs. However, as with the inhibitor SB431542, ADSCs significantly inhibited cell proliferation and migration and the expression of extracellular matrix proteins (collagen-I, collagen-III, FN and α-SMA), but also suppressed the protein expression of transforming growth factor β1 (TGF-β1), phosphorylated (p-) mothers against decapentaplegic homolog (Smad) 2, p-Smad3 and Smad7 in HSFs and KFs. The results show that ADSCs inhibited cell proliferation and migration and the expression of extracellular matrix proteins in HSCs and KFs in vitro, possibly through inhibition of the TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Fang Xie
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Li Teng
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Jiajie Xu
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Jianjian Lu
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Chao Zhang
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Liya Yang
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Xiaoyang Ma
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Minghao Zhao
- Cranio-Maxillo-Facial Surgery Department 2, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| |
Collapse
|
27
|
Nagar H, Kim S, Lee I, Kim S, Choi SJ, Piao S, Jeon BH, Oh SH, Kim CS. Downregulation of CR6-interacting factor 1 suppresses keloid fibroblast growth via the TGF-β/Smad signaling pathway. Sci Rep 2021; 11:500. [PMID: 33436666 PMCID: PMC7804403 DOI: 10.1038/s41598-020-79785-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/01/2020] [Indexed: 12/29/2022] Open
Abstract
Keloids are a type of aberrant skin scarring characterized by excessive accumulation of collagen and extracellular matrix (ECM), arising from uncontrolled wound healing responses. While typically non-pathogenic, keloids are occasionally regarded as a form of benign tumor. CR6-interacting factor 1 (CRIF1) is a well-known CR6/GADD45-interacting protein, that has both nuclear and mitochondrial functions, and also exerts regulatory effects on cell growth and apoptosis. In this study, cell proliferation, cell migration, collagen production and TGF-β signaling was compared between normal fibroblasts (NFs) and keloid fibroblasts (KFs). Subsequently, the effects of CRIF1 deficiency were investigated in both NFs and KFs. Cell proliferation, cell migration, collagen production and protein expressions of TGF-β, phosphorylation of Smad2 and Smad3 were all found to be higher in KFs compared to NFs. CRIF1 deficiency in NFs and KFs inhibited cell proliferation, migration, and collagen production. In addition, phosphorylation of Smad2 and Smad3, which are transcription factors of collagen, was decreased. In contrast, mRNA expression levels of Smad7 and SMURF2, two important inhibitory proteins of Smad2/3, were increased, suggesting that CRIF1 may regulate collagen production. CRIF1 deficiency decreases the proliferation and migration of KFs, thereby inhibiting their overgrowth via the transforming growth factor-β (TGF-β)/Smad pathway. CRIF1 may therefore represent a potential therapeutic target in keloid pathogenesis.
Collapse
Affiliation(s)
- Harsha Nagar
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Sungmin Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea.,Department of BK21 Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
| | - Ikjun Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Seonhee Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea.,Department of BK21 Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea
| | - Su-Jeong Choi
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Shuyu Piao
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea
| | - Sang-Ha Oh
- Department of Plastic and Reconstructive Surgery, School of Medicine, Chungnam National University, 282 Munhwa-ro, Jung-Gu, Daejeon, 35015, Republic of Korea. .,Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Cuk-Seong Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea. .,Department of Physiology, School of Medicine, Chungnam National University, 55 Munhwa-ro, Jung-Gu, Daejeon, 301-131, Republic of Korea. .,Department of BK21 Plus CNU Integrative Biomedical Education Initiative, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
28
|
O’Reilly S, Crofton E, Brown J, Strong J, Ziviani J. Use of tape for the management of hypertrophic scar development: A comprehensive review. Scars Burn Heal 2021; 7:20595131211029206. [PMID: 34290886 PMCID: PMC8278453 DOI: 10.1177/20595131211029206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Tapes have been used to aid fresh wound closure. For hypertrophic scars, the use of tapes as a therapy to reduce the mechanical forces that stimulate excessive and long-term scarring is yet to be evaluated. The aim of this comprehensive review was to explore the current clinical application of tapes, as a minimally invasive option, as purposed specifically for the management of hypertrophic scarring, regardless of scar causation. METHOD Databases were searched using MeSH terms including one identifier for hypertrophic scar and one for the intervention of taping. Studies included the following: patients who received tape for a minimum of 12 weeks as a method of wound closure specifically for the purpose of scar prevention; those who received tape as a method of scar management after scar formation; reported outcomes addressing subjective and/or objective scar appearance; and were available in English. RESULTS With respect to non-stretch tapes, their use for the prevention of linear surgical scarring is evident in reducing scar characteristics of height, colour and itch. Statistically significant results were found in median scar width, reduction in procedure times and overall scar rating. Tapes were predominately applied by participants themselves, and incidence of irritation was infrequently reported. After 12 months, significance with respect to scar pain, itch, thickness and overall scar elevation was reported in one study investigating paper tape. Two papers reported the use of high stretch tapes; however, subjective results limited formal analysis. Although the use of taping for abnormal hypertrophic scar management is in its infancy, emerging research indicates tapes with an element of stretch may have a positive impact. CONCLUSIONS Non-stretch tapes, for the prevention of linear surgical scarring, are effective in reducing scar characteristics of height, colour and itch. Paper tapes have shown effectiveness when applied during wound remodelling or even on mature scarring, with reported subjective changes in scar colour, thickness and pliability. Preliminary evidence of the benefits of high-stretch, elasticised tapes for scar management in the remodelling phase of wound healing have also been reported. LAY SUMMARY Patients are often concerned about unsightly scars that form on their bodies after trauma, especially burn injuries. These scars can be thick, red and raised on the skin, and can impact on the patient's quality of life. For some scars, the process of skin thickening continues for up to two years after an injury.Unfortunately, scar formation is a part of the body's healing process, whereby there is a constant pull or tension under and along the skin's surface. The use of simple tapes, such as microporetm, to help with wound closure are sometimes used as a therapy to reduce the tension on the skin's surface when a wound is healing to minimise scar formation. However, the effectiveness of taping has not been proven. This paper looks at the available evidence to support the use of taping to reduce scar features of height, thickness and colour. Initial evidence of mixed levels, suggests some benefits of tapes for scar management and show preliminary efficacy for reduction of scar height, thickness and colour. More research is required to determine the direct impact, comparison to other treatments available and patient viewpoint for this therapy.
Collapse
Affiliation(s)
- Sarah O’Reilly
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, QLD, Australia
- Queensland Health, Brisbane, QLD, Australia
| | - Erin Crofton
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, QLD, Australia
- Queensland Health, Brisbane, QLD, Australia
| | | | - Jennifer Strong
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, QLD, Australia
- Queensland Health, Brisbane, QLD, Australia
| | - Jenny Ziviani
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, QLD, Australia
| |
Collapse
|
29
|
Limandjaja GC, Niessen FB, Scheper RJ, Gibbs S. Hypertrophic scars and keloids: Overview of the evidence and practical guide for differentiating between these abnormal scars. Exp Dermatol 2021; 30:146-161. [PMID: 32479693 PMCID: PMC7818137 DOI: 10.1111/exd.14121] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Although hypertrophic scars and keloids both generate excessive scar tissue, keloids are characterized by their extensive growth beyond the borders of the original wound, which is not observed in hypertrophic scars. Whether or not hypertrophic scars and keloids are two sides of the same coin or in fact distinct entities remains a topic of much debate. However, proper comparison between the two ideally occurs within the same study, but this is the exception rather than the rule. For this reason, the goal of this review was to summarize and evaluate all publications in which both hypertrophic scars and keloids were studied and compared to one another within the same study. The presence of horizontal growth is the mainstay of the keloid diagnosis and remains the strongest argument in support of keloids and hypertrophic scars being distinct entities, and the histopathological distinction is less straightforward. Keloidal collagen remains the strongest keloid parameter, but dermal nodules and α-SMA immunoreactivity are not limited to hypertrophic scars alone. Ultimately, the current hypertrophic scars-keloid differences are mostly quantitative in nature rather than qualitative, and many similar abnormalities exist in both lesions. Nonetheless, the presence of similarities does not equate the absence of fundamental differences, some of which may not yet have been uncovered given how much we still have to learn about the processes involved in normal wound healing. It therefore seems pertinent to continue treating hypertrophic scars and keloids as separate entities, until such a time as new findings more decisively convinces us otherwise.
Collapse
Affiliation(s)
- Grace C. Limandjaja
- Department of Molecular Cell Biology and ImmunologyAmsterdam University Medical Centre (location VUmc)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Frank B. Niessen
- Department of Plastic SurgeryAmsterdam University Medical Centre (location VUmc)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Rik J. Scheper
- Department of PathologyAmsterdam University Medical Centre (location VUmc)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and ImmunologyAmsterdam University Medical Centre (location VUmc)Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Oral Cell BiologyAcademic Centre for Dentistry (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
30
|
Yao Q, Xing Y, Wang Z, Liang J, Lin Q, Huang M, Chen Y, Lin B, Xu X, Chen W. MiR-16-5p suppresses myofibroblast activation in systemic sclerosis by inhibiting NOTCH signaling. Aging (Albany NY) 2020; 13:2640-2654. [PMID: 33411678 PMCID: PMC7880343 DOI: 10.18632/aging.202308] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/11/2020] [Indexed: 04/07/2023]
Abstract
Systemic sclerosis (SSc) is a prototypic fibrotic disease characterized by localized or diffuse skin thickening and fibrosis. Tissue fibrosis is driven by myofibroblasts, and factors affecting myofibroblast activation may also be involved in the development of SSc. In this study, we examined molecular mechanisms underlying SSc by focusing on myofibroblast activation processes. Bioinformatics analysis conducted to identify differentially expressed miRNAs (DEMs) and genes (DEGs) revealed that microRNA-16-5p (miR-16-5p) was downregulated and NOTCH2 was upregulated in SSc patients. In vitro experiments confirmed that miR-16-5p was able to bind directly to NOTCH2 and inhibit myofibroblast activation. Moreover, miR-16-5p-dependent inhibition of NOTCH2 decreased collagen and α-SMA expression. MiR-16-5p downregulation and NOTCH2 upregulation was also confirmed in vivo in SSc patients, and NOTCH2 activation promoted fibrosis progression in vitro. These results indicate that miR-16-5p suppresses myofibroblast activation by suppressing NOTCH signaling.
Collapse
Affiliation(s)
- Qicen Yao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Yixi Xing
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Zaiyan Wang
- Department of Respiratory Medicine, The affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jin Liang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Qianqi Lin
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Meiqiong Huang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Yiling Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Bo Lin
- Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Xiayu Xu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| | - Weifei Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570311, Hainan Province, China
| |
Collapse
|
31
|
Limandjaja GC, Niessen FB, Scheper RJ, Gibbs S. The Keloid Disorder: Heterogeneity, Histopathology, Mechanisms and Models. Front Cell Dev Biol 2020; 8:360. [PMID: 32528951 PMCID: PMC7264387 DOI: 10.3389/fcell.2020.00360] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
Keloids constitute an abnormal fibroproliferative wound healing response in which raised scar tissue grows excessively and invasively beyond the original wound borders. This review provides a comprehensive overview of several important themes in keloid research: namely keloid histopathology, heterogeneity, pathogenesis, and model systems. Although keloidal collagen versus nodules and α-SMA-immunoreactivity have been considered pathognomonic for keloids versus hypertrophic scars, conflicting results have been reported which will be discussed together with other histopathological keloid characteristics. Importantly, histopathological keloid abnormalities are also present in the keloid epidermis. Heterogeneity between and within keloids exists which is often not considered when interpreting results and may explain discrepancies between studies. At least two distinct keloid phenotypes exist, the superficial-spreading/flat keloids and the bulging/raised keloids. Within keloids, the periphery is often seen as the actively growing margin compared to the more quiescent center, although the opposite has also been reported. Interestingly, the normal skin directly surrounding keloids also shows partial keloid characteristics. Keloids are most likely to occur after an inciting stimulus such as (minor and disproportionate) dermal injury or an inflammatory process (environmental factors) at a keloid-prone anatomical site (topological factors) in a genetically predisposed individual (patient-related factors). The specific cellular abnormalities these various patient, topological and environmental factors generate to ultimately result in keloid scar formation are discussed. Existing keloid models can largely be divided into in vivo and in vitro systems including a number of subdivisions: human/animal, explant/culture, homotypic/heterotypic culture, direct/indirect co-culture, and 3D/monolayer culture. As skin physiology, immunology and wound healing is markedly different in animals and since keloids are exclusive to humans, there is a need for relevant human in vitro models. Of these, the direct co-culture systems that generate full thickness keloid equivalents appear the most promising and will be key to further advance keloid research on its pathogenesis and thereby ultimately advance keloid treatment. Finally, the recent change in keloid nomenclature will be discussed, which has moved away from identifying keloids solely as abnormal scars with a purely cosmetic association toward understanding keloids for the fibroproliferative disorder that they are.
Collapse
Affiliation(s)
- Grace C. Limandjaja
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Frank B. Niessen
- Department of Plastic Surgery, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rik J. Scheper
- Department of Pathology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center (location VUmc), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
32
|
Keloid and Hypertrophic Scar Formation, Prevention, and Management: Standard Review of Abnormal Scarring in Orthopaedic Surgery. J Am Acad Orthop Surg 2020; 28:e408-e414. [PMID: 32109921 DOI: 10.5435/jaaos-d-19-00690] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Keloid and hypertrophic scar formation after orthopaedic surgical closure is a complex issue. The nature and location of procedures maximize wound tension, leave foreign bodies, and diminish dermal supply, all potentiating keloid formation. There is little discussion regarding the pathophysiology and management of this recurrent problem in orthopaedic literature. Keloid formation is a fibroproliferative disorder resulting in extensive production of extracellular matrix and collagen, but prevention and treatment is poorly understood. Patient and surgical factors contributing to the development of this condition are discussed. The treatments include both medical and surgical therapies that work at a biologic level and attempt to produce a cosmetic and complication-free management strategy. Medical options that have been investigated include combinations of intralesional steroid therapy, laser therapy, and biologics. Preventive surgical closure and excision remain mainstays of treatment. Radiation therapy has also been used in refractory cases with mixed results. Despite medical therapies and surgical excision aimed at treating the resulting scar, recurrence rate is very high for all modalities that have been studied to this point. Future work is being done to better understand the pathophysiology leading to keloid and hypertrophic scar formation in an effort to find preventive methods as compared to treatment strategies.
Collapse
|
33
|
Kilmister EJ, Paterson C, Brasch HD, Davis PF, Tan ST. The Role of the Renin-Angiotensin System and Vitamin D in Keloid Disorder-A Review. Front Surg 2019; 6:67. [PMID: 32039229 PMCID: PMC6988818 DOI: 10.3389/fsurg.2019.00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Keloid disorder (KD) is a fibroproliferative condition characterized by excessive dermal collagen deposition in response to wounding and/or inflammation of the skin. Despite intensive research, treatment for KD remains empirical and unsatisfactory. Activation of the renin-angiotensin system (RAS) leads to fibrosis in various organs through its direct effect and the resultant hypertension, and activation of the immune system. The observation of an increased incidence of KD in dark-skinned individuals who are predisposed to vitamin D deficiency (VDD) and hypertension, and the association of KD with hypertension and VDD, all of which are associated with an elevated activity of the RAS, provides clues to the pathogenesis of KD. There is increasing evidence implicating embryonic-like stem (ESC) cells that express ESC markers within keloid-associated lymphoid tissues (KALTs) in keloid lesions. These primitive cells express components of the RAS, cathepsins B, D, and G that constitute bypass loops of the RAS, and vitamin D receptor (VDR). This suggests that the RAS directly, and through signaling pathways that converge on the RAS, including VDR-mediated mechanisms and the immune system, may play a critical role in regulating the primitive population within the KALTs. This review discusses the role of the RAS, its relationship with hypertension, vitamin D, VDR, VDD, and the immune system that provide a microenvironmental niche in regulating the ESC-like cells within the KALTs. These ESC-like cells may be a novel therapeutic target for the treatment of this enigmatic and challenging condition, by modulating the RAS using inhibitors of the RAS and its bypass loops and convergent signaling pathways.
Collapse
Affiliation(s)
| | | | - Helen D Brasch
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand
| |
Collapse
|
34
|
Buick TA, Abbas W, Munro FD. Literature review and case report of post-circumcision keloid management. Arab J Urol 2019; 17:314-317. [PMID: 31723449 PMCID: PMC6830255 DOI: 10.1080/2090598x.2019.1651016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/20/2019] [Indexed: 10/28/2022] Open
Abstract
Keloid following circumcision has been described in the literature despite the rarity of its occurrence in penile skin. In this paper, we review the literature and report the successful management of post-circumcision keloid scarring in a 2-year-old boy. After circumcision a 2-year-old boy of African origin developed keloid scarring at the circumcision site. This was treated with three intralesional injections of triamcinolone acetate over 3 months, followed by surgical excision. There was no recurrence at 6 months after excision. To our knowledge this is the 12th case of keloid following paediatric circumcision described in the literature. There is a wide range of techniques described but all are recurrence free at 6 months following repeated intralesional triamcinolone acetate injection and surgical excision. While there is no current consensus in treating post-circumcision keloid, we find that intralesional injection followed by surgical excision provides an acceptable aesthetic result, which is recurrence free.
Collapse
Affiliation(s)
- Tim A Buick
- Royal Hospital for Sick Children, Edinburgh, Scotland
| | - Wisam Abbas
- Royal Hospital for Sick Children, Edinburgh, Scotland
| | | |
Collapse
|
35
|
The integrative regulatory network of circRNA and microRNA in keloid scarring. Mol Biol Rep 2019; 47:201-209. [PMID: 31612410 DOI: 10.1007/s11033-019-05120-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
Circular RNA (circRNA), a novel type of non-coding RNA that consists of a circular loop, has been demonstrated to act as a "sponge" for microRNAs (miRNAs). However, the role of circRNAs in keloid remains unknown. In this study, we investigated circRNA expression profiles in keloid to identify potential diagnostic and therapeutic circRNAs. We performed a circRNA microarray assay to determine circRNA expression in keloid and paired normal skin tissues. Quantitative reverse transcription polymerase chain reaction was used to evaluate the expression levels of candidate circRNAs. The most significantly over-expressed circRNA was used to predict putative miRNA targets and the binding sites of miRNAs with this circRNA. Finally, we constructed a circRNA-miRNA interaction network and carried out gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. We found 52 significantly upregulated and 24 downregulated circRNAs in keloid compared with normal skin tissue. We confirmed that hsa_circ_0057452, hsa_circ_0007482, hsa_circ_0020792, hsa_circ_0057342, and hsa_circ_0043688 were significantly upregulated in keloid tissues. Analysis of the circRNA-miRNA interaction network revealed that circRNAs could interact with miRNAs, including miRNA-29a, miRNA-23a-5p and miRNA-1976. GO and KEGG analyses indicated that these target genes were involved in biological functions and signaling pathways that may play vital roles in the pathogenesis of keloid. This study revealed that circRNAs are potentially implicated in the development of keloid and could serve as novel diagnostic and therapeutic targets.
Collapse
|
36
|
Tu T, Huang J, Lin M, Gao Z, Wu X, Zhang W, Zhou G, Wang W, Liu W. CUDC‑907 reverses pathological phenotype of keloid fibroblasts in vitro and in vivo via dual inhibition of PI3K/Akt/mTOR signaling and HDAC2. Int J Mol Med 2019; 44:1789-1800. [PMID: 31545402 PMCID: PMC6777681 DOI: 10.3892/ijmm.2019.4348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
Keloids are benign skin tumors with a high recurrence rate following surgical excision. Abnormal intracellular signaling is one of the key mechanisms involved in its pathogenesis. Over-activated phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway and overproduction of histone deacetylases 2 (HDAC2) have also been observed in keloid fibroblasts (KFs). The present study aimed to explore the possibility of reversing the KF pathological phenotype using CUDC-907, a dual inhibitor of PI3K/Akt/mTOR pathway and HDACs. KFs and keloid xenografts were treated with CUDC-907 to examine its inhibitory effects on the pathological activities of KFs in vitro and in vivo. CUDC-907 inhibited cell proliferation, migration, invasion and extracellular matrix deposition of in vitro cultured KFs and also suppressed collagen accumulation and disrupted the capillaries of keloid explants ex vivo and in vivo. A mechanistic study of CUDC-907 revealed the initiation of cell cycle arrest at G2/M phase along with the enhanced expression of cyclin-dependent kinase inhibitor 1 and decreased expression of cyclin B in cells treated with CUDC-907. CUDC-907 not only inhibited AKT and mTOR phosphorylation and promoted the acetylation of histone H3, but also significantly inhibited the phosphorylation levels of Smad2/3 and Erk. These preclinical data demonstrating its anti-keloid effects suggest that CUDC-907 may represent a candidate drug for systemic keloid therapy.
Collapse
Affiliation(s)
- Tian Tu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jia Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Miaomiao Lin
- Department of Otolaryngology, Suzhou First People's Hospital, Suzhou, Anhui 234000, P.R. China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiaoli Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
37
|
Chua SC, Gidaszewski B, Khajehei M. Efficacy of surgical excision and sub-dermal injection of triamcinolone acetonide for treatment of keloid scars after caesarean section: a single blind randomised controlled trial protocol. Trials 2019; 20:363. [PMID: 31215471 PMCID: PMC6582563 DOI: 10.1186/s13063-019-3465-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 05/24/2019] [Indexed: 12/02/2022] Open
Abstract
Background One of the first-line options to treat keloid scars is corticosteroid injection after excision of the existing scar. A thorough literature search has shown a lack of research on the injection of corticosteroid injection immediately after the excision of the existing caesarean section keloid scars. Therefore, in the proposed study, we aim to investigate the effect of surgical excision and corticosteroid (triamcinolone acetonide) injection immediately after surgical removal of old caesarean section keloid scars on the recurrence of the scars. This is a protocol for a randomised controlled trial. Methods/design Pregnant women (n = 150), who attend antenatal clinics at Westmead Hospital in New South Wales, Australia, have a keloid scar from a previous caesarean section, meet the inclusion criteria and sign the consent form, will be randomised to either the control or the intervention group. The control group will receive surgical excision of the keloid scar at the beginning of the procedure during skin incision. The baby will be delivered according to normal procedures, and routine wound closure will be performed in accordance with National Institute for Health and Care Excellence guidelines. The intervention group will receive surgical excision of the keloid scar after the delivery of the baby, and closure of the uterus layers, rectus sheath and the fat layer will be completed as explained above. Then, triamcinolone acetone will be injected sub-dermally at the time of wound closure. Two ampules of triamcinolone acetonide will be administered at a single dose; each ampule contains 10 mg/1 ml active medication. The surgeon will inject one ampule along the entire length of the upper edge of the skin incision and one ampule along the entire length of the lower edge of the skin incision, using a 25 G needle. After the procedure is completed, the surgeon will fill in the post-operation survey. The participants will be followed up post-operation, daily on the ward and then at 6 weeks, 6 months and 12 months post-partum. Main outcomes are (1) keloid formation after caesarean section and (2) changes in the appearance and specification of the keloid scar after the intervention. Discussion We anticipate that surgical excision and steroid injection will be a safe, lasting and cost-effective treatment in the management of caesarean keloid scars which will be useful for patients unable to undergo cosmetic surgery due to clinical or financial reasons. Trial registration Australian New Zealand Clinical Trials Registry, ACTRN12618000984291. Registered on 12 June 2018. Electronic supplementary material The online version of this article (10.1186/s13063-019-3465-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seng Chai Chua
- Department of Obstetrics and Gynaecology, Westmead Hospital, Sydney, NSW, Australia.,The University of Sydney, Sydney, Australia
| | - Beata Gidaszewski
- Department of Women's and Newborn Health, Westmead Hospital, Sydney, Australia.,The University of Sydney, Sydney, Australia
| | - Marjan Khajehei
- Department of Women's and Newborn Health, Westmead Hospital, Sydney, Australia. .,The University of Sydney, Sydney, Australia. .,University of New South Wales, Room 3046, Research and Education Network (REN) Building, Westmead Public Hospital, Hawkesbury Rd, Westmead, Sydney, NSW, 2145, Australia.
| |
Collapse
|
38
|
Limandjaja GC, Waaijman T, Roffel S, Niessen FB, Gibbs S. Monocytes co-cultured with reconstructed keloid and normal skin models skew towards M2 macrophage phenotype. Arch Dermatol Res 2019; 311:615-627. [PMID: 31187196 PMCID: PMC6736899 DOI: 10.1007/s00403-019-01942-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/28/2019] [Accepted: 06/04/2019] [Indexed: 01/15/2023]
Abstract
Several abnormalities have been reported in the peripheral blood mononuclear cells of keloid-forming patients and particularly in the monocyte cell fraction. The goal of this in vitro study was to determine whether monocytes from keloid-prone patients contribute to the keloid phenotype in early developing keloids, and whether monocyte differentiation is affected by the keloid microenvironment. Therefore, keloid-derived keratinocytes and fibroblasts were used to reconstruct a full thickness, human, in vitro keloid scar model. The reconstructed keloid was co-cultured with monocytes from keloid-forming patients and compared to reconstructed normal skin co-cultured with monocytes from non-keloid-formers. The reconstructed keloid showed increased contraction, dermal thickness (trend) and α-SMA+ staining, but co-culture with monocytes did not further enhance the keloid phenotype. After 2-week culture, all monocytes switched from a CD11chigh/CD14high/CD68low to a CD11chigh/CD14low/CD68high phenotype. However, only monocytes co-cultured with either reconstructed keloid scar or normal skin models skewed towards the more fibrotic M2-macrophage phenotype. There was negligible fibroblast and fibrocyte differentiation in mono- and co-cultured monocytes. These results indicate that monocytes differentiate into M2 macrophages when in the vicinity of early regenerating and repairing tissue, independent of whether the individual is prone to normal or keloid scar formation.
Collapse
Affiliation(s)
- Grace C Limandjaja
- Department of Molecular Cell Biology and Immunology, O|2 Lab Building Room 11E05, Amsterdam University Medical Centre (UMC), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan, 1108, Amsterdam, The Netherlands
| | - Taco Waaijman
- Department of Molecular Cell Biology and Immunology, O|2 Lab Building Room 11E05, Amsterdam University Medical Centre (UMC), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan, 1108, Amsterdam, The Netherlands
| | - Sanne Roffel
- Department of Molecular Cell Biology and Immunology, O|2 Lab Building Room 11E05, Amsterdam University Medical Centre (UMC), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan, 1108, Amsterdam, The Netherlands
| | - Frank B Niessen
- Department of Plastic Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, O|2 Lab Building Room 11E05, Amsterdam University Medical Centre (UMC), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, De Boelelaan, 1108, Amsterdam, The Netherlands.
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
39
|
Meseci E. Assessment of topical corticosteroid ointment on postcesarean scars prevention: A prospective clinical trial. Pak J Med Sci 2019; 35:309-314. [PMID: 31086506 PMCID: PMC6500814 DOI: 10.12669/pjms.35.2.553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective To evaluate the effectiveness of corticosteroid ointment in hypertrophic scars prevention following Cesarean section. Methods This study was conducted between June 2017-May 2018 in Acıbadem Kozyatagı Hospital. Sixty-one patients (31 treatment and 30 control patients) took part in the current study which evaluated wound outcomes and patient satisfaction. All patients' wound characteristics were assessed via the modified Vancouver Scar Scale (MVSS) score (height, pigmentation, vascularity, and pliability) at baseline (post-op 10th day), three months and six months. The treatment group received corticosteroid cream every other day for three months. Comparative evaluations and time-bound changes were evaluated in both groups. Results The mean age of the subjects was 31.28 ± 3.95 years. While the height and vascularity subsection scores of corticosteroid recipients were significantly reduced compared to those without treatment at three months, the scores were similar at six months. Furthermore, pliability and pigmentation decreased equally in both groups. There was high satisfaction with scar healing in the experimental group (20%, n=6), while 12.9% (n=4) of the patients were satisfied in the control group. Two patients reported itching after treatment. Conclusions The clinical outcomes in both groups were similar. Although vascularity and height parameters improved in three months, similar results were also observed in the group that did not receive treatment after the end of six months. This may have been due to the fact that treatment was stopped after three months. We recommend that the hypothesis be tested in larger series in future studies.
Collapse
Affiliation(s)
- Elif Meseci
- Elif Meseci, MD. Acıbadem Kozyatagı Hospital, Department of Obstetrics and Gynecology, Inonu Caddesi, Okur Sokak, No:20 Kozyatagi, 34742, Istanbul, Turkey
| |
Collapse
|
40
|
|
41
|
Limandjaja GC, van den Broek LJ, Breetveld M, Waaijman T, Monstrey S, de Boer EM, Scheper RJ, Niessen FB, Gibbs S. Characterization of In Vitro Reconstructed Human Normotrophic, Hypertrophic, and Keloid Scar Models. Tissue Eng Part C Methods 2018; 24:242-253. [PMID: 29490604 DOI: 10.1089/ten.tec.2017.0464] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To understand scar pathology, develop new drugs, and provide a platform for personalized medicine, physiologically relevant human scar models are required, which are characteristic of different scar pathologies. Hypertrophic scars and keloids are two types of abnormal scar resulting from unknown abnormalities in the wound healing process. While they display different clinical behavior, differentiation between the two can be difficult-which in turn means that it is difficult to develop optimal therapeutic strategies. The aim of this study was to develop in vitro reconstructed human hypertrophic and keloid scar models and compare these to normotrophic scar and normal skin models to identify distinguishing biomarkers. Keratinocytes and fibroblasts from normal skin and scar types (normotrophic, hypertrophic, keloid) were used to reconstruct skin models. All skin models showed a reconstructed differentiated epidermis on a fibroblast populated collagen-elastin matrix. Both abnormal scar types showed increased contraction, dermal thickness, and myofibroblast staining compared to normal skin and normotrophic scar. Notably, the expression of extracellular matrix associated genes showed distinguishing profiles between all scar types and normal skin (hyaluronan synthase-1, matrix-metalloprotease-3), between keloid and normal skin (collagen type IV), between normal scar and keloid (laminin α1), and between keloid and hypertrophic scar (matrix-metalloprotease-1, integrin α5). Also, inflammatory cytokine and growth factor secretion (CCL5, CXCL1, CXCL8, CCL27, IL-6, HGF) showed differential secretion between scar types. Our results strongly suggest that abnormal scars arise from different pathologies rather than simply being on different ends of the scarring spectrum. Furthermore, such normal skin and scar models together with biomarkers, which distinguish the different scar types, would provide an animal free, physiologically relevant scar diagnostic and drug testing platform for the future.
Collapse
Affiliation(s)
- Grace C Limandjaja
- 1 Department of Dermatology, VU Medical Centre (VUMC) , Amsterdam, The Netherlands
| | | | - Melanie Breetveld
- 1 Department of Dermatology, VU Medical Centre (VUMC) , Amsterdam, The Netherlands
| | - Taco Waaijman
- 1 Department of Dermatology, VU Medical Centre (VUMC) , Amsterdam, The Netherlands
| | - Stan Monstrey
- 2 Department of Plastic Surgery, University of Ghent , Ghent, Belgium
| | - Edith M de Boer
- 1 Department of Dermatology, VU Medical Centre (VUMC) , Amsterdam, The Netherlands
| | - Rik J Scheper
- 3 Department of Pathology, VU Medical Centre (VUMC) , Amsterdam, The Netherlands
| | - Frank B Niessen
- 4 Department of Plastic Surgery, VU Medical Centre (VUMC) , Amsterdam, The Netherlands
| | - Susan Gibbs
- 1 Department of Dermatology, VU Medical Centre (VUMC) , Amsterdam, The Netherlands .,5 Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA) , Amsterdam, The Netherlands
| |
Collapse
|
42
|
Chen B, Yue X, Zhang R, Song H. Statistical analysis of factors affecting re-operative times in paediatric patients with scar deformity after deep second-degree burn injury. Int Wound J 2018; 15:565-570. [PMID: 29600564 DOI: 10.1111/iwj.12899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022] Open
Abstract
Deep second-degree burn injuries pose a challenge for treating scar deformity in developing paediatric patients. Some patients underwent several re-operations during their development. There was no literature reporting which factors affect re-operative times. In this article, we intend to analyse possible influential factors that are responsible for re-operative times in paediatric patients with scar deformity after deep second-degree burn injuries. From 2010 to 2016, 177 paediatric cases with a history of deep second-degree burn injury who underwent re-operation once, twice, and equal to or more than thrice were recruited to this study, with age ranging from 0 to 18 years. The following factors were analysed: age, gender, size of scar, method for reconstruction, location, postoperative anti-scar treatment, preschool group, school group, combined deformity, and combined method for reconstruction. One-way ANOVA and multi-way ANOVA analysis were used as statistical tools to analyse the above factors and re-operative times. There were 83 male cases and 94 female cases, with an average age of 7.47 years. Statistical significance was achieved for the size of scar (P = 0.000), operation method (P = 0.001), and combined deformity (P = 0.026) under 1-way ANOVA in different re-operative times. The operation methods for the head and neck area (P < 0.05) and the lower extremities (P < 0.05) are critical factors for multi-factor variance analysis in different re-operative times. Multivariate logistic regression analysis also demonstrated that the size of scar was an independent risk factor for the number of operations. Combined operative method was a protective risk factor for the number of operations. There was no statistical significance obtained for other factors. Size of scar, operation method, and combined operation method are the risk factors for re-operative times, while operation methods for the head and neck area and lower extremities are the critical factors for re-operative times. We can use the combined method to resolve scar-related problems in order to reduce re-operative times.
Collapse
Affiliation(s)
- Baoguo Chen
- Plastic and Reconstructive Surgery, The First Hospital Affiliated to the People's Literative Army Hospital, Beijing, China
| | - Xiaotong Yue
- Plastic and Reconstructive Surgery, The First Hospital Affiliated to the People's Literative Army Hospital, Beijing, China
| | - Ruijuan Zhang
- Plastic and Reconstructive Surgery, The First Hospital Affiliated to the People's Literative Army Hospital, Beijing, China
| | - Huifeng Song
- Plastic and Reconstructive Surgery, The First Hospital Affiliated to the People's Literative Army Hospital, Beijing, China
| |
Collapse
|
43
|
Sun XJ, Wang Q, Guo B, Liu XY, Wang B. Identification of skin-related lncRNAs as potential biomarkers that involved in Wnt pathways in keloids. Oncotarget 2018; 8:34236-34244. [PMID: 28404955 PMCID: PMC5470963 DOI: 10.18632/oncotarget.15880] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/24/2017] [Indexed: 12/19/2022] Open
Abstract
The long non-coding RNAs (lncRNAs) regulating encoding transcripts/genes involved in Wnt signalling pathway in keloids is largely unclear. We used a pathway-focused lncRNA microarray to detect the differentiated expression profiles of both lncRNAs and genes involved in Wnt pathway, thus a total of 116 Wnt-targeted genes and 69 Wnt-related lncRNAs aberrantly expressed in keloids were initially identified. A stepwise bioinformatics was further performed to find skin-related lncRNA/gene pairs in Wnt pathway in keloids. Firstly, an lncRNA/gene co-expression network with clustered functional modules was constructed; simultaneously, 114 Wnt-genes regarding to dermis were online enriched using Phenotype Enrichment. Secondly, 17 skin-related keloid-aberrant Wnt-genes were acquired by overlapping the 114 skin-related Wnt-genes with the 116 keloid-aberrant Wnt-genes. Thirdly, after co-expression coefficient of each lncRNA/gene profile being ranked respectively, 11 top co-expressed lncRNAs characterized with the highest co-expression coefficients to the 17 genes were identified. Fourthly, seven of the 11 top co-expressed lncRNAs exhibiting array-detected aberrant expression in keloids, together with their 12 most interactive Wnt-genes, were selected to undergo in-pair intracellularly quantitative PCR validation in keloids. As a result, four lncRNAs including CACNA1G-AS1, HOXA11-AS, LINC00312 and RP11-91I11.1 with their six paired Wnt-genes undergoing both array-and-qPCR as well as lncRNA-and-gene double validation were finally identified as skin-related lncRNA/gene pairs that involved in Wnt signalling pathway in keloids. In conclusion, in-depth exploration on these easily-accessible lncRNAs in keloids might aid to find the novel target on how to maintain highly recurrent tumours benign via Wnt-involved network regulation.
Collapse
Affiliation(s)
- Xiao-Jie Sun
- Department of Plastic and Reconstruction Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiang Wang
- Department of Obstetrics and Gynecology, Second Hospital of Jilin University, Changchun, China
| | - Baofeng Guo
- Department of Plastic and Reconstruction Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xian-Ying Liu
- Department of medication, Second Hospital of Jilin University, Changchun, China
| | - Bing Wang
- Department of Plastic and Reconstruction Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
44
|
Yao X, Cui X, Wu X, Xu P, Zhu W, Chen X, Zhao T. Tumor suppressive role of miR-1224-5p in keloid proliferation, apoptosis and invasion via the TGF-β1/Smad3 signaling pathway. Biochem Biophys Res Commun 2018; 495:713-720. [DOI: 10.1016/j.bbrc.2017.10.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/14/2017] [Indexed: 01/10/2023]
|
45
|
Wu X. Expression of HIF-1α in keloids and its correlation with inflammatory responses and apoptosis. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218818952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the expression of hypoxia-inducible factor-1α (HIF-1α) in keloids and its correlation with inflammatory responses and apoptosis. The keloid specimens resected in our hospital from November 2015 to February 2017 were selected as the pathological group, and the normal skin tissues from our hospital during the same period were selected as the control group. The expression of HIF-1α, inflammatory response cytokines, and apoptotic molecules in the tissues of two groups were detected. The messenger RNA (mRNA) expression of HIF-1α in the keloids in the pathological group was significantly higher than that in the control group, and the mRNA expression of interleukin (IL)-1β, IL-2, IL-6, and tumor necrosis factor (TNF)-α in the pathological group was significantly higher than those in the control group. The mRNA expression of Bax in the pathological group was significantly higher than that in the control group. The mRNA expression of Bcl-2, livin, and hPEBP4 in the pathological group was significantly lower than that in the control group. Pearson test showed that there was a positive correlation between the mRNA expression of HIF-1α and inflammatory cytokines including IL-1β, IL-2, IL-6, and TNF-α. There were also a positive correlation between the mRNA expression of HIF-1α and Bax and a negative correlation between the mRNA expression of HIF-1α and Bcl-2, livin, and hPEBP4. In conclusion, HIF-1α was highly expressed in keloids and closely related to inflammatory response cytokines and apoptosis molecules. Increased expression of HIF-1α in keloids may be an important factor in inflammatory responses and increased apoptosis in skin tissues.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Plastic Surgery, Linzi District People’s Hospital, Zibo, China
| |
Collapse
|
46
|
Li T, Zhao J. Knockdown of elF3a inhibits TGF‑β1‑induced extracellular matrix protein expression in keloid fibroblasts. Mol Med Rep 2017; 17:4057-4061. [PMID: 29286129 DOI: 10.3892/mmr.2017.8365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
Keloid formation is characterized by hyperproliferation of secretory and responsive keloid fibroblasts (KFs) and overproduction of extracellular matrix (ECM). Eukaryotic translation initiation factor 3 subunit A (eIF3a) one of the core subunits of the translation initiation complex, eIF3, has previously been reported to possess an anti‑fibrogenic effect. However, the role of eIF3a in keloid formation has not yet been investigated. Therefore, the present study examined the effect of eIF3a on transforming growth factor‑β1 (TGF‑β1)‑mediated ECM expression in KFs. The expression levels of eIF3a in human keloid tissues was evaluated using reverse transcription‑quantitative polymerase chain reaction and western blotting. KFs were incubated with siRNA‑eIF3a or siRNA‑mock for 48 h. The cells were then treated with TGF‑β1 (10 ng/ml) for 72 h. Cell proliferation was evaluated using the CCK‑8 assay. The expression levels of α‑SMA, collagen type I, TGF‑β receptor I (RI), TGF‑β RII, phosphorylated (p)‑mothers against decapentaplegic homolog (Smad2), Smad2, p‑Smad3 and Smad3 were detected western blotting. The present study identified significant upregulation of eIF3a mRNA and protein and in human keloid tissues compared with in normal tissues. Knockdown of eIF3a inhibited KF proliferation induced by TGF‑β1. In addition, eIF3a silencing significantly suppressed the TGF‑β1‑induced expression of α‑smooth muscle actin, collagen I, TGF‑β RI and TGF‑β RII in KFs. Furthermore, eIF3a silencing inhibited the phosphorylation levels of Smad2 and Smad3 in TGF‑β1‑induced KFs. To the best of our knowledge, the current study is the first to demonstrate that siRNA‑eIF3a inhibits the expression ECM proteins via the TGF‑β1/Smad signaling pathway in KFs. Therefore, eIF3a may be a potential, novel target for treatment of keloids.
Collapse
Affiliation(s)
- Tianyu Li
- Plastic and Cosmetic Center, Nanyang Nanshi Hospital, Affiliated Hospital of Henan University, Nanyang, Henan 473001, P.R. China
| | - Junxiang Zhao
- Plastic and Cosmetic Center, Nanyang Nanshi Hospital, Affiliated Hospital of Henan University, Nanyang, Henan 473001, P.R. China
| |
Collapse
|
47
|
High-Mobility Group Box 1 Mediates Fibroblast Activity via RAGE-MAPK and NF-κB Signaling in Keloid Scar Formation. Int J Mol Sci 2017; 19:ijms19010076. [PMID: 29283384 PMCID: PMC5796026 DOI: 10.3390/ijms19010076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
Emerging studies have revealed the involvement of high-mobility group box 1 (HMGB1) in systemic fibrotic diseases, yet its role in the cutaneous scarring process has not yet been investigated. We hypothesized that HMGB1 may promote fibroblast activity to cause abnormal cutaneous scarring. In vitro wound healing assay with normal and keloid fibroblasts demonstrated that HMGB1 administration promoted the migration of both fibroblasts with increased speed and a greater traveling distance. Treatment of the HMGB1 inhibitor glycyrrhizic acid (GA) showed an opposing effect on both activities. To analyze the downstream mechanism, the protein levels of extracellular signal-regulated kinase (ERK) 1/2, protein kinase B (AKT), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were measured by western blot analysis. HMGB1 increased the expression levels of ERK1/2, AKT, and NF-κB compared to the control, which was suppressed by GA. HMGB1 promoted both normal and keloid fibroblasts migration to a degree equivalent to that achieved with TGF-β. We concluded that HMGB1 activates fibroblasts via the receptor for advanced glycation end product (RAGE)—mitogen-activated protein kinases (MAPK) and NF-κB interaction signaling pathways. Further knowledge of the relationship of HMGB1 with skin fibrosis may lead to a promising clinical approach to manage abnormal scarring.
Collapse
|
48
|
Torii K, Maeshige N, Aoyama-Ishikawa M, Miyoshi M, Terashi H, Usami M. Combination therapy with butyrate and docosahexaenoic acid for keloid fibrogenesis: an in vitro study. An Bras Dermatol 2017; 92:184-190. [PMID: 28538876 PMCID: PMC5429102 DOI: 10.1590/abd1806-4841.20176198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/02/2016] [Indexed: 01/01/2023] Open
Abstract
Background: A single, effective therapeutic regimen for keloids has not been established yet, and the development of novel therapeutic approaches is expected. Butyrate, a short-chain fatty acid, and docosahexaenoic acid (DHA), a ω-3 polyunsaturated fatty acid, play multiple anti-inflammatory and anticancer roles via their respective mechanisms of action. Objective: In this study, we evaluated the antifibrogenic effects of their single and combined use on keloid fibroblasts. Methods: Keloid fibroblasts were treated with butyrate (0-16 mM) and/or DHA (0-100 µM) for 48 or 96 h. Results: Butyrate inhibited cell proliferation, and α-smooth muscle actin (α-SMA) and type III collagen expressions, with inhibition of the transforming growth factor (TGF)-β1 and TGF-β type I receptor expressions and increased prostaglandin E2 with upregulation of cyclooxygenase-1 expression with induction of histone acetylation. DHA inhibited α-SMA, type III collagen, and TGF-β type I receptor expressions. Then, the butyrate/DHA combination augmented the antifibrogenic effects, resulting in additional inhibition of α-SMA, type I and III collagen expressions, with strong disruption of stress fiber and apoptosis induction. Moreover, the butyrate/DHA combination inhibited the cyclooxygenase-2 expression, suggesting stronger anti-inflammatory effect than each monotherapy. Study limitations: Activation in keloid tissue is affected not only by fibroblasts but also by epithelial cells and immune cells. Evaluation of the effects by butyrate and DHA in these cells or in an in vivo study is required. Conclusion: This study demonstrated that butyrate and docosahexaenoic acid have antifibrogenic effects on keloid fibroblasts and that these may exert therapeutic effects for keloid.
Collapse
Affiliation(s)
- Kazuhiro Torii
- Division of Nutrition and Metabolism, Department of Biophysics, Graduate School of Health Sciences, Kobe University - Kobe, Japan
| | - Noriaki Maeshige
- Division of Nutrition and Metabolism, Department of Biophysics, Graduate School of Health Sciences, Kobe University - Kobe, Japan.,Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University - Kobe, Japan
| | - Michiko Aoyama-Ishikawa
- Division of Nutrition and Metabolism, Department of Biophysics, Graduate School of Health Sciences, Kobe University - Kobe, Japan
| | - Makoto Miyoshi
- Division of Nutrition and Metabolism, Department of Biophysics, Graduate School of Health Sciences, Kobe University - Kobe, Japan
| | - Hiroto Terashi
- Department of Plastic Surgery, Graduate School of Medicine, Kobe University - Kobe, Japan
| | - Makoto Usami
- Division of Nutrition and Metabolism, Department of Biophysics, Graduate School of Health Sciences, Kobe University - Kobe, Japan.,Department of Nutrition, Kobe University Hospital - Kobe, Japan
| |
Collapse
|
49
|
Feng J, Xue S, Pang Q, Rang Z, Cui F. miR-141-3p inhibits fibroblast proliferation and migration by targeting GAB1 in keloids. Biochem Biophys Res Commun 2017; 490:302-308. [DOI: 10.1016/j.bbrc.2017.06.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/11/2017] [Indexed: 01/14/2023]
|
50
|
Tu Y, Lineaweaver WC, Zhang F. TGF-β1 -509C/T polymorphism and susceptibility to keloid disease: a systematic review and meta-analysis. Scars Burn Heal 2017; 3:2059513117709943. [PMID: 29799568 PMCID: PMC5965324 DOI: 10.1177/2059513117709943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Keloid disease (KD) is common and often refractory to treatment. Definition
of the genetic mechanisms of KD can lead to a better understanding of the
disease and suggest more effective treatment strategies. Objectives: To quantitatively estimate the association between KD susceptibility and the
-509C/T polymorphism in the TGF-β1 gene. Methods: PubMed, Embase and CNKI databases were searched using a combination of the
Medical Subject Headings (MeSH) and relevant words in titles. Analyses were
performed with STATA 12.0. Results: Five case-control studies encompassing a total of 564 keloid cases and 620
healthy controls were pooled in the final meta-analysis. Among the five
studies, no significant association was detected between the TGF-β1 -509C/T
polymorphism and KD under all of the five genetic models (allele comparison,
heterozygote comparison, homozygote comparison, dominant model and recessive
model) for the overall analyses and for the subgroup analyses based on DNA
extraction method, participant ethnicity and group size. When stratified by
study quality, three high-quality studies showed significant association
under allele comparison and homozygote model (C versus T: OR = 0.80, 95%
confidence interval [CI] = 0.65–0.98, P = 0.03;
I2 = 0%, P = 0.64; CC versus TT: OR = 0.62,
95% CI = 0.41–0.94, P = 0.02; I2 = 0%,
P = 0.79); while two moderate-quality studies showed
significant association under allele comparison, homozygote model and
recessive model (C versus T: OR = 1.52, 95% CI = 1.15–2.01,
P = 0.004; I2 = 39%, P =
0.20; CC versus TT: OR = 2.14, 95% CI = 1.24–3.70, P =
0.02; I2 = 19%, P = 0.27; CC versus CT+TT: OR =
2.04, 95% CI = 1.29–3.24, P = 0.002; I2 = 0%,
P = 0.35). Conclusions: The current meta-analysis suggests that the TGF-β1 -509C/T polymorphism is
not associated with KD susceptibility. High-quality and large-scale studies
are needed to validate our findings. Keloid scars are thick and lumpy scars that behave almost like tumours. They
grow, are unsightly and itchy, and difficult to treat as they can get worse
after attempts at treating them. This article reviews the scientific evidence
for a link between a certain gene variation, specifically `509C/T polymorphism
in the TGF-β1 gene’. After an extensive scientific database search, five studies
were found, and no significant association was detected between the TGF-β1
-509C/T polymorphism and Keloid scarring. High quality and large-scale studies
are needed to validate our findings.
Collapse
Affiliation(s)
- Yiji Tu
- Department of Orthopedic Surgery,
Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Feng Zhang
- Department of Orthopedic Surgery,
Zhongshan Hospital, Fudan University, Shanghai, China
- Joseph M. Still Burn and Reconstruction
Center, Jackson, MS, USA
- Feng Zhang, Joseph M. Still Burn and
Reconstruction Center, 1850 Chadwick Drive, Jackson, MS 39204, USA.
| |
Collapse
|