1
|
Zhao Y, Tan M, Yin Y, Zhang J, Song Y, Li H, Yan L, Jin Y, Wu Z, Yang T, Jiang T, Li H. Comprehensive macro and micro views on immune cells in ischemic heart disease. Cell Prolif 2024; 57:e13725. [PMID: 39087342 PMCID: PMC11628753 DOI: 10.1111/cpr.13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Ischemic heart disease (IHD) is a prevalent cardiovascular condition that remains the primary cause of death due to its adverse ventricular remodelling and pathological changes in end-stage heart failure. As a complex pathologic condition, it involves intricate regulatory processes at the cellular and molecular levels. The immune system and cardiovascular system are closely interconnected, with immune cells playing a crucial role in maintaining cardiac health and influencing disease progression. Consequently, alterations in the cardiac microenvironment are influenced and controlled by various immune cells, such as macrophages, neutrophils, dendritic cells, eosinophils, and T-lymphocytes, along with the cytokines they produce. Furthermore, studies have revealed that Gata6+ pericardial cavity macrophages play a key role in regulating immune cell migration and subsequent myocardial tissue repair post IHD onset. This review outlines the role of immune cells in orchestrating inflammatory responses and facilitating myocardial repair following IHD, considering both macro and micro views. It also discusses innovative immune cell-based therapeutic strategies, offering new insights for further research on the pathophysiology of ischemic heart disease and immune cell-targeted therapy for IHD.
Collapse
Affiliation(s)
- Yongjian Zhao
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingyue Tan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of Geriatrics, Southwest HospitalThe Third Military Medical University (Army Medical University)ChongqingChina
| | - Yunfei Yin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Jun Zhang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yiyi Song
- Suzhou Medical College of Soochow UniversityJiangsuChina
| | - Hang Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Lin Yan
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yifeng Jin
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ziyue Wu
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Tianke Yang
- Department of Ophthalmology, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Tingbo Jiang
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Hongxia Li
- Department of CardiologyThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
2
|
Li L, Wang B, Zhao S, Xiong Q, Cheng A. The role of ANXA1 in the tumor microenvironment. Int Immunopharmacol 2024; 131:111854. [PMID: 38479155 DOI: 10.1016/j.intimp.2024.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Annexin A1 (ANXA1) is widely expressed in a variety of body tissues and cells and is also involved in tumor development through multiple pathways. The invasion, metastasis, and immune escape of tumor cells depend on the interaction between tumor cells and their surrounding environment. Research shows that ANXA1 can act on a variety of cells in the tumor microenvironment (TME), and subsequently affect the proliferation, invasion and metastasis of tumors. This article describes the role of ANXA1 in the various components of the tumor microenvironment and its mechanism of action, as well as the existing clinical treatment measures related to ANXA1. These findings provide insight for the further design of strategies targeting ANXA1 for the diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Lanxin Li
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Baiqi Wang
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuang Zhao
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Qinglin Xiong
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Ailan Cheng
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
3
|
Zuo Z, Zhou Z, Chang Y, Liu Y, Shen Y, Li Q, Zhang L. Ribonucleotide reductase M2 (RRM2): Regulation, function and targeting strategy in human cancer. Genes Dis 2024; 11:218-233. [PMID: 37588202 PMCID: PMC10425756 DOI: 10.1016/j.gendis.2022.11.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Ribonucleotide reductase M2 (RRM2) is a small subunit in ribonucleotide reductases, which participate in nucleotide metabolism and catalyze the conversion of nucleotides to deoxynucleotides, maintaining the dNTP pools for DNA biosynthesis, repair, and replication. RRM2 performs a critical role in the malignant biological behaviors of cancers. The structure, regulation, and function of RRM2 and its inhibitors were discussed. RRM2 gene can produce two transcripts encoding the same ORF. RRM2 expression is regulated at multiple levels during the processes from transcription to translation. Moreover, this gene is associated with resistance, regulated cell death, and tumor immunity. In order to develop and design inhibitors of RRM2, appropriate strategies can be adopted based on different mechanisms. Thus, a greater appreciation of the characteristics of RRM2 is a benefit for understanding tumorigenesis, resistance in cancer, and tumor microenvironment. Moreover, RRM2-targeted therapy will be more attention in future therapeutic approaches for enhancement of treatment effects and amelioration of the dismal prognosis.
Collapse
Affiliation(s)
- Zanwen Zuo
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zerong Zhou
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yuzhou Chang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Shen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China
| | - Qizhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lei Zhang
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
4
|
Role of Annexin A1 Secreted by Neutrophils in Melanoma Metastasis. Cells 2023; 12:cells12030425. [PMID: 36766767 PMCID: PMC9913423 DOI: 10.3390/cells12030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Annexin A1 (AnxA1) is highly secreted by neutrophils and binds to formyl peptide receptors (FPRs) to trigger anti-inflammatory effects and efferocytosis. AnxA1 is also expressed in the tumor microenvironment, being mainly attributed to cancer cells. As recruited neutrophils are player cells at the tumor sites, the role of neutrophil-derived AnxA1 in lung melanoma metastasis was investigated here. Melanoma cells and neutrophils expressing AnxA1 were detected in biopsies from primary melanoma patients, which also presented higher levels of serum AnxA1 and augmented neutrophil-lymphocyte ratio (NLR) in the blood. Lung melanoma metastatic mice (C57BL/6; i.v. injected B16F10 cells) showed neutrophilia, elevated AnxA1 serum levels, and higher labeling for AnxA1 in neutrophils than in tumor cells at the lungs with metastasis. Peritoneal neutrophils collected from naïve mice were co-cultured with B16F10 cells or employed to obtain neutrophil-conditioned medium (NCM; 18 h incubation). B16F10 cells co-cultured with neutrophils or with NCM presented higher invasion, which was abolished if B16F10 cells were previously incubated with FPR antagonists or co-cultured with AnxA1 knockout (AnxA1-/-) neutrophils. The depletion of peripheral neutrophils during lung melanoma metastasis development (anti-Gr1; i.p. every 48 h for 21 days) reduced the number of metastases and AnxA1 serum levels in mice. Our findings show that AnxA1 secreted by neutrophils favors melanoma metastasis evolution via FPR pathways, addressing AnxA1 as a potential biomarker for the detection or progression of melanoma.
Collapse
|
5
|
Hein T, Krammer PH, Weyd H. Molecular analysis of Annexin expression in cancer. BMC Cancer 2022; 22:994. [PMID: 36123610 PMCID: PMC9484247 DOI: 10.1186/s12885-022-10075-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Background Uptake of apoptotic cells induces a tolerogenic phenotype in phagocytes and promotes peripheral tolerance. The highly conserved Annexin core domain, present in all members of the Annexin family, becomes exposed on the apoptotic cell-surface and triggers tolerogenic signalling in phagocytes via the Dectin-1 receptor. Consequently, Annexins exposed on tumour cells upon cell death are expected to induce tolerance towards tumour antigens, inhibiting tumour rejection. Methods Expression analysis for all Annexin family members was conducted in cancer cell lines of diverse origins. Presentation of Annexins on the cell surface during apoptosis of cancer cell lines was investigated using surface washes and immunoblotting. Expression data from the GEO database was analysed to compare Annexin levels between malignant and healthy tissue. Results Six Annexins at least were consistently detected on mRNA and protein level for each investigated cell line. AnxA1, AnxA2 and AnxA5 constituted the major part of total Annexin expression. All expressed Annexins translocated to the cell surface upon apoptosis induction in all cell lines. Human expression data indicate a correlation between immune infiltration and overall Annexin expression in malignant compared to healthy tissue. Conclusions This study is the first comprehensive analysis of expression, distribution and presentation of Annexins in cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10075-8.
Collapse
Affiliation(s)
- Tobias Hein
- Division of Immunogenetics, Tumour Immunology Program, German Cancer Research Centre, 69120, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht-Karls-University Heidelberg, 69120, Heidelberg, Germany
| | - Peter H Krammer
- Division of Immunogenetics, Tumour Immunology Program, German Cancer Research Centre, 69120, Heidelberg, Germany
| | - Heiko Weyd
- Division of Immunogenetics, Tumour Immunology Program, German Cancer Research Centre, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Interlandi M, Kerl K, Dugas M. InterCellar enables interactive analysis and exploration of cell-cell communication in single-cell transcriptomic data. Commun Biol 2022; 5:21. [PMID: 35017628 PMCID: PMC8752611 DOI: 10.1038/s42003-021-02986-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/16/2021] [Indexed: 12/03/2022] Open
Abstract
Deciphering cell-cell communication is a key step in understanding the physiology and pathology of multicellular systems. Recent advances in single-cell transcriptomics have contributed to unraveling the cellular composition of tissues and enabled the development of computational algorithms to predict cellular communication mediated by ligand-receptor interactions. Despite the existence of various tools capable of inferring cell-cell interactions from single-cell RNA sequencing data, the analysis and interpretation of the biological signals often require deep computational expertize. Here we present InterCellar, an interactive platform empowering lab-scientists to analyze and explore predicted cell-cell communication without requiring programming skills. InterCellar guides the biological interpretation through customized analysis steps, multiple visualization options, and the possibility to link biological pathways to ligand-receptor interactions. Alongside convenient data exploration features, InterCellar implements data-driven analyses including the possibility to compare cell-cell communication from multiple conditions. By analyzing COVID-19 and melanoma cell-cell interactions, we show that InterCellar resolves data-driven patterns of communication and highlights molecular signals through the integration of biological functions and pathways. We believe our user-friendly, interactive platform will help streamline the analysis of cell-cell communication and facilitate hypothesis generation in diverse biological systems.
Collapse
Affiliation(s)
- Marta Interlandi
- Institute of Medical Informatics, University of Münster, Münster, Germany.
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany.
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, Münster, Germany
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
7
|
ANXA1 Contained in EVs Regulates Macrophage Polarization in Tumor Microenvironment and Promotes Pancreatic Cancer Progression and Metastasis. Int J Mol Sci 2021; 22:ijms222011018. [PMID: 34681678 PMCID: PMC8538745 DOI: 10.3390/ijms222011018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment (TME) is a dynamic system where nontumor and cancer cells intercommunicate through soluble factors and extracellular vesicles (EVs). The TME in pancreatic cancer (PC) is critical for its aggressiveness and the annexin A1 (ANXA1) has been identified as one of the oncogenic elements. Previously, we demonstrated that the autocrine/paracrine activities of extracellular ANXA1 depend on its presence in EVs. Here, we show that the complex ANXA1/EVs modulates the macrophage polarization further contributing to cancer progression. The EVs isolated from wild type (WT) and ANXA1 knock-out MIA PaCa-2 cells have been administrated to THP-1 macrophages finding that ANXA1 is crucial for the acquisition of a protumor M2 phenotype. The M2 macrophages activate endothelial cells and fibroblasts to induce angiogenesis and matrix degradation, respectively. We have also found a significantly increased presence of M2 macrophage in mice tumor and liver metastasis sections previously obtained by orthotopic xenografts with WT cells. Taken together, our data interestingly suggest the relevance of ANXA1 as potential diagnostic/prognostic and/or therapeutic PC marker.
Collapse
|
8
|
Araújo TG, Mota STS, Ferreira HSV, Ribeiro MA, Goulart LR, Vecchi L. Annexin A1 as a Regulator of Immune Response in Cancer. Cells 2021; 10:2245. [PMID: 34571894 PMCID: PMC8464935 DOI: 10.3390/cells10092245] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 01/01/2023] Open
Abstract
Annexin A1 is a 37 kDa phospholipid-binding protein that is expressed in many tissues and cell types, including leukocytes, lymphocytes and epithelial cells. Although Annexin A1 has been extensively studied for its anti-inflammatory activity, it has been shown that, in the cancer context, its activity switches from anti-inflammatory to pro-inflammatory. Remarkably, Annexin A1 shows pro-invasive and pro-tumoral properties in several cancers either by eliciting autocrine signaling in cancer cells or by inducing a favorable tumor microenvironment. Indeed, the signaling of the N-terminal peptide of AnxA1 has been described to promote the switching of macrophages to the pro-tumoral M2 phenotype. Moreover, AnxA1 has been described to prevent the induction of antigen-specific cytotoxic T cell response and to play an essential role in the induction of regulatory T lymphocytes. In this way, Annexin A1 inhibits the anti-tumor immunity and supports the formation of an immunosuppressed tumor microenvironment that promotes tumor growth and metastasis. For these reasons, in this review we aim to describe the role of Annexin A1 in the establishment of the tumor microenvironment, focusing on the immunosuppressive and immunomodulatory activities of Annexin A1 and on its interaction with the epidermal growth factor receptor.
Collapse
Affiliation(s)
- Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Sara Teixeira Soares Mota
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
| | - Matheus Alves Ribeiro
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| |
Collapse
|
9
|
Wei L, Li L, Liu L, Yu R, Li X, Luo Z. Knockdown of Annexin-A1 Inhibits Growth, Migration and Invasion of Glioma Cells by Suppressing the PI3K/Akt Signaling Pathway. ASN Neuro 2021; 13:17590914211001218. [PMID: 33706561 PMCID: PMC7958645 DOI: 10.1177/17590914211001218] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ANXA1, which can bind phospholipid in a calcium dependent manner, is reported to play a pivotal role in tumor progression. However, the role and mechanism of ANXA1 involved in the occurrence and development of malignant glioma are still not well studied. Therefore, we explored the effects of ANXA1 on normal astrocytes and glioma cell proliferation, apoptosis, migration and invasion and the underlying mechanisms. We found that ANXA1 was markedly up-regulated in glioma cell lines and glioma tissues. Down-regulation of ANXA1 inhibited normal astrocytes and glioma cell proliferation and induced the cell apoptosis, which suggested that the consequences of loss of Annexin 1 are not specific to the tumor cells. Furthermore, the siRNA-ANXA1 treatment significantly reduced tumor growth rate and tumor weight. Moreover, decreasing ANXA1 expression caused G2/M phase arrest by repressing expression levels of cdc25C, cdc2 and cyclin B1. Interestingly, ANXA1 did not affect the expressions of β-catenin, GSK-3β and NF-κB, the key signaling molecules associated with cancer progression. However, siRNA-ANXA1 was found to negatively regulate phosphorylation of AKT and the expression and activity of MMP2/-9. Finally, the decrease of cell proliferation and invasiveness induced by ANXA1 down-regulation was partially reversed by combined treatment with AKT agonist insulin-like growth factor-1 (IGF-1). Meanwhile, the inhibition of glioma cell proliferation and invasiveness induced by ANXA1 down-regulation was further enhanced by combined treatment with AKT inhibitor LY294002. In summary, these findings demonstrate that ANXA1 regulates proliferation, migration and invasion of glioma cells via PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Liqing Wei
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Department of Respiration, The Children's Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ru Yu
- Department of Respiration, The Children's Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Neurobiology, The School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhao Luo
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
da Rocha GHO, de Paula-Silva M, Broering MF, Scharf PRDS, Matsuyama LSAS, Maria-Engler SS, Farsky SHP. Pioglitazone-Mediated Attenuation of Experimental Colitis Relies on Cleaving of Annexin A1 Released by Macrophages. Front Pharmacol 2021; 11:591561. [PMID: 33519451 PMCID: PMC7845455 DOI: 10.3389/fphar.2020.591561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis and Crohn's disease are chronic inflammatory bowel diseases (IBDs) which burden health systems worldwide; available pharmacological therapies are limited and cost-intensive. Use of peroxisome proliferator activated-receptor γ (PPARγ) ligands for IBD treatment, while promising, lacks solid evidences to ensure its efficacy. Annexin A1 (AnxA1), a glucocorticoid-modulated anti-inflammatory protein, plays a key role on IBD control and is a potential biomarker of IBD progression. We here investigated whether effects of pioglitazone, a PPARγ ligand, rely on AnxA1 actions to modulate IBD inflammation. Experimental colitis was evoked by 2% dextran sodium sulfate (DSS) in AnxA1 knockout (AnxA1-/-) or wild type (WT) C57BL/6 mice. Clinical and histological parameters were more severe for AnxA-/- than WT mice, and 10 mg/kg pioglitazone treatment attenuated disease parameters in WT mice only. AnxA1 expression was increased in tissue sections of diseased WT mice, correlating positively with presence of CD68+ macrophages. Metalloproteinase-9 (MMP-9) and inactive 33 kDa AnxA1 levels were increased in the colon of diseased WT mice, which were reduced by pioglitazone treatment. Cytokine secretion, reactive oxygen species generation and MMP-9 expression caused by lipopolysaccharide (LPS) treatment in AnxA1-expressing RAW 264.7 macrophages were reduced by pioglitazone treatment, effects not detected in AnxA1 knockdown macrophages. LPS-mediated increase of AnxA1 cleaving in RAW 264.7 macrophages was also attenuated by pioglitazone treatment. Finally, pioglitazone treatment increased extracellular signal-regulated kinase (ERK) phosphorylation in AnxA1-expressing RAW 264.7 macrophages, but not in AnxA1-knockdown macrophages. Thus, our data highlight AnxA1 as a crucial factor for the therapeutic actions of pioglitazone on IBDs.
Collapse
Affiliation(s)
| | - Marina de Paula-Silva
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Milena Fronza Broering
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pablo Rhasan Dos Santos Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Novizio N, Belvedere R, Pessolano E, Tosco A, Porta A, Perretti M, Campiglia P, Filippelli A, Petrella A. Annexin A1 Released in Extracellular Vesicles by Pancreatic Cancer Cells Activates Components of the Tumor Microenvironment, through Interaction with the Formyl-Peptide Receptors. Cells 2020; 9:cells9122719. [PMID: 33353163 PMCID: PMC7767312 DOI: 10.3390/cells9122719] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive cancers in the world. Several extracellular factors are involved in its development and metastasis to distant organs. In PC, the protein Annexin A1 (ANXA1) appears to be overexpressed and may be identified as an oncogenic factor, also because it is a component in tumor-deriving extracellular vesicles (EVs). Indeed, these microvesicles are known to nourish the tumor microenvironment. Once we evaluated the autocrine role of ANXA1-containing EVs on PC MIA PaCa-2 cells and their pro-angiogenic action, we investigated the ANXA1 paracrine effect on stromal cells like fibroblasts and endothelial ones. Concerning the analysis of fibroblasts, cell migration/invasion, cytoskeleton remodeling, and the different expression of specific protein markers, all features of the cell switching into myofibroblasts, were assessed after administration of wild type more than ANXA1 Knock-Out EVs. Interestingly, we demonstrated a mechanism by which the ANXA1-EVs complex can stimulate the activation of formyl peptide receptors (FPRs), triggering mesenchymal switches and cell motility on both fibroblasts and endothelial cells. Therefore, we highlighted the importance of ANXA1/EVs-FPR axes in PC progression as a vehicle of intercommunication tumor cells-stroma, suggesting a specific potential prognostic/diagnostic role of ANXA1, whether in soluble form or even if EVs are captured in PC.
Collapse
Affiliation(s)
- Nunzia Novizio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (E.P.); (A.T.); (A.P.); (P.C.)
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (E.P.); (A.T.); (A.P.); (P.C.)
| | - Emanuela Pessolano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (E.P.); (A.T.); (A.P.); (P.C.)
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (E.P.); (A.T.); (A.P.); (P.C.)
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (E.P.); (A.T.); (A.P.); (P.C.)
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (E.P.); (A.T.); (A.P.); (P.C.)
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende 43, 84081 Baronissi, Italy;
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (E.P.); (A.T.); (A.P.); (P.C.)
- Correspondence: ; Tel.: +39-089-969-762; Fax: +39-089-969-602
| |
Collapse
|
12
|
Upregulation of annexin A1 protein expression in the intratumoral vasculature of human non-small-cell lung carcinoma and rodent tumor models. PLoS One 2020; 15:e0234268. [PMID: 32497150 PMCID: PMC7272081 DOI: 10.1371/journal.pone.0234268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/21/2020] [Indexed: 12/23/2022] Open
Abstract
Annexin A1 (anxA1) is an immunomodulatory protein that has been proposed as a tumor vascular target for antitumor biologic agents, yet to date the vascular expression of anxA1 in specific tumor indications has not been systematically assessed. Attempts to evaluate vascular anxA1 expression by immunohistochemistry are complicated by a lack of available antibodies that are both specific for anxA1 and bind the N-terminal–truncated form of anxA1 that has previously been identified in tumor vasculature. To study the vascular expression pattern of anxA1 in non–small-cell lung carcinoma (NSCLC), we isolated an antibody capable of binding N-terminal–truncated anxA127-346 and employed it in immunohistochemical studies of human lung specimens. Lung tumor specimens evaluated with this antibody revealed vascular (endothelial) anxA1 expression in five of eight tumor samples studied, but no vascular anxA1 expression was observed in normal lung tissue. Tumor microarray analysis further demonstrated positive vascular staining for anxA1 in 30 of 80 NSCLC samples, and positive staining of neoplastic cells was observed in 54 of 80 samples. No correlation was observed between vascular and parenchymal anxA1 expression. Two rodent tumor models, B16-F10 and Py230, were determined to have upregulated anxA1 expression in the intratumoral vasculature. These data validate anxA1 as a potential vascular anti-tumor target in a subset of human lung tumors and identify rodent models which demonstrate anxA1 expression in tumor vasculature.
Collapse
|
13
|
Romero P, Boudhraa Z, Carton M, Hassan A, Joubert-Zakeyh J, Pereira B, Dechelotte P, Rouanet J, Degoul F. 'Aberrant localisation of Annexin A1 is associated with metastatic outcome in thin melanomas'. Australas J Dermatol 2019; 61:e254-e256. [PMID: 31642517 DOI: 10.1111/ajd.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pierre Romero
- Department of Pathology, CHU Estaing, Clermont-Ferrand Cedex 1, France
| | - Zied Boudhraa
- UMR990 INSERM, Université d'Auvergne, Clermont-Ferrand, France
| | - Matthieu Carton
- Unit of Biometry, Institut Curie, DRCI, PSL Research University, Paris, France
| | - Amr Hassan
- Department of Pathology, CHU Estaing, Clermont-Ferrand Cedex 1, France.,Department of Dermatology, CHU Estaing, Clermont-Ferrand Cedex 1, France
| | | | - Bruno Pereira
- DRCI, CHRU Gabriel Montpied, Clermont-Ferrand, France
| | - Pierre Dechelotte
- Department of Pathology, CHU Estaing, Clermont-Ferrand Cedex 1, France
| | - Jacques Rouanet
- Department of Dermatology, CHU Estaing, Clermont-Ferrand Cedex 1, France
| | | |
Collapse
|
14
|
Up-regulation of ANXA1 suppresses polymorphonuclear neutrophil infiltration and myeloperoxidase activity by activating STAT3 signaling pathway in rat models of myocardial ischemia-reperfusion injury. Cell Signal 2019; 62:109325. [PMID: 31132398 DOI: 10.1016/j.cellsig.2019.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is recognized as a major cause of morbidity and mortality which is commonly associated with coronary artery disease. In recent studies, annexin A1 gene (ANXA1) has been discovered to be involved in the treatment for MIRI. In this study, the primary focus was on the molecular mechanism of ANXA1 in polymorphonuclear neutrophil (PMN) infiltration and myeloperoxidase (MPO) activity in rats with MIRI. Initially, microarray analysis was carried out in order to identify differentially expressed genes. Moreover, a rat model of MIRI was established for evaluating the expression of ANXA1, signal transducer and activator of transcription 3 (STAT3) and vascular endothelial growth factor (VEGF) in myocardial tissues. Following this, the ANXA1 vector, siRNA-ANXA1, and Stattic (inhibitor of STAT3 signaling pathway) were utilized for analyzing the regulatory role of ANXA1 in physiological indexes, hemodynamic parameters, inflammatory factors, myocardial infarct size, MPO activity, PMN infiltration, and apoptosis of PMNs. Furthermore, the relationship between ANXA1 and STAT3 signaling pathway was analyzed. Initially, a reduction in the expression of ANXA1, STAT3 and VEGF in myocardial tissues of MIRI rats was found. To elaborate, overexpressed ANXA1 inhibited levels of inflammatory factors, the activation of PMN infiltration, reduced the degree of PMN infiltration, and decreased the apoptosis of PMNs. More importantly, down-regulated ANXA1 inhibited the activation of STAT3 signaling pathway, which thereby suppressed VEGF expression. With this all taken into account, the present study presents that up-regulated ANXA1 inhibits PMN infiltration and MPO activity by activation of STAT3 signaling pathway in rats with MIRI.
Collapse
|
15
|
Jiang X, Lei T, Zhang M. Expression and Functions of Formyl Peptide Receptor 1 in Drug-Resistant Bladder Cancer. Technol Cancer Res Treat 2019; 17:1533034618769413. [PMID: 29665744 PMCID: PMC5912276 DOI: 10.1177/1533034618769413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Objective: To explore the correlation of formyl peptide receptor 1 expression with drug resistance and the functions of formyl peptide receptor 1 in drug-resistant bladder cancer. Methods: Expression of formyl peptide receptor 1 in T24 and T24/DDP cisplatin-resistant bladder cancer cell lines was tested by quantitative real-time Polymerase Chain Reaction and Western blotting. After incubation of T24/DDP with N-formyl-Met-Leu-Phe, the phosphor proteins were tested by Western blot analysis. We characterized the functions of formyl peptide receptor 1 in T24/DDP cells by assessing proliferation, migration, and changes of cell cycles. Results: Formyl peptide receptor 1 was expressed in both T24 and T24/DDP, and it was overexpressed in T24/DDP compared with T24. Formyl peptide receptor 1 activation promoted the expression of the messenger RNA of resistance-related proteins, such as multidrug resistance-associated protein 1 (MRP1) and lung resistance-related protein (LRP). The expression of 4 signal pathway proteins were upregulated: signal transducer and activator of transcription 3, Janus kinase 2, extracellular regulated protein kinases, and protein kinase B, while the expression of phosphatidylinositol 3-kinase was observed to be downregulated in drug-resistant bladder cancer cells. Formyl peptide receptor 1 activation also improved the expression of phospho-signal transducer and activator of transcription 3 and phospho-extracellular regulated protein kinases 1/2 and promoted the proliferation and migration of T24/DDP cells. In addition, formyl peptide receptor 1 inhibition led to the change in the cell cycle in T24/DDP. Conclusions: The overexpression of formyl peptide receptor 1 may be related to drug-resistant bladder cancer and promotes the deterioration of drug-resistant bladder cancer.
Collapse
Affiliation(s)
- Xue Jiang
- 1 Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Ting Lei
- 1 Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- 1 Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
16
|
Cardin LT, Prates J, da Cunha BR, Tajara EH, Oliani SM, Rodrigues‐Lisoni FC. Annexin A1 peptide and endothelial cell-conditioned medium modulate cervical tumorigenesis. FEBS Open Bio 2019; 9:668-681. [PMID: 30984541 PMCID: PMC6443877 DOI: 10.1002/2211-5463.12603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/17/2018] [Accepted: 01/21/2019] [Indexed: 01/01/2023] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide, and its tumorigenesis can be influenced by the microenvironment. The anti-inflammatory protein annexin A1 (ANXA1) has been reported to be associated with cancer progression and metastasis, suggesting that it plays a role in regulating tumour cell proliferation. Here, we examined the effect of the N-terminal peptide Ac2-26 of ANXA1 on the HaCaT cell line (normal) and HeLa cell line (cervical cancer) co-cultured with endothelium cell-conditioned medium (HMC). Treatment with Ac2-26 decreased proliferation and increased motility of cervical cancer cells, but did not affect cellular morphology or viability. Combined HMC stimulus and Ac2-26 treatment resulted in an increase in apoptotic HeLa cells, upregulated expression of MMP2, and downregulated expression of COX2,EP3 and EP4. In conclusion, Ac2-26 treatment may modulate cellular and molecular mechanisms underlying cervical carcinogenesis.
Collapse
Affiliation(s)
- Laila Toniol Cardin
- Institute of Bioscience, Humanities and Exact ScienceSão Paulo State University (Unesp)São José do Rio PretoBrazil
| | - Janesly Prates
- Institute of Bioscience, Humanities and Exact ScienceSão Paulo State University (Unesp)São José do Rio PretoBrazil
| | - Bianca Rodrigues da Cunha
- Department of Molecular BiologySchool of Medicine of São José do Rio PretoSão José do Rio PretoBrazil
| | - Eloiza Helena Tajara
- Department of Molecular BiologySchool of Medicine of São José do Rio PretoSão José do Rio PretoBrazil
| | - Sonia Maria Oliani
- Institute of Bioscience, Humanities and Exact ScienceSão Paulo State University (Unesp)São José do Rio PretoBrazil
| | | |
Collapse
|
17
|
Pessolano E, Belvedere R, Bizzarro V, Franco P, Marco ID, Porta A, Tosco A, Parente L, Perretti M, Petrella A. Annexin A1 May Induce Pancreatic Cancer Progression as a Key Player of Extracellular Vesicles Effects as Evidenced in the In Vitro MIA PaCa-2 Model System. Int J Mol Sci 2018; 19:E3878. [PMID: 30518142 PMCID: PMC6321029 DOI: 10.3390/ijms19123878] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/23/2022] Open
Abstract
Pancreatic Cancer (PC) is one of the most aggressive malignancies worldwide. As annexin A1 (ANXA1) is implicated in the establishment of tumour metastasis, the role of the protein in PC progression as a component of extracellular vesicles (EVs) has been investigated. EVs were isolated from wild type (WT) and ANXA1 knock-out (KO) PC cells and then characterised by multiple approaches including Western blotting, Field Emission-Scanning Electron Microscopy, and Dynamic Light Scattering. The effects of ANXA1 on tumour aggressiveness were investigated by Wound-Healing and invasion assays and microscopic analysis of the Epithelial to Mesenchymal Transition (EMT). The role of ANXA1 on angiogenesis was also examined in endothelial cells, using similar approaches. We found that WT cells released more EVs enriched in exosomes than those from cells lacking ANXA1. Notably, ANXA1 KO cells recovered their metastatic potential only when treated by WT EVs as they underwent EMT and a significant increase of motility. Similarly, human umbilical vein endothelial cells (HUVEC) migrated and invaded more rapidly when treated by WT EVs whereas ANXA1 KO EVs weakly induced angiogenesis. This study suggests that EVs-related ANXA1 is able to promote cell migration, invasion, and angiogenesis, confirming the relevance of this protein in PC progression.
Collapse
Affiliation(s)
- Emanuela Pessolano
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy.
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy.
| | - Valentina Bizzarro
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy.
| | - Paola Franco
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy.
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy.
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy.
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy.
| | - Luca Parente
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy.
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and·The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy.
| |
Collapse
|
18
|
Tadei MB, Mayorquim MV, de Souza CB, de Souza Costa S, Possebon L, Souza HR, Iyomasa-Pilon MM, Geromel MR, Girol AP. Expression of the Annexin A1 and its correlation with matrix metalloproteinases and the receptor for formylated peptide-2 in diffuse astrocytic tumors. Ann Diagn Pathol 2018; 37:62-66. [PMID: 30286327 DOI: 10.1016/j.anndiagpath.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/16/2018] [Accepted: 08/18/2018] [Indexed: 12/16/2022]
Abstract
Astrocytomas represent the majority of cerebral gliomas. Studies show that the anti-inflammatory protein Annexin-A1 (ANXA1) is associated with the tumor invasion process and that its actions can be mediated by the receptor for formylated peptides (FPR). Therefore, we evaluated the expression of ANXA1, the receptor FPR2 and matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9) in brain astrocytomas. Detection of proteins was performed in sections of diffuse astrocytomas (grade II), anaplastic astrocytomas (grade III) and glioblastomas (GBM, grade IV) and quantifications were made by densitometry. Our analyses showed increased expression of ANXA1 in astrocytomas of all grades, but especially in GBM. The expression of FPR2 is similar to that found for ANXA1, being higher in GBM. Immunostaining for MMPs is also stronger as the degree of malignancy increases, especially with respect to MMP-9. The positive correlation between ANXA1/FPR2 and ANXA1/MMP-9 was observed in all tumors studied. The data indicate the possible action of ANXA1 and FPR2 on the development and progression of astrocytomas, related to increased expression of MMP-9. Thereby, ANXA1 and FPR2 are involved in the biology and malignancy of diffuse astrocytic tumors.
Collapse
Affiliation(s)
| | | | | | | | - Lucas Possebon
- University Center Padre Albino (UNIFIPA), Catanduva, SP, Brazil; São Paulo State University, (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São José do Rio Preto Campus, SP, Department of Biology, Laboratory of Immunomorphology, Brazil
| | | | | | | | - Ana Paula Girol
- University Center Padre Albino (UNIFIPA), Catanduva, SP, Brazil; São Paulo State University, (UNESP), Institute of Biosciences, Humanities and Exact Sciences (Ibilce), São José do Rio Preto Campus, SP, Department of Biology, Laboratory of Immunomorphology, Brazil.
| |
Collapse
|
19
|
Inhibition of the AnxA1/FPR1 autocrine axis reduces MDA-MB-231 breast cancer cell growth and aggressiveness in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1368-1382. [PMID: 29932988 DOI: 10.1016/j.bbamcr.2018.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 12/18/2022]
Abstract
Breast Cancer (BC) is a highly heterogeneous disease whose most aggressive behavior is displayed by triple-negative breast cancer (TNBC), which lacks an efficient targeted therapy. Despite its controversial role, one of the proteins that having been linked with BC is Annexin A1 (AnxA1), which is a Ca+2 binding protein that acts modulating the immune system, cell membrane organization and vesicular trafficking. In this work we analyzed tissue microarrays of BC samples and observed a higher expression of AnxA1 in TNBCs and in lymph node metastasis. We also observed a positive correlation in primary tumors between expression levels of AnxA1 and its receptor, FPR1. Despite displaying a lesser strength, this correlation also exists in BC lymph node metastasis. In agreement, we have found that AnxA1 was highly expressed and secreted in the TNBC cell line MDA-MB-231 that also expressed high levels of FPR1. Furthermore, we demonstrated, by using the specific FPR1 inhibitor Cyclosporin H (CsH) and the immunosuppressive drug Cyclosporin A (CsA), the existence of an autocrine signaling of AnxA1 through the FPR1. Such signaling, elicited by AnxA1 upon its secretion, increased the aggressiveness and survival of MDA-MB-231 cells. In this manner, we demonstrated that CsA works very efficiently as an FPR1 inhibitor. Finally, by using CsA, we demonstrated that FPR1 inhibition decreased MDA-MB-231 tumor growth and metastasis formation in nude mice. These results indicate that FPR1 inhibition could be a potential intervention strategy to manage TNBCs displaying the characteristics of MDA-MB-231 cells. FPR1 inhibition can be efficiently achieved by CsA.
Collapse
|
20
|
Wan YM, Tian J, Qi L, Liu LM, Xu N. ANXA1 affects cell proliferation, invasion and epithelial-mesenchymal transition of oral squamous cell carcinoma. Exp Ther Med 2017; 14:5214-5218. [PMID: 29201239 DOI: 10.3892/etm.2017.5148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/19/2017] [Indexed: 12/14/2022] Open
Abstract
Annexin A1 (ANXA1) acts either as a tumor suppressor or an oncogene in different tumor types. Several clinical studies revealed that the expression of ANXA1 is associated with the pathologic differentiation grade in oral squamous cell carcinoma (OSCC) patients. However, the direct function of ANXA1 in OSCC progression has remained to be fully clarified. The present study was designed to investigate the role of ANXA1 in OSCC cell proliferation and invasion in vitro. Furthermore, whether ANXA1 was involved in transforming growth factor β1 (TGFβ1)/epidermal growth factor (EGF)-induced epithelial-mesenchymal transition (EMT) in OSCC was explored. Tca-8113 and SCC-9 cells were transfected with ANXA1-pcDNA3.1 plasmid to overexpress ANXA1. Subsequently, cell proliferation and invasion were examined using MTT and Transwell-Matrigel invasion assays. TGFβ1 and EGF were used to induce EMT in Tca-8113 and SCC-9 cells, and the expression of epithelial (E)-cadherin, neural (N)-cadherin and vimentin was determined by western blot analysis. The results demonstrated that ANXA1 overexpression induced a significant decrease of cell growth and invasiveness in Tca-8113 and SCC-9 cells. The expression of E-cadherin was significantly increased, while the expression of vimentin and N-cadherin was significantly decreased in ANXA1-overexpressing Tca-8113 and SCC-9 cells. ANXA1 expression was significantly decreased in TGFβ1/EGF-treated cells. Furthermore TGFβ1/EGF-induced EMT in OSCC cell lines was attenuated by ANXA1 overexpression. In conclusion, to the best of our knowledge, the present study was the first to evidence that ANXA1 inhibits OSCC cell proliferation and invasion in vitro. TGFβ1/EGF-induced EMT was reversed by ANXA1 in OSCC. ANXA1 was suggested to be a potential marker for OSCC as well as a novel treatment.
Collapse
Affiliation(s)
- Ying-Ming Wan
- Department of Stomatology, Affiliated Hospital of Jilin Medical University, Jilin 132021, P.R. China
| | - Jing Tian
- Department of Physiology, Jilin Medical University, Jilin 132013, P.R. China
| | - Ling Qi
- Department of Pathology, Jilin Medical University, Jilin 132013, P.R. China
| | - Li-Mei Liu
- Department of Stomatology, Affiliated Hospital of Jilin Medical University, Jilin 132021, P.R. China
| | - Ning Xu
- Department of Stomatology, Affiliated Hospital of Jilin Medical University, Jilin 132021, P.R. China
| |
Collapse
|
21
|
Annexin A1 contributes to pancreatic cancer cell phenotype, behaviour and metastatic potential independently of Formyl Peptide Receptor pathway. Sci Rep 2016; 6:29660. [PMID: 27412958 PMCID: PMC4944142 DOI: 10.1038/srep29660] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022] Open
Abstract
Annexin A1 (ANXA1) is a Ca(2+)-binding protein over-expressed in pancreatic cancer (PC). We recently reported that extracellular ANXA1 mediates PC cell motility acting on Formyl Peptide Receptors (FPRs). Here, we describe other mechanisms by which intracellular ANXA1 could mediate PC progression. We obtained ANXA1 Knock-Out (KO) MIA PaCa-2 cells using the CRISPR/Cas9 genome editing technology. LC-MS/MS analysis showed altered expression of several proteins involved in cytoskeletal organization. As a result, ANXA1 KO MIA PaCa-2 partially lost their migratory and invasive capabilities with a mechanism that appeared independent of FPRs. The acquisition of a less aggressive phenotype has been further investigated in vivo. Wild type (WT), PGS (scrambled) and ANXA1 KO MIA PaCa-2 cells were engrafted orthotopically in SCID mice. No differences were found about PC primary mass, conversely liver metastatization appeared particularly reduced in ANXA1 KO MIA PaCa-2 engrafted mice. In summary, we show that intracellular ANXA1 is able to preserve the cytoskeleton integrity and to maintain a malignant phenotype in vitro. The protein has a relevant role in the metastatization process in vivo, as such it appears attractive and suitable as prognostic and therapeutic marker in PC progression.
Collapse
|
22
|
Abstract
Annexin A1 (ANXA1) is a Ca(2+)-regulated phospholipid-binding protein involved in various cell processes. ANXA1 was initially widely studied in inflammation resolution, but its overexpression was later reported in a large number of cancers. Further in-depth investigations have revealed that this protein could have many roles in cancer progression and act at different levels (from cancer initiation to metastasis). This is partly due to the location of ANXA1 in different cell compartments. ANXA1 can be nuclear, cytoplasmic and/or membrane associated. This last location allows ANXA1 to be proteolytically cleaved and/or to become accessible to its cognate partners, the formyl-peptide receptors. Indeed, in some cancers, ANXA1 is found at the cell surface, where it stimulates formyl-peptide receptors to trigger oncogenic pathways. In the present review, we look at the different locations of ANXA1 and their association with the deregulated pathways often observed in cancers. We have specifically detailed the non-classic pathways of ANXA1 externalization, the significance of its cleavage and the role of the ANXA1-formyl-peptide receptor complex in cancer progression.
Collapse
|
23
|
Fang Y, Guan X, Cai T, Long J, Wang H, Xie X, Zhang Y. Knockdown of ANXA1 suppresses the biological behavior of human NSCLC cells in vitro. Mol Med Rep 2016; 13:3858-66. [PMID: 27035116 PMCID: PMC4838122 DOI: 10.3892/mmr.2016.5022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
Annexin A1 (ANXA1) is a member of the annexin superfamily. Previous studies have reported that ANXA1 is highly expressed in various types of malignant tumor; however, its role in the progression of non‑small cell lung cancer (NSCLC) remains to be fully clarified. The present study aimed to investigate the oncogenic role of ANXA1 in NSCLC cells in vitro. RNA interference was used to downregulate ANXA1 expression in A549 and H1299 cells using a small interfering RNA lentiviral vector. Subsequently, cell proliferation and migration were detected using Cell Counting kit‑8, clone formation, wound healing and Transwell chamber assays. Successful transfection was confirmed using fluorescence microscopy, which demonstrated that ANXA1 had been efficiently inhibited. ANXA1 knockdown suppressed the proliferation, migration and invasion of NSCLC cells. In conclusion, the present study provided evidence suggesting that ANXA1 may contribute to the growth and invasion of NSCLC cell lines, and ANXA1 may be exploited as an in vitro therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Ying Fang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Xiaoying Guan
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Tonghui Cai
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jie Long
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Hongyan Wang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Xiaobin Xie
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Yajie Zhang
- Department of Pathology, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
24
|
Liu Y, Liu YS, Wu PF, Li Q, Dai WM, Yuan S, Xu ZH, Liu TT, Miao ZW, Fang WG, Chen YH, Li B. Brain microvascular endothelium induced-annexin A1 secretion contributes to small cell lung cancer brain metastasis. Int J Biochem Cell Biol 2015; 66:11-9. [DOI: 10.1016/j.biocel.2015.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/11/2015] [Accepted: 06/26/2015] [Indexed: 02/06/2023]
|