1
|
Forte J, Gioia Fabiano M, Grazia Ammendolia M, Puglisi R, Rinaldi F, Ricci C, Del Favero E, Carafa M, Mattia G, Marianecci C. Bioactive pH-sensitive nanoemulsion in melanoma cell lines. Int J Pharm 2024; 661:124380. [PMID: 38950661 DOI: 10.1016/j.ijpharm.2024.124380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
Melanoma is an aggressive form of skin cancer with elevated propensity to metastasize. One of the major critical issues in the treatment of oncological patients is represented by the development of toxicity and resistance to the available therapies. Great progress has been made in the field of nanotechnologies to limit the unwanted effects of anti-cancer treatments. We explored the potential of creating oil-in-water nanoemulsions composed of oleic acid, as a bioactive carrier for lipophilic drug delivery. This bioactive nanoemulsion was loaded with Curcumin, a natural fluorescent lipophilic compound, used as a model drug to evaluate nanoemulsion capability to: i) encapsulate the lipophilic moiety; ii) interact with the specific cells, and iii) improve the efficacy of the loaded model drug compared to the free one. Therefore, we evaluated the physical-chemical features of Curcumin-loaded nanoemulsions, confirming their pH sensibility and their stability over time. Moreover, the nanoemulsions were able to preserve the loaded Curcumin by degradation/destabilization phenomena. Finally, we verified some of the biological functions of Curcumin delivered by nanoemulsions in the B16F10 melanoma cell line. We obtained evidence of the biological action of Curcumin, suggesting oleic-based nanoemulsions as an efficient nanocarrier for lipophilic drug delivery.
Collapse
Affiliation(s)
- Jacopo Forte
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome 00161, Italy.
| | - Maria Gioia Fabiano
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome 00161, Italy.
| | - Maria Grazia Ammendolia
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome 00161, Italy.
| | - Rossella Puglisi
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Federica Rinaldi
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome 00161, Italy.
| | - Caterina Ricci
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milan, Italy.
| | - Elena Del Favero
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milan, Italy.
| | - Maria Carafa
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome 00161, Italy.
| | - Gianfranco Mattia
- Center for Gender-specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Carlotta Marianecci
- Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome 00161, Italy.
| |
Collapse
|
2
|
Wolnicka-Glubisz A, Wisniewska-Becker A. Dual Action of Curcumin as an Anti- and Pro-Oxidant from a Biophysical Perspective. Antioxidants (Basel) 2023; 12:1725. [PMID: 37760028 PMCID: PMC10525529 DOI: 10.3390/antiox12091725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Curcumin, a natural polyphenol widely used as a spice, colorant and food additive, has been shown to have therapeutic effects against different disorders, mostly due to its anti-oxidant properties. Curcumin also reduces the efficiency of melanin synthesis and affects cell membranes. However, curcumin can act as a pro-oxidant when blue light is applied, since upon illumination it can generate singlet oxygen. Our review aims to describe this dual role of curcumin from a biophysical perspective, bearing in mind its concentration, bioavailability-enhancing modifications and membrane interactions, as well as environmental conditions such as light. In low concentrations and without irradiation, curcumin shows positive effects and can be recommended as a beneficial food supplement. On the other hand, when used in excess or irradiated, curcumin can be toxic. Therefore, numerous attempts have been undertaken to test curcumin as a potential photosensitizer in photodynamic therapy (PDT). At that point, we underline that curcumin-based PDT is limited to the treatment of superficial tumors or skin and oral infections due to the weak penetration of blue light. Additionally, we conclude that an increase in curcumin bioavailability through the using nanocarriers, and therefore its concentration, as well as its topical use if skin is exposed to light, may be dangerous.
Collapse
Affiliation(s)
- Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Anna Wisniewska-Becker
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
3
|
Yan C, Xing M, Zhang S, Gao Y. Clinical Development and Evaluation of a Multi-Component Dissolving Microneedle Patch for Skin Pigmentation Disorders. Polymers (Basel) 2023; 15:3296. [PMID: 37571190 PMCID: PMC10422440 DOI: 10.3390/polym15153296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Excessive melanin deposition in the skin leads to various skin pigmentation diseases, such as chloasma and age spots. The deposition is induced by several factors, including tyrosinase activities and ultraviolet-induced oxidative stress. Herein, we propose a multi-component, multi-pathway drug combination, with glabridin, 3-O-ethyl-L-ascorbic acid, and tranexamic acid employed as, respectively, a tyrosinase inhibitor, an antioxidant, and a melanin transmission inhibitor. Considering the poor skin permeability associated with topical application, dissolving microneedles (MNs) prepared with hyaluronic acid/poly(vinyl alcohol)/poly(vinylpyrrolidone) were developed to load the drug combination. The drug-loaded microneedles (DMNs) presented outstanding skin insertion, dissolution, and drug delivery properties. In vitro experiments confirmed that DMNs loaded with active ingredients had significant antioxidant and inhibitory effects on tyrosinase activity. Furthermore, the production of melanin both in melanoma cells (B16-F10) and in zebrafish was directly reduced after using DMNs. Clinical studies demonstrated the DMNs' safety and showed that they have the ability to effectively reduce chloasma and age spots. This study indicated that a complex DMN based on a multifunctional combination is a valuable depigmentation product worthy of clinical application.
Collapse
Affiliation(s)
- Chenxin Yan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Suohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| |
Collapse
|
4
|
Bayazid AB, Jang YA, Jeong SA, Lim BO. Cypress tree ( Chamaecyparis obtusa) Bark extract inhibits melanogenesis through repressing CREB and MITF signalling pathways in α-MSH-stimulated B16F10 cells. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2095986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Al Borhan Bayazid
- Department of Applied Life Science, Konkuk University, Chungju, South Korea
| | - Young Ah Jang
- Convergence Research Center for Smart Healthcare, R&DB Foundation of Kyungsung University, Busan, South Korea
| | - Soo Ah Jeong
- Department of Applied Life Science, Konkuk University, Chungju, South Korea
| | - Beong Ou Lim
- Department of Applied Life Science, Konkuk University, Chungju, South Korea
| |
Collapse
|
5
|
Sułkowski M, Kot M, Badyra B, Paluszkiewicz A, Płonka PM, Sarna M, Michalczyk-Wetula D, Zucca FA, Zecca L, Majka M. Highly Effective Protocol for Differentiation of Induced Pluripotent Stem Cells (iPS) into Melanin-Producing Cells. Int J Mol Sci 2021; 22:ijms222312787. [PMID: 34884599 PMCID: PMC8657900 DOI: 10.3390/ijms222312787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/06/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Melanin is a black/brown pigment present in abundance in human skin. Its main function is photo-protection of underlying tissues from harmful UV light. Natural sources of isolated human melanin are limited; thus, in vitro cultures of human cells may be a promising source of human melanin. Here, we present an innovative in vitro differentiation protocol of induced pluripotent stem cells (iPS) into melanin-producing cells, delivering highly pigmented cells in quantity and quality incomparably higher than any other methods previously described. Pigmented cells constitute over 90% of a terminally differentiated population and exhibit features characteristic for melanocytes, i.e., expression of specific markers such as MITF-M (microphthalmia-associated transcription factor isoform M), TRP-1 (tyrosinase-related protein 1), and TYR (tyrosinase) and accumulation of black pigment in organelles closely resembling melanosomes. Black pigment is unambiguously identified as melanin with features corresponding to those of melanin produced by typical melanocytes. The advantage of our method is that it does not require any sophisticated procedures and can be conducted in standard laboratory conditions. Moreover, our protocol is highly reproducible and optimized to generate high-purity melanin-producing cells from iPS cells; thus, it can serve as an unlimited source of human melanin for modeling human skin diseases. We speculate that FGF-8 might play an important role during differentiation processes toward pigmented cells.
Collapse
Affiliation(s)
- Maciej Sułkowski
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Cracow, Poland; (M.S.); (M.K.); (B.B.); (A.P.)
| | - Marta Kot
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Cracow, Poland; (M.S.); (M.K.); (B.B.); (A.P.)
| | - Bogna Badyra
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Cracow, Poland; (M.S.); (M.K.); (B.B.); (A.P.)
| | - Anna Paluszkiewicz
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Cracow, Poland; (M.S.); (M.K.); (B.B.); (A.P.)
| | - Przemysław M. Płonka
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (P.M.P.); (M.S.); (D.M.-W.)
| | - Michał Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (P.M.P.); (M.S.); (D.M.-W.)
| | - Dominika Michalczyk-Wetula
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Cracow, Poland; (P.M.P.); (M.S.); (D.M.-W.)
| | - Fabio A. Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, 20054 Milan, Italy; (F.A.Z.); (L.Z.)
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, 20054 Milan, Italy; (F.A.Z.); (L.Z.)
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Cracow, Poland; (M.S.); (M.K.); (B.B.); (A.P.)
- Correspondence: ; Tel.: +48-12-659-15-93
| |
Collapse
|
6
|
Phenotypic Switching of B16F10 Melanoma Cells as a Stress Adaptation Response to Fe3O4/Salicylic Acid Nanoparticle Therapy. Pharmaceuticals (Basel) 2021; 14:ph14101007. [PMID: 34681232 PMCID: PMC8537856 DOI: 10.3390/ph14101007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a melanocyte-derived skin cancer that has a high heterogeneity due to its phenotypic plasticity, a trait that may explain its ability to survive in the case of physical or molecular aggression and to develop resistance to therapy. Therefore, the therapy modulation of phenotypic switching in combination with other treatment modalities could become a common approach in any future therapeutic strategy. In this paper, we used the syngeneic model of B16F10 melanoma implanted in C57BL/6 mice to evaluate the phenotypic changes in melanoma induced by therapy with iron oxide nanoparticles functionalized with salicylic acid (SaIONs). The results of this study showed that the oral administration of the SaIONs aqueous dispersion was followed by phenotypic switching to highly pigmented cells in B16F10 melanoma through a cytotoxicity-induced cell selection mechanism. The hyperpigmentation of melanoma cells by the intra- or extracellular accumulation of melanic pigment deposits was another consequence of the SaIONs therapy. Additional studies are needed to assess the reversibility of SaIONs-induced phenotypic switching and the impact of tumor hyperpigmentation on B16F10 melanoma’s progression and metastasis abilities.
Collapse
|
7
|
Goenka S, Simon SR. Novel Chemically Modified Curcumin (CMC) Analogs Exhibit Anti-Melanogenic Activity in Primary Human Melanocytes. Int J Mol Sci 2021; 22:ijms22116043. [PMID: 34205035 PMCID: PMC8199869 DOI: 10.3390/ijms22116043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/20/2022] Open
Abstract
Hyperpigmentation is a dermatological condition characterized by the overaccumulation and/or oversecretion of melanin pigment. The efficacy of curcumin as an anti-melanogenic therapeutic has been recognized, but the poor stability and solubility that have limited its use have inspired the synthesis of novel curcumin analogs. We have previously reported on comparisons of the anti-melanogenic activity of four novel chemically modified curcumin (CMC) analogs, CMC2.14, CMC2.5, CMC2.23 and CMC2.24, with that of parent curcumin (PC), using a B16F10 mouse melanoma cell model, and we have investigated mechanisms of inhibition. In the current study, we have extended our findings using normal human melanocytes from a darkly pigmented donor (HEMn-DP) and we have begun to study aspects of melanosome export to human keratinocytes. Our results showed that all the CMCs downregulated the protein levels of melanogenic paracrine mediators, endothelin-1 (ET-1) and adrenomedullin (ADM) in HaCaT cells and suppressed the phagocytosis of FluoSphere beads that are considered to be melanosome mimics. All the three CMCs were similarly potent (except CMC2.14, which was highly cytotoxic) in inhibiting melanin production; furthermore, they suppressed dendricity in HEMn-DP cells. CMC2.24 and CMC2.23 robustly suppressed cellular tyrosinase activity but did not alter tyrosinase protein levels, while CMC2.5 did not suppress tyrosinase activity but significantly downregulated tyrosinase protein levels, indicative of a distinctive mode of action for the two structurally related CMCs. Moreover, HEMn-DP cells treated with CMC2.24 or CMC2.23 partially recovered their suppressed tyrosinase activity after cessation of the treatment. All the three CMCs were nontoxic to human dermal fibroblasts while PC was highly cytotoxic. Our results provide a proof-of-principle for the novel use of the CMCs for skin depigmentation, since at low concentrations, ranging from 5 to 25 µM, the CMCs (CMC2.24, CMC2.23 and CMC2.5) were more potent anti-melanogenic agents than PC and tetrahydrocurcumin (THC), both of which were ineffective at melanogenesis at similar doses, as tested in HEMn-DP cells (with PC being highly toxic in dermal fibroblasts and keratinocytes). Further studies to evaluate the efficacy of CMCs in human skin tissue and in vivo studies are warranted.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Correspondence:
| | - Sanford R. Simon
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA;
- Department of Biochemistry and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
8
|
Novel Chemically Modified Curcumin (CMC) Derivatives Inhibit Tyrosinase Activity and Melanin Synthesis in B16F10 Mouse Melanoma Cells. Biomolecules 2021; 11:biom11050674. [PMID: 33946371 PMCID: PMC8145596 DOI: 10.3390/biom11050674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/19/2022] Open
Abstract
Skin hyperpigmentation disorders arise due to excessive production of the macromolecular pigment melanin catalyzed by the enzyme tyrosinase. Recently, the therapeutic use of curcumin for inhibiting tyrosinase activity and production of melanin have been recognized, but poor stability and solubility have limited its use, which has inspired synthesis of curcumin analogs. Here, we investigated four novel chemically modified curcumin (CMC) derivatives (CMC2.14, CMC2.5, CMC2.23 and CMC2.24) and compared them to the parent compound curcumin (PC) for inhibition of in vitro tyrosinase activity using two substrates for monophenolase and diphenolase activities of the enzyme and for diminution of cellular melanogenesis. Enzyme kinetics were analyzed using Lineweaver-Burk and Dixon plots and nonlinear curve-fitting to determine the mechanism for tyrosinase inhibition. Copper chelating activity, using pyrocatechol violet dye indicator assay, and antioxidant activity, using a DPPH radical scavenging assay, were also conducted. Next, the capacity of these derivatives to inhibit tyrosinase-catalyzed melanogenesis was studied in B16F10 mouse melanoma cells and the mechanisms of inhibition were elucidated. Inhibition mechanisms were studied by measuring intracellular tyrosinase activity, cell-free and intracellular α-glucosidase enzyme activity, and effects on MITF protein level and cAMP maturation factor. Our results showed that CMC2.24 showed the greatest efficacy as a tyrosinase inhibitor of all the CMCs and was better than PC as well as a popular tyrosinase inhibitor-kojic acid. Both CMC2.24 and CMC2.23 inhibited tyrosinase enzyme activity by a mixed mode of inhibition with a predominant competitive mode. In addition, CMC2.24 as well as CMC2.23 showed a comparable robust efficacy in inhibiting melanogenesis in cultured melanocytes. Furthermore, after removal of CMC2.24 or CMC2.23 from the medium, we could demonstrate a partial recovery of the suppressed intracellular tyrosinase activity in the melanocytes. Our results provide a proof-of-principle for the novel use of the CMCs that shows them to be far superior to the parent compound, curcumin, for skin depigmentation.
Collapse
|
9
|
Comparative Study of Curcumin and Its Hydrogenated Metabolites, Tetrahydrocurcumin, Hexahydrocurcumin, and Octahydrocurcumin, on Melanogenesis in B16F10 and MNT-1 Cells. COSMETICS 2021. [DOI: 10.3390/cosmetics8010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Curcumin, a bioactive from Curcuma longa, has been shown to possess anti-melanogenic activity previously; however, the effects of its hydrogenated metabolites (HMs)—Tetrahydrocurcumin (THC), Hexahydrocurcumin (HHC), and Octahydrocurcumin (OHC)—on melanogenesis have not been sufficiently explored. We have studied and compared three HMs (THC, HHC, and OHC) with the parent compound, curcumin (PC), on melanin synthesis in B16F10 mouse and MNT-1 human melanoma cells. Our results demonstrated that all the HMs were nontoxic over the concentration range 5–40 µM, while PC was nontoxic at 5 µM but induced toxicity at 20 and 40 µM in B16F10 cells. All three HMs enhanced melanin synthesis, while PC (5 µM) inhibited it. THC (40 µM) significantly stimulated melanin synthesis to a greater degree than HHC and OHC in both B16F10 and MNT-1 cells; the order of melanogenesis stimulation was THC = OHC > HHC in B16F10 mouse cells, while it was THC > HHC > OHC in MNT-1 cells. HMs stimulated melanogenesis by pathways not involving tyrosinase, as neither the intracellular tyrosinase activity nor the protein levels of tyrosinase were affected. In addition, mushroom tyrosinase activity, using L-Dihydroxyphenylalanine (L-DOPA) as the substrate, showed no direct effects of HMs. In summary, our results demonstrate that the HMs enhanced melanogenesis, which establishes that the hydrogenation of the heptadiene moiety of curcumin leads to a loss of its anti-melanogenic activity and instead results in the stimulation of melanogenesis. This stimulation is not further enhanced upon hydrogenation of the β-diketone, which was noted in MNT-1 cells, although the correlation to the number of keto groups differed in B16F10 cells where HHC was the weakest stimulator of melanogenesis. Collectively, THC with both keto groups intact is the best stimulator. Moreover, our results also validate that the electrophilicity of curcumin is necessary for its anti-melanogenic activity, as the non-electrophilic HMs did not inhibit melanogenesis. Furthermore, our results suggest that THC might hold promise as a stimulator of melanogenesis for treatment of hypopigmentation disorders and anti-graying therapies. Future studies to probe the molecular signaling mechanisms and test whether the pro-melanogenic activity of HMs is retained in primary human melanocytes are warranted.
Collapse
|
10
|
Skin Brightening Efficacy of Exosomes Derived from Human Adipose Tissue-Derived Stem/Stromal Cells: A Prospective, Split-Face, Randomized Placebo-Controlled Study. COSMETICS 2020. [DOI: 10.3390/cosmetics7040090] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Studies have shown that stem cells and their derivatives, including conditioned media (CM), have inhibitory effects on skin pigmentation. However, evidence supporting the skin brightening effect of exosomes derived from stem cells is lacking. We studied the antipigmentation effect in vitro and skin brightening efficacy in vivo of exosomes derived from human adipose tissue-derived mesenchymal stem/stromal cells (ASC-exosomes). Exosomes were isolated from the CM of ASCs using the tangential flow filtration method. ASC-exosomes reduced intracellular melanin levels in B16F10 melanoma cells regardless of the presence of the α-melanocyte-stimulating hormone (α-MSH). The skin brightening efficacy of a cosmetic formulation containing ASC-exosomes was assessed in human volunteers with hyperpigmentation in a prospective, split-face, double-blind, randomized placebo-controlled study. The ASC-exosome-containing formulation statistically decreased the melanin contents compared to the placebo control. However, the melanin-reduction activity was limited and diminished along with time. A further improvement in efficient transdermal delivery of ASC-exosomes will be helpful for more profound efficacy. In summary, these results suggest that ASC-exosomes can be used as a cosmeceutical for skin brightening.
Collapse
|
11
|
Zdybel M, Chodurek E, Pilawa B. Application of EPR spectroscopy to determine the influence of simvastatin concentration on free radicals in A-375 human melanoma malignum cells. Toxicol In Vitro 2019; 61:104620. [PMID: 31394162 DOI: 10.1016/j.tiv.2019.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Abstract
Malignant melanoma is the most aggressive and lethal form of skin cancer. Therefore the search for new methods of the treatment for melanoma is needed. In this work simvastatin was tested as the substance of potential anticancer activity. The aim of this study was to determine the effect of simvastatin in different concentration on free radicals in A-375 human melanoma malignum cells. Free radicals and growth of A-375 melanoma cells cultured without and with simvastatin were examined. Free radicals were tested by the use of electron paramagnetic resonance (EPR) spectroscopy. o-Semiquinone free radicals existed in A-375 cells. Free radicals of the control A-375 cells and the cells cultured with simvastatin were homogeneously broadened. The growth of A-375 cells did not change for concentrations of simvastatin 0.1 μM and 0.3 μM, and it slightly decreased for concentration of this substance equal 1 μM, so these concentrations of simvastatin were not preferred for therapy. For the concentrations of simvastatin higher than 1 μM the growth of A-375 cells was considerably weakened. Simvastatin in the concentrations of 0.1 μM and 1 μM decreased free radical concentrations in A-375 cells. The concentrations of simvastatin of 3 μM and 5 μM accompanied by the strong cell damage and strong formation of free radicals in them were recommended for anticancer therapy of A-375 melanoma cells.
Collapse
Affiliation(s)
- Magdalena Zdybel
- Department of Biophysics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland.
| | - Ewa Chodurek
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland
| | - Barbara Pilawa
- Department of Biophysics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland
| |
Collapse
|
12
|
Combination therapy of simvastatin and 5, 6-dimethylxanthenone-4-acetic acid synergistically suppresses the aggressiveness of B16.F10 melanoma cells. PLoS One 2018; 13:e0202827. [PMID: 30138430 PMCID: PMC6107259 DOI: 10.1371/journal.pone.0202827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
The major drawback of current anti-angiogenic therapies is drug resistance, mainly caused by overexpression of the transcription factor, hypoxia-inducible factor 1α (HIF-1α) as a result of treatment-induced hypoxia, which stimulates cancer cells to develop aggressive and immunosuppressive phenotypes. Moreover, the cancer cell resistance to anti-angiogenic therapies is deeply mediated by the communication between tumor cells and tumor-associated macrophages (TAMs)-the most important microenvironmental cells for the coordination of all supportive processes in tumor development. Thus, simultaneous targeting of TAMs and cancer cells could improve the outcome of the anti-angiogenic therapies. Since our previous studies proved that simvastatin (SIM) exerts strong antiproliferative actions on B16.F10 murine melanoma cells via reduction of TAMs-mediated oxidative stress and inhibition of intratumor production of HIF-1α, we investigated whether the antitumor efficacy of the anti-angiogenic agent-5,6-dimethylxanthenone-4-acetic acid (DMXAA) could be improved by its co-administration with the lipophilic statin. Our results provide confirmatory evidence for the ability of the combined treatment to suppress the aggressive phenotype of the B16.F10 melanoma cells co-cultured with TAMs under hypoxia-mimicking conditions in vitro. Thus, proliferation and migration capacity of the melanoma cells were strongly decelerated after the co-administration of SIM and DMXAA. Moreover, our data suggested that the anti-oxidant action of the combined treatment, as a result of melanogenesis stimulation, might be the principal cause for the simultaneous suppression of key molecules involved in melanoma cell aggressiveness, present in melanoma cells (HIF-1α) as well as in TAMs (arginase-1). Finally, the concomitant suppression of these proteins might have contributed to a very strong inhibition of the angiogenic capacity of the cell co-culture microenvironment.
Collapse
|
13
|
Matsuo T, Fujiwara A, Nakamura K, Sadzuka Y. The effects of vitamin B 6 compounds on cell proliferation and melanogenesis in B16F10 melanoma cells. Oncol Lett 2018; 15:5181-5184. [PMID: 29552155 DOI: 10.3892/ol.2018.7947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/23/2018] [Indexed: 11/05/2022] Open
Abstract
B16F10 murine melanoma cells are frequently used for the study of cancer and melanogenesis. The cells are usually cultured in Dulbecco's Modified Eagle Medium, with the addition of 20 µM pyridoxal (PL) or pyridoxine (PN) for vitamin B6. The difference between these vitamin B6 compounds is thought not to affect cell proliferation, whereas their influence on other physiological effects is poorly understood. In the present study, the effects of PL and PN on cell proliferation and melanogenesis in B16F10 cells were compared. At 500 µM PL significantly suppressed cell growth but the growth inhibitory effect of PN was weak. Although neither of the vitamin B6 compounds affected cell growth at 20 µM, melanogenesis was suppressed by 20 µM PL compared with the effect of PN. In addition, the expression levels of tyrosinase, which is the rate-limiting enzyme, correlated with the melanin content. The results of the present study indicate that PL may be more useful for melanoma therapy and suppression of skin pigmentation than PN. The results also signify the importance of medium selection for cell culture.
Collapse
Affiliation(s)
- Taisuke Matsuo
- Department of Advanced Pharmaceutics, School of Pharmacy, Iwate Medical University, Shiwa-gun, Iwate 028-3694, Japan
| | - Aki Fujiwara
- Department of Advanced Pharmaceutics, School of Pharmacy, Iwate Medical University, Shiwa-gun, Iwate 028-3694, Japan
| | - Kazuhiro Nakamura
- Department of Advanced Pharmaceutics, School of Pharmacy, Iwate Medical University, Shiwa-gun, Iwate 028-3694, Japan
| | - Yasuyuki Sadzuka
- Department of Advanced Pharmaceutics, School of Pharmacy, Iwate Medical University, Shiwa-gun, Iwate 028-3694, Japan
| |
Collapse
|
14
|
Skalniak L, Smejda M, Cierniak A, Adamczyk A, Konieczny P, Madej E, Wolnicka-Glubisz A. p38 but not p53 is responsible for UVA-induced MCPIP1 expression. Mech Ageing Dev 2017; 172:96-106. [PMID: 29103983 DOI: 10.1016/j.mad.2017.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/30/2017] [Accepted: 11/01/2017] [Indexed: 01/12/2023]
Abstract
MCPIP1 (Monocyte Chemotactic Protein-1 Induced Protein) is an important regulator of inflammation and cell apoptosis, but its role in UVA-induced stress response in the epidermis has never been studied. We have found that moderate apoptosis-inducing dose of UVA (27J/cm2) increases the level of MCPIP1 expression in HaCaT cells and normal human keratinocytes (NHEK) within 6-9h after the treatment. MCPIP1 upregulation was dependent on the induction of p38, but not p53, as demonstrated by using p38 inhibitor SB203580 and p53 inducer RG7388, respectively. This increase was also blocked by antioxidants (α-tocopherol and ascorbic acid), suggesting the involvement of MCPIP1 in UVA-induced oxidative stress response. Si-RNA-mediated down-regulation of MCPIP1 expression in HaCaT cells resulted in increased sensitivity to UVA-induced DNA damage and apoptosis. This was accompanied by decreased phosphorylation of p53 and p38 in MCPIP1-silenced cells following UVA irradiation. The activation of p38 in response to low doses of ultraviolet radiation was postulated to be protective for p53-inactive cells. Therefore, MCPIP1 may favor the survival of p53-defective HaCaT cells by sustaining the activation of p38. This creates a loop of mutual positive regulation between p38 and MCPIP1 protein in HaCaT cells, providing the protection against the consequences of UVA irradiation.
Collapse
Affiliation(s)
- Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387, Krakow, Poland
| | - Marta Smejda
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Krakow, Poland
| | - Agnieszka Cierniak
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Krakow, Poland
| | - Anna Adamczyk
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Krakow, Poland
| | - Piotr Konieczny
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Krakow, Poland
| | - Ewelina Madej
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Krakow, Poland
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
15
|
Tudor D, Nenu I, Filip GA, Olteanu D, Cenariu M, Tabaran F, Ion RM, Gligor L, Baldea I. Combined regimen of photodynamic therapy mediated by Gallium phthalocyanine chloride and Metformin enhances anti-melanoma efficacy. PLoS One 2017; 12:e0173241. [PMID: 28278159 PMCID: PMC5344368 DOI: 10.1371/journal.pone.0173241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/18/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Melanoma therapy is challenging, especially in advanced cases, due to multiple developed tumor defense mechanisms. Photodynamic therapy (PDT) might represent an adjuvant treatment, because of its bimodal action: tumor destruction and immune system awakening. In this study, a combination of PDT mediated by a metal substituted phthalocyanine-Gallium phthalocyanine chloride (GaPc) and Metformin was used against melanoma. The study aimed to: (1) find the anti-melanoma efficacy of GaPc-PDT, (2) assess possible beneficial effects of Metformin addition to PDT, (3) uncover some of the mechanisms underlining cell killing and anti-angiogenic effects. METHODS Two human lightly pigmented melanoma cell lines: WM35 and M1/15 subjected to previous Metformin exposure were treated by GaPc-PDT. Cell viability, death mechanism, cytoskeleton alterations, oxidative damage, were assessed by means of colorimetry, flowcytometry, confocal microscopy, spectrophotometry, ELISA, Western Blotting. RESULTS GaPc proved an efficient photosensitizer. Metformin addition enhanced cell killing by mechanisms dependent on the cell line, namely apoptosis in the metastatic M1/15 and necrosis in the radial growth phase, WM35. Cell death mechanism relied on the inhibition of nuclear transcription factor (NF)-κB activation and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) sensitization, leading to TRAIL and TNF-α induced apoptosis. Metformin diminished the anti-angiogenic effect of PDT. CONCLUSIONS Metformin addition to GaPc-PDT increased tumor cell killing through enhanced oxidative damage and induction of proapoptotic mechanisms, but altered PDT anti-angiogenic effects. GENERAL SIGNIFICANCE Combination of Metformin and PDT might represent a solution to enhance the efficacy, leading to a potential adjuvant role of PDT in melanoma therapy.
Collapse
Affiliation(s)
- Diana Tudor
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Iuliana Nenu
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Diana Olteanu
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai Cenariu
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Flaviu Tabaran
- Department of Pathology University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Rodica Mariana Ion
- Nanomedicine Research Group, National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, Bucharest, Romania
| | - Lucian Gligor
- OSRAM Opto Semiconductors, OSRAM Romania, Global City Business Park, Voluntari, Ilfov, Romania
| | - Ioana Baldea
- Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Kudo M, Kobayashi-Nakamura K, Tsuji-Naito K. Bifunctional effects of O-methylated flavones from Scutellaria baicalensis Georgi on melanocytes: Inhibition of melanin production and intracellular melanosome transport. PLoS One 2017; 12:e0171513. [PMID: 28182699 PMCID: PMC5300169 DOI: 10.1371/journal.pone.0171513] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
The growing interest in skin lightening has recently renewed attention on the esthetic applications of Chinese herbal medicine. Although Scutellaria baicalensis Georgi is used for antipyretic and antiinflammatory purposes, its whitening effect remains unclear. This study reports three major findings: (1) S. baicalensis has a potent inhibitory effect on melanogenesis; (2) wogonin and its glycoside are the active components of S. baicalensis; and (3) O-methylated flavones from S. baicalensis, such as wogonin, inhibit intracellular melanosome transport. Using a melanin quantification assay, we showed that S. baicalensis potently inhibits melanogenesis in B16F10 cells. Componential analyses revealed that the main components of S. baicalensis are baicalin, wogonoside, baicalein, wogonin, and oroxylin A. Among these five flavones, wogonin and wogonoside consistently inhibited melanogenesis in both B16F10 melanoma cells and primary melanocytes. Wogonin exhibited the strongest inhibition of melanin production and markedly lightened the color of skin equivalents. We identified microphthalmia-associated transcription factor and tyrosinase-related proteins as potential targets of wogonin- and wogonoside-induced melanogenesis suppression. In culture, we found that the melanosomes in wogonin-treated B16F10 cells were localized to the perinuclear region. Immunoblotting analyses revealed that wogonin significantly reduced in melanophilin protein, which is required for actin-based melanosome transport. Other actin-based melanosome transport-related molecules, i.e., Rab27A and myosin Va, were not affected by wogonin. Cotreatment with MG132 blocked the wogonin-induced decrease in melanophilin, suggesting that wogonin promotes the proteolytic degradation of melanophilin via the calpain/proteasomal pathway. We determined that the structural specificities of the mono-O-methyl group in the flavone A-ring and the aglycone form were responsible for reducing melanosome transport. Furthermore, wogonin and two wogonin analogs, mono-O-methyl flavones, strongly suppressed melanosome transport. Our findings suggest the applicability of S. baicalensis in the esthetic field. Thus, we propose a novel pharmacologic approach for the treatment of hyperpigmentation.
Collapse
Affiliation(s)
- Michiko Kudo
- Fundamental Research Laboratory, Fundamental Research Department, DHC Corporation, Chiba, Japan
| | | | - Kentaro Tsuji-Naito
- Fundamental Research Laboratory, Fundamental Research Department, DHC Corporation, Chiba, Japan
- * E-mail:
| |
Collapse
|
17
|
Konstantakou EG, Velentzas AD, Anagnostopoulos AK, Litou ZI, Konstandi OA, Giannopoulou AF, Anastasiadou E, Voutsinas GE, Tsangaris GT, Stravopodis DJ. Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets. PLoS One 2017; 12:e0171512. [PMID: 28158294 PMCID: PMC5291375 DOI: 10.1371/journal.pone.0171512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/20/2017] [Indexed: 12/22/2022] Open
Abstract
Cutaneous melanoma is a malignant tumor of skin melanocytes that are pigment-producing cells located in the basal layer (stratum basale) of epidermis. Accumulation of genetic mutations within their oncogenes or tumor-suppressor genes compels melanocytes to aberrant proliferation and spread to distant organs of the body, thereby resulting in severe and/or lethal malignancy. Metastatic melanoma's heavy mutational load, molecular heterogeneity and resistance to therapy necessitate the development of novel biomarkers and drug-based protocols that target key proteins involved in perpetuation of the disease. To this direction, we have herein employed a nano liquid chromatography-tandem mass spectrometry (nLC-MS/MS) proteomics technology to profile the deep-proteome landscape of WM-266-4 human metastatic melanoma cells. Our advanced melanoma-specific catalogue proved to contain 6,681 unique proteins, which likely constitute the hitherto largest single cell-line-derived proteomic collection of the disease. Through engagement of UNIPROT, DAVID, KEGG, PANTHER, INTACT, CYTOSCAPE, dbEMT and GAD bioinformatics resources, WM-266-4 melanoma proteins were categorized according to their sub-cellular compartmentalization, function and tumorigenicity, and successfully reassembled in molecular networks and interactomes. The obtained data dictate the presence of plastically inter-converted sub-populations of non-cancer and cancer stem cells, and also indicate the oncoproteomic resemblance of melanoma to glioma and lung cancer. Intriguingly, WM-266-4 cells seem to be subjected to both epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) programs, with 1433G and ADT3 proteins being identified in the EMT/MET molecular interface. Oncogenic addiction of WM-266-4 cells to autocrine/paracrine signaling of IL17-, DLL3-, FGF(2/13)- and OSTP-dependent sub-routines suggests their critical contribution to the metastatic melanoma chemotherapeutic refractoriness. Interestingly, the 1433G family member that is shared between the BRAF- and EMT/MET-specific interactomes likely emerges as a novel and promising druggable target for the malignancy. Derailed proliferation and metastatic capacity of WM-266-4 cells could also derive from their metabolic addiction to pathways associated with glutamate/ammonia, propanoate and sulfur homeostasis, whose successful targeting may prove beneficial for advanced melanoma-affected patients.
Collapse
Affiliation(s)
- Eumorphia G. Konstantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanassios D. Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios K. Anagnostopoulos
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Zoi I. Litou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ourania A. Konstandi
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini F. Giannopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ema Anastasiadou
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Gerassimos E. Voutsinas
- Laboratory of Environmental Mutagenesis and Carcinogenesis, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - George Th. Tsangaris
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Peroxisome proliferator-activated receptor α (PPARα) contributes to control of melanogenesis in B16 F10 melanoma cells. Arch Dermatol Res 2017; 309:141-157. [PMID: 28084540 DOI: 10.1007/s00403-016-1711-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 01/10/2023]
Abstract
Recent studies revealed the cooperation between peroxisome proliferator-activated receptor gamma (PPARγ) and α-MSH signaling, which results in enhanced melanogenesis in melanocytes and melanoma cells. However, the agonists of PPARα, such as fenofibrate, exert depigmenting effect. Therefore, we aimed to check how the PPARα expression level affects the antimelanogenic activity of fenofibrate and whether PPARα modulates melanogenesis independently of its agonist. To answer these questions, we used three B16 F10-derived cell lines, which varied in the PPARα expression level and were developed by stable transfection with plasmids driving shRNA-based PPARα silencing or overexpression of PPARα-emerald GFP fusion protein. Melanin contents were assessed with electron paramagnetic resonance spectroscopy along with color component image analysis-a novel approach to pigment content characteristics in melanoma cells. B16 F10 wt and Ctrl shRNA lines showed intermediate pigmentation, whereas the pigmentation of the B16 F10-derived cell lines was inversely correlated with the PPARα expression level. We observed that cells overexpressing PPARα were almost amelanotic and cells with reduced PPARα protein level were heavily melanized. Furthermore, fenofibrate down-regulated the melanogenic apparatus (MITF, tyrosinase, and tyrosinase-related proteins) in the cells with the regular PPARα expression level resulting in their visibly lower total melanin content in all the cell lines. From these observations, we conclude that fenofibrate works as a strong depigmenting agent, which acts independently of PPARα, but in an additive fashion. Our results also indicate that alterations in PGC-1a acetylation and expression level might contribute to the regulation of melanogenesis by PPARα and fenofibrate.
Collapse
|
19
|
Seino H, Arai Y, Nagao N, Ozawa N, Hamada K. Efficient Percutaneous Delivery of the Antimelanogenic Agent Glabridin Using Cationic Amphiphilic Chitosan Micelles. PLoS One 2016; 11:e0164061. [PMID: 27695112 PMCID: PMC5047624 DOI: 10.1371/journal.pone.0164061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/19/2016] [Indexed: 01/01/2023] Open
Abstract
Partially myristoylated chitosan pyrrolidone carboxylate (PMCP) is a cationic amphiphilic chitosan derivative. Glabridin (Glab) from licorice root extracts is a hydrophobic antimelanogenic agent. Here we assessed the effects of cationic Glab-containing polymeric micelles derived from PMCP (Glab/PMCP-PM) on the ability of Glab to penetrate the skin and inhibit melanogenesis using a human skin model. The amount of Glab absorbed 24 h after the application of Glab/PMCP-PM was approximately four times higher than that of conventional oil-in-water micelles (control) prepared using Tween 60. Further, the release of IL-1α, a mediator of inflammation, was not detected. Treatment with Glab/PMCP-PM significantly increased the inhibition of melanogenesis compared with control. The inhibition of melanogenesis depends upon the enhanced ability of Glab to penetrate the skin, particularly the epidermis. Moreover, the inhibition of melanogenesis and the cationic potential of the Glab/PMCP-PM levels were increased by the cationic phospholipid copolymer. Therefore, Glab/PMCP-PM shows potential as an effective transdermal delivery system for treating skin hyperpigmentation.
Collapse
Affiliation(s)
- Haruyoshi Seino
- Central Research Laboratory, Pias Corporation, 1-3-1 Murotani, Nishi-ku, Kobe, Japan
- * E-mail: (HS); (NN)
| | - Yukari Arai
- Central Research Laboratory, Pias Corporation, 1-3-1 Murotani, Nishi-ku, Kobe, Japan
| | - Norio Nagao
- Faculty of Life and Environmental Science, Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Japan
- * E-mail: (HS); (NN)
| | - Noriyasu Ozawa
- Central Research Laboratory, Pias Corporation, 1-3-1 Murotani, Nishi-ku, Kobe, Japan
| | - Kazuhiko Hamada
- Central Research Laboratory, Pias Corporation, 1-3-1 Murotani, Nishi-ku, Kobe, Japan
| |
Collapse
|
20
|
Mirzaei H, Naseri G, Rezaee R, Mohammadi M, Banikazemi Z, Mirzaei HR, Salehi H, Peyvandi M, Pawelek JM, Sahebkar A. Curcumin: A new candidate for melanoma therapy? Int J Cancer 2016; 139:1683-95. [PMID: 27280688 DOI: 10.1002/ijc.30224] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 05/25/2016] [Indexed: 02/06/2023]
Abstract
Melanoma remains among the most lethal cancers and, in spite of great attempts that have been made to increase the life span of patients with metastatic disease, durable and complete remissions are rare. Plants and plant extracts have long been used to treat a variety of human conditions; however, in many cases, effective doses of herbal remedies are associated with serious adverse effects. Curcumin is a natural polyphenol that shows a variety of pharmacological activities including anti-cancer effects, and only minimal adverse effects have been reported for this phytochemical. The anti-cancer effects of curcumin are the result of its anti-angiogenic, pro-apoptotic and immunomodulatory properties. At the molecular and cellular level, curcumin can blunt epithelial-to-mesenchymal transition and affect many targets that are involved in melanoma initiation and progression (e.g., BCl2, MAPKS, p21 and some microRNAs). However, curcumin has a low oral bioavailability that may limit its maximal benefits. The emergence of tailored formulations of curcumin and new delivery systems such as nanoparticles, liposomes, micelles and phospholipid complexes has led to the enhancement of curcumin bioavailability. Although in vitro and in vivo studies have demonstrated that curcumin and its analogues can be used as novel therapeutic agents in melanoma, curcumin has not yet been tested against melanoma in clinical practice. In this review, we summarized reported anti-melanoma effects of curcumin as well as studies on new curcumin formulations and delivery systems that show increased bioavailability. Such tailored delivery systems could pave the way for enhancement of the anti-melanoma effects of curcumin.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Naseri
- Department of Anatomical Sciences, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ramin Rezaee
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohsen Mohammadi
- Razi Herbal Medicines Research Center and Department of pharmaceutical biotechnology, Faculty of pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zarrin Banikazemi
- Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Hamid Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mostafa Peyvandi
- Department of Anatomical Sciences, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Anatomical Sciences, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - John M Pawelek
- Department of Dermatology and the Yale Cancer Center, Yale University School of Medicine, New Haven, CT
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Park S, Seok JK, Kwak JY, Choi YH, Hong SS, Suh HJ, Park W, Boo YC. Anti-melanogenic effects of resveratryl triglycolate, a novel hybrid compound derived by esterification of resveratrol with glycolic acid. Arch Dermatol Res 2016; 308:325-34. [PMID: 27059716 DOI: 10.1007/s00403-016-1644-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/13/2016] [Accepted: 03/30/2016] [Indexed: 11/26/2022]
Abstract
Resveratrol is known to inhibit cellular melanin synthesis by multiple mechanisms. Glycolic acid (GA) is used in skin care products for its excellent skin penetration. The purpose of this study was to examine the anti-melanogenic effects of resveratryl triglycolate (RTG), a novel hybrid compound of resveratrol and GA, in comparison with resveratrol, GA, resveratryl triacetate (RTA) and arbutin. Resveratrol, RTG, and RTA inhibited the catalytic activity human tyrosinase (TYR) more potently than arbutin or GA did. Their cytotoxic and anti-melanogenic effects were examined using murine melanoma B16/F10 cells and human epidermal melanocytes (HEMs). The cytotoxicity of RTG was similar to that of resveratrol and RTA. RTG at 3-10 μM decreased melanin levels and cellular TYR activities in α-melanocyte-stimulating hormone-stimulated B16/F10 cells, and L-tyrosine-stimulated HEMs. RTG also suppressed mRNA and protein expression of TYR, tyrosinase-related protein 1, L-3,4-dihydroxyphenylalanine chrome tautomerase, and microphthalmia-associated transcription factor (MITF) in HEMs stimulated with L-tyrosine. This study suggests that, like resveratrol and RTA, RTG can attenuate cellular melanin synthesis effectively through the suppression of MITF-dependent expression of melanogenic enzymes and the inhibition of catalytic activity of TYR enzyme. RTG therefore has potential for use as a cosmeceutical ingredient for skin whitening.
Collapse
Affiliation(s)
- Soojin Park
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 101 Dongin-dong 2-ga, Jung-gu, Daegu, 41944, Republic of Korea
| | - Jin Kyung Seok
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 101 Dongin-dong 2-ga, Jung-gu, Daegu, 41944, Republic of Korea
| | - Jun Yup Kwak
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 101 Dongin-dong 2-ga, Jung-gu, Daegu, 41944, Republic of Korea
| | - Yun-Hyeok Choi
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, Suwon, Republic of Korea
| | - Seong Su Hong
- Bio-Center, Gyeonggi Institute of Science and Technology Promotion, Suwon, Republic of Korea
| | - Hwa-Jin Suh
- Gyeongbuk Natural Color Industry Institute, Gyeongbuk, Republic of Korea
| | | | - Yong Chool Boo
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 101 Dongin-dong 2-ga, Jung-gu, Daegu, 41944, Republic of Korea.
- Ruby Crown Co. Ltd., Daegu, Republic of Korea.
| |
Collapse
|
22
|
Wang X, Liu Y, Chen H, Mei L, He C, Jiang L, Niu Z, Sun J, Luo H, Li J, Feng Y. LEF-1 Regulates Tyrosinase Gene Transcription In Vitro. PLoS One 2015; 10:e0143142. [PMID: 26580798 PMCID: PMC4651308 DOI: 10.1371/journal.pone.0143142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/30/2015] [Indexed: 12/31/2022] Open
Abstract
TYR, DCT and MITF are three important genes involved in maintaining the mature phenotype and producing melanin; they therefore participate in neural crest cell development into melanocytes. Previous studies have revealed that the Wnt signaling factor lymphoid enhancer-binding factor (LEF-1) can enhance DCT and MITF gene expression. However, whether LEF-1 also affects TYR gene expression remains unclear. In the present study, we found that LEF-1 regulated TYR transcription in vitro. LEF-1 overexpression increased TYR gene promoter activity, whereas LEF-1 knockdown by RNA interference significantly decreased TYR expression. Moreover, the core GTTTGAT sequence (-56 to -50) within the TYR promoter is essential for the effect of LEF-1 on TYR expression, and chromatin immunoprecipitation (ChIP) assay indicated that endogenous LEF-1 interacts with the TYR promoter. In addition, we observed a synergistic transactivation of the TYR promoter by LEF-1 and MITF. These data suggest that Wnt signaling plays an important role in regulating melanocyte development and differentiation.
Collapse
Affiliation(s)
- Xueping Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yalan Liu
- Province Key Laboratory of Otolaryngology Critical Disease, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hongsheng Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Province Key Laboratory of Otolaryngology Critical Disease, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Lingyun Mei
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Province Key Laboratory of Otolaryngology Critical Disease, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Chufeng He
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Province Key Laboratory of Otolaryngology Critical Disease, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Lu Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Province Key Laboratory of Otolaryngology Critical Disease, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhijie Niu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jie Sun
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Otolaryngology, 1st Affiliated Hospital, Xinjiang Medical University, Urumqi, People’s Republic of China
| | - Hunjin Luo
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jiada Li
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, People’s Republic of China
- * E-mail: (JDL); (YF)
| | - Yong Feng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Province Key Laboratory of Otolaryngology Critical Disease, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, People’s Republic of China
- * E-mail: (JDL); (YF)
| |
Collapse
|
23
|
Bin BH, Bhin J, Yang SH, Shin M, Nam YJ, Choi DH, Shin DW, Lee AY, Hwang D, Cho EG, Lee TR. Membrane-Associated Transporter Protein (MATP) Regulates Melanosomal pH and Influences Tyrosinase Activity. PLoS One 2015. [PMID: 26057890 DOI: 10.1371/journal.pone.0129273.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The SLC45A2 gene encodes a Membrane-Associated Transporter Protein (MATP). Mutations of this gene cause oculocutaneous albinism type 4 (OCA4). However, the molecular mechanism of its action in melanogenesis has not been elucidated. Here, we discuss the role of MATP in melanin production. The SLC45A2 gene is highly enriched in human melanocytes and melanoma cell lines, and its protein, MATP, is located in melanosomes. The knockdown of MATP using siRNAs reduced melanin content and tyrosinase activity without any morphological change in melanosomes or the expression of melanogenesis-related proteins. Interestingly, the knockdown of MATP significantly lowered the melanosomal pH, as verified through DAMP analysis, suggesting that MATP regulates melanosomal pH and therefore affects tyrosinase activity. Finally, we found that the reduction of tyrosinase activity associated with the knockdown of MATP was readily recovered by copper treatment in the in vitro L-DOPA oxidase activity assay of tyrosinase. Considering that copper is an important element for tyrosinase activity and that its binding to tyrosinase depends on melanosomal pH, MATP may play an important role in regulating tyrosinase activity via controlling melanosomal pH.
Collapse
Affiliation(s)
- Bum-Ho Bin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Jinhyuk Bhin
- Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
| | - Seung Ha Yang
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Misun Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Yeon-Ju Nam
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
| | - Dong-Hwa Choi
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Daehee Hwang
- Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
| | - Eun-Gyung Cho
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| |
Collapse
|
24
|
Bin BH, Bhin J, Yang SH, Shin M, Nam YJ, Choi DH, Shin DW, Lee AY, Hwang D, Cho EG, Lee TR. Membrane-Associated Transporter Protein (MATP) Regulates Melanosomal pH and Influences Tyrosinase Activity. PLoS One 2015; 10:e0129273. [PMID: 26057890 PMCID: PMC4461305 DOI: 10.1371/journal.pone.0129273] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 05/06/2015] [Indexed: 11/17/2022] Open
Abstract
The SLC45A2 gene encodes a Membrane-Associated Transporter Protein (MATP). Mutations of this gene cause oculocutaneous albinism type 4 (OCA4). However, the molecular mechanism of its action in melanogenesis has not been elucidated. Here, we discuss the role of MATP in melanin production. The SLC45A2 gene is highly enriched in human melanocytes and melanoma cell lines, and its protein, MATP, is located in melanosomes. The knockdown of MATP using siRNAs reduced melanin content and tyrosinase activity without any morphological change in melanosomes or the expression of melanogenesis-related proteins. Interestingly, the knockdown of MATP significantly lowered the melanosomal pH, as verified through DAMP analysis, suggesting that MATP regulates melanosomal pH and therefore affects tyrosinase activity. Finally, we found that the reduction of tyrosinase activity associated with the knockdown of MATP was readily recovered by copper treatment in the in vitro L-DOPA oxidase activity assay of tyrosinase. Considering that copper is an important element for tyrosinase activity and that its binding to tyrosinase depends on melanosomal pH, MATP may play an important role in regulating tyrosinase activity via controlling melanosomal pH.
Collapse
Affiliation(s)
- Bum-Ho Bin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Jinhyuk Bhin
- Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
| | - Seung Ha Yang
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Misun Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Yeon-Ju Nam
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
| | - Dong-Hwa Choi
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon, Republic of Korea
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Daehee Hwang
- Department of Chemical Engineering, POSTECH, Pohang, Republic of Korea
| | - Eun-Gyung Cho
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin, Republic of Korea
| |
Collapse
|
25
|
Gęgotek A, Skrzydlewska E. The role of transcription factor Nrf2 in skin cells metabolism. Arch Dermatol Res 2015; 307:385-96. [PMID: 25708189 PMCID: PMC4469773 DOI: 10.1007/s00403-015-1554-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/06/2015] [Accepted: 02/12/2015] [Indexed: 12/22/2022]
Abstract
Skin, which is a protective layer of the body, is in constant contact with physical and chemical environmental factors. Exposure of the skin to highly adverse conditions often leads to oxidative stress. Moreover, it has been observed that skin cells are also exposed to reactive oxygen species generated during cell metabolism particularly in relation to the synthesis of melanin or the metabolism in immune system cells. However, skin cells have special features that protect them against oxidative modifications including transcription factor Nrf2, which is responsible for the transcription of the antioxidant protein genes such as antioxidant enzymes, small molecular antioxidant proteins or interleukins, and multidrug response protein. In the present study, the mechanisms of Nrf2 activation have been compared in the cells forming the various layers of the skin: keratinocytes, melanocytes, and fibroblasts. The primary mechanism of control of Nrf2 activity is its binding by cytoplasmic inhibitor Keap1, while cells have also other controlling mechanisms, such as phosphorylation of Nrf2 and modifications of its activators (e.g., Maf, IKKβ) or inhibitors (e.g., Bach1, caveolae, TGF-β). Moreover, there are a number of drugs (e.g., ketoconazole) used in the pharmacotherapy of skin diseases based on the activation of Nrf2, but they may also induce oxidative stress. Therefore, it is important to look for compounds that cause a selective activation of Nrf2 particularly natural substances such as curcumin, sulforaphane, or extracts from the broccoli leaves without side effects. These findings could be helpful in the searching for new drugs for people with vitiligo or even melanoma.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Departments of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland,
| | | |
Collapse
|