1
|
Han SH, Jo KW, Kim Y, Kim KT. Piperonylic Acid Promotes Hair Growth by Activation of EGFR and Wnt/β-Catenin Pathway. Int J Mol Sci 2024; 25:10774. [PMID: 39409103 PMCID: PMC11476903 DOI: 10.3390/ijms251910774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Dermal papilla cells (DPCs) are located at the bottom of the hair follicle and play a critical role in hair growth, shape, and cycle. Epidermal growth factor receptor (EGFR) and Wnt/β-catenin signaling pathways are essential in promoting keratinocyte activation as well as hair follicle formation in DPCs. Piperonylic acid is a small molecule that induces EGFR activation in keratinocytes. However, the effects of piperonylic acid on DPCs in regard to the stimulation of hair growth have not been studied. In the present study, piperonylic acid was shown to activate the Wnt/β-catenin signaling pathway in addition to the EGFR signaling pathway in DPCs. Piperonylic acid suppressed DKK1 expression, which presumably promoted the accumulation of β-catenin in the nucleus. In addition, piperonylic acid promoted cyclin D upregulation and cell growth and increased the expression of alkaline phosphatase (ALP), a DPC marker. In a clinical study, the group that applied a formulation containing piperonylic acid had a significantly higher number of hairs per unit area than the placebo group. These results identify piperonylic acid as a promising new candidate for hair loss treatment.
Collapse
Affiliation(s)
- Seung Hyun Han
- Hesed Bio Corporation, Pohang 37673, Republic of Korea; (K.W.J.); (Y.K.)
| | - Kyung Won Jo
- Hesed Bio Corporation, Pohang 37673, Republic of Korea; (K.W.J.); (Y.K.)
| | - Younghyun Kim
- Hesed Bio Corporation, Pohang 37673, Republic of Korea; (K.W.J.); (Y.K.)
| | - Kyong-Tai Kim
- Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang 37554, Republic of Korea
| |
Collapse
|
2
|
Lim HW, Kim HJ, Jeon CY, Lee Y, Kim M, Kim J, Kim SR, Lee S, Lim DC, Park HD, Park BC, Shin DW. Hair Growth Promoting Effects of 15-Hydroxyprostaglandin Dehydrogenase Inhibitor in Human Follicle Dermal Papilla Cells. Int J Mol Sci 2024; 25:7485. [PMID: 39000592 PMCID: PMC11242524 DOI: 10.3390/ijms25137485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Prostaglandin E2 (PGE2) is known to be effective in regenerating tissues, and bimatoprost, an analog of PGF2α, has been approved by the FDA as an eyelash growth promoter and has been proven effective in human hair follicles. Thus, to enhance PGE2 levels while improving hair loss, we found dihydroisoquinolinone piperidinylcarboxy pyrazolopyridine (DPP), an inhibitor of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), using DeepZema®, an AI-based drug development program. Here, we investigated whether DPP improved hair loss in human follicle dermal papilla cells (HFDPCs) damaged by dihydrotestosterone (DHT), which causes hair loss. We found that DPP enhanced wound healing and the expression level of alkaline phosphatase in DHT-damaged HFDPCs. We observed that DPP significantly down-regulated the generation of reactive oxygen species caused by DHT. DPP recovered the mitochondrial membrane potential in DHT-damaged HFDPCs. We demonstrated that DPP significantly increased the phosphorylation levels of the AKT/ERK and activated Wnt signaling pathways in DHT-damaged HFDPCs. We also revealed that DPP significantly enhanced the size of the three-dimensional spheroid in DHT-damaged HFDPCs and increased hair growth in ex vivo human hair follicle organ culture. These data suggest that DPP exhibits beneficial effects on DHT-damaged HFDPCs and can be utilized as a promising agent for improving hair loss.
Collapse
Affiliation(s)
- Hye Won Lim
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Hak Joong Kim
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Chae Young Jeon
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Yurim Lee
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Mujun Kim
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Jinsick Kim
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| | - Soon Re Kim
- Basic and Clinical Hair Institute, Dankook University, 201, Manghyang-ro, Dongnam-gu, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea; (S.R.K.); (B.C.P.)
| | - Sanghwa Lee
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Dong Chul Lim
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Hee Dong Park
- Innovo Therapeutics Inc., 507, Mapo-daero 38, Mapo-gu, Seoul 04174, Republic of Korea; (H.J.K.); (Y.L.); (S.L.); (D.C.L.); (H.D.P.)
| | - Byung Cheol Park
- Basic and Clinical Hair Institute, Dankook University, 201, Manghyang-ro, Dongnam-gu, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea; (S.R.K.); (B.C.P.)
- Department of Dermatology, Dankook University Hospital, 201, Manghyang-ro, Dongnam-gu, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Dong Wook Shin
- Research Institute for Biomedical and Health Science, Konkuk University, Chungju 27478, Chungcheongbuk-do, Republic of Korea; (H.W.L.); (C.Y.J.); (M.K.); (J.K.)
| |
Collapse
|
3
|
Sintos AML, Cabrera HS. Network Pharmacology Reveals Curcuma aeruginosa Roxb. Regulates MAPK and HIF-1 Pathways to Treat Androgenetic Alopecia. BIOLOGY 2024; 13:497. [PMID: 39056691 PMCID: PMC11274231 DOI: 10.3390/biology13070497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Androgenetic alopecia (AGA) is the most prevalent hair loss disorder worldwide, driven by excessive sensitivity or response to androgen. Herbal extracts, such as Curcuma aeruginosa Roxb., have shown promise in AGA treatment due to their anti-androgenic activities and hair growth effects. However, the precise mechanism of action remains unclear. Hence, this study aims to elucidate the active compounds, putative targets, and underlying mechanisms of C. aeruginosa for the therapy of AGA using network pharmacology and molecular docking. This study identified 66 bioactive compounds from C. aeruginosa, targeting 59 proteins associated with AGA. Eight hub genes were identified from the protein-protein interaction network, namely, CASP3, AKT1, AR, IL6, PPARG, STAT3, HIF1A, and MAPK3. Topological analysis of components-targets network revealed trans-verbenol, myrtenal, carvone, alpha-atlantone, and isoaromandendrene epoxide as the core components with potential significance in AGA treatment. The molecular docking verified the binding affinity between the hub genes and core compounds. Moreover, the enrichment analyses showed that C. aeruginosa is involved in hormone response and participates in HIF-1 and MAPK pathways to treat AGA. Overall, this study contributes to understanding the potential anti-AGA mechanism of C. aeruginosa by highlighting its multi-component interactions with several targets involved in AGA pathogenesis.
Collapse
Affiliation(s)
- Aaron Marbyn L. Sintos
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
| | - Heherson S. Cabrera
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila 1002, Philippines;
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1200, Philippines
| |
Collapse
|
4
|
Dong H, Wang W, Chen Q, Chang X, Wang L, Chen S, Chen L, Wang R, Ge S, Xiong W. Effects of Lactoferrin and Lactobacillus Supplementation on Immune Function, Oxidative Stress, and Gut Microbiota in Kittens. Animals (Basel) 2024; 14:1949. [PMID: 38998061 PMCID: PMC11240779 DOI: 10.3390/ani14131949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Immune deficiency is a prevalent issue among kittens, severely threatening their health and development by increasing susceptibility to infections and diseases. This study investigates the effects of dietary supplements containing lactoferrin and Lactobacillus plantarum (L. plantarum) on the immune function, intestinal health, and microbiota composition of kittens. The results demonstrate that these supplements significantly enhance immune responses, with immunoglobulin A (IgA) levels increasing by 14.9% and IgG levels by 14.2%. Additionally, there was a notable 28.7% increase in catalase activity, indicating a reduction in oxidative stress. Gastrointestinal (GI) health improved markedly, evidenced by increased populations of beneficial bacteria such as Lactobacillus, which rose from 4.13% to 79.03% over the study period. The DNC group also showed significant reductions in pro-inflammatory cytokines, including decreases of 13.94% in IL-2, 26.46% in TNF-α, and 19.45% in IFN-γ levels. Furthermore, improvements in physical conditions were observed, including enhanced coat condition and mental status. These findings underline the potential of lactoferrin and L. plantarum as effective dietary interventions to improve kitten health, thereby reducing dependency on antibiotics and mitigating associated risks. This research provides a scientific foundation for optimizing nutritional management practices to enhance the overall vitality of kittens during their critical growth phases.
Collapse
Affiliation(s)
- Hao Dong
- Food Laboratory of Zhongyuan, Luohe 462300, China; (H.D.); (W.W.); (Q.C.); (X.C.); (S.C.); (L.C.)
| | - Weiwei Wang
- Food Laboratory of Zhongyuan, Luohe 462300, China; (H.D.); (W.W.); (Q.C.); (X.C.); (S.C.); (L.C.)
- Henan Zhiyuan Henuo Technology Co., Ltd., Luohe 462300, China;
| | - Qianqian Chen
- Food Laboratory of Zhongyuan, Luohe 462300, China; (H.D.); (W.W.); (Q.C.); (X.C.); (S.C.); (L.C.)
| | - Xiaohan Chang
- Food Laboratory of Zhongyuan, Luohe 462300, China; (H.D.); (W.W.); (Q.C.); (X.C.); (S.C.); (L.C.)
| | - Longjiao Wang
- Henan Zhiyuan Henuo Technology Co., Ltd., Luohe 462300, China;
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.W.); (S.G.)
| | - Shuxing Chen
- Food Laboratory of Zhongyuan, Luohe 462300, China; (H.D.); (W.W.); (Q.C.); (X.C.); (S.C.); (L.C.)
| | - Lishui Chen
- Food Laboratory of Zhongyuan, Luohe 462300, China; (H.D.); (W.W.); (Q.C.); (X.C.); (S.C.); (L.C.)
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.W.); (S.G.)
| | - Shaoyang Ge
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.W.); (S.G.)
| | - Wei Xiong
- Food Laboratory of Zhongyuan, Luohe 462300, China; (H.D.); (W.W.); (Q.C.); (X.C.); (S.C.); (L.C.)
- Henan Zhiyuan Henuo Technology Co., Ltd., Luohe 462300, China;
| |
Collapse
|
5
|
Bedair NI, Abdelaziz AS, Abdelrazik FS, El-Kassas M, AbouHadeed MH. Post Covid telogen effluvium: the diagnostic value of serum ferritin biomarker and the preventive value of dietary supplements. a case control study. Arch Dermatol Res 2024; 316:336. [PMID: 38844670 PMCID: PMC11156737 DOI: 10.1007/s00403-024-03004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024]
Abstract
Telogen effluvium is characterized by excessive hair shedding usually following a stressful event. Ferritin has been used in clinical practice as a biomarker of nonanemic iron deficiency in cases of telogen effluvium. During the years of the COVID19 pandemic, telogen effluvium was reported as a part of post covid manifestations. As ferritin was also a biomarker for inflammation in cases with covid infection, this study was designed to evaluate the value of ferritin in cases with postcovid telogen effluvium one hundred patients recovering from covid 19 for 4-12 weeks were included in the study, detailed drug and laboratory history was obtained and serum ferritin level was measured. the mean serum level of ferritin among telogen effluvium patients was significantly lower than controls (68.52 ± 126 and 137 ± 137.597 ug/L respectively). Patients with telogen effluvium used significantly more azithromycin and ivermectin and significantly less vitamin C, D, lactoferrin and zinc than the controls Although serum ferritin is lower among telogen effluvium patients, it was still higher than the cutoff value for diagnosing nonanemic iron deficiency, we suggest that it will not be a good biomarkers in these cases. Our secondary outcomes showed that dietary supplements used during active infection such as vitamin C, D, lactoferrin and zinc might have a preventive value on postcovid hair loss, while azithromycin and ivermectin could have a negative long term effect on telogen effluvium.
Collapse
Affiliation(s)
- Nermeen Ibrahim Bedair
- Department of Dermatology, Andrology, Sexual Medicine and STDs, Faculty of Medicine, Helwan University, Cairo, Egypt.
| | - Alaa Safwat Abdelaziz
- Department of Dermatology, Banha Educational Hospital, Ministry of Health, Banha, Egypt
| | | | - Mohamed El-Kassas
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Mohamed Hussein AbouHadeed
- Research Department of Dermatology and Venereology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
6
|
Zhao B, Suo L, Wu Y, Chen T, Tulafu H, Lu Q, Liu W, Sammad A, Wu C, Fu X. Stress adaptation in Tibetan cashmere goats is governed by inherent metabolic differences and manifested through variable cashmere phenotypes. Genomics 2024; 116:110801. [PMID: 38286347 DOI: 10.1016/j.ygeno.2024.110801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/17/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
Tibetan cashmere goats are not only served as a valuable model for studying adaptation to hypoxia and high-altitude conditions but also playing a pivotal role in bolstering local economies through the provision of premium quality cashmere yarn. In this study, we performed an integration and network analysis of metabolomic, transcriptomic and proteomic to elucidate the role of differentially expressed genes, important metabolites, and relevant cellular and metabolic pathways between the fine (average 12.04 ± 0.03 μm of mean fiber diameter) and coarse cashmere (average 14.88 ± 0.05 μm of mean fber diameter) producing by Tibetan cashmere goats. We identified a distinction of 56 and 71 differential metabolites (DMs) between the F and C cashmere groups under positive and negative ion modes, respectively. The KEGG pathway enrichment analysis of these DMs highlighted numerous pathways predominantly involved in amino acid and protein metabolism, as indicated by the finding that the most impactful pathway was the mammalian target of rapamycin (mTOR) signalling pathway. In the F group, we identified a distinctive metabolic profile where amino acid metabolites including serine, histidine, asparagine, glutamic acid, arginine, valine, aspartic acid, tyrosine, and methionine were upregulated, while lysine, isoleucine, glutamine, tryptophan, and threonine were downregulated. The regulatory network and gene co-expression network revealed crucial genes, metabolites, and metabolic pathways. The integrative omics analysis revealed a high enrichment of several pathways, notably encompassing protein digestion and absorption, sphingolipid signalling, and the synaptic vesicle cycle. Within the sphere of our integrative analysis, DNMT3B was identified as a paramount gene, intricately associated with significant proteins such as HMCN1, CPB2, GNG12, and LRP1. Our present study delineated the molecular underpinnings governing the variations in cashmere characteristics by conducting comprehensive analyses across metabolomic, transcriptomic, and proteomic dimensions. This research provided newly insights into the mechanisms regulating cashmere traits and facilitated the advancement of selective breeding programs aimed at cultivating high-quality superfine Tibetan cashmere goats.
Collapse
Affiliation(s)
- Bingru Zhao
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi Xinjiang 830011, China
| | - Langda Suo
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850009, China
| | - Yujiang Wu
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850009, China
| | - Tong Chen
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi Xinjiang 830011, China
| | - Hanikezi Tulafu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi Xinjiang 830011, China
| | - Qingwei Lu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi Xinjiang 830011, China; College of Animal Science, Xinjiang Agricultural University, Urumqi Xinjiang 830052, China
| | - Wenna Liu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi Xinjiang 830011, China; College of Animal Science, Xinjiang Agricultural University, Urumqi Xinjiang 830052, China
| | - Abdul Sammad
- College of Animal Sciences and Technology, China Agricultural University, Beijing 100193, China
| | - Cuiling Wu
- Key Laboratory of Special Environment Biodiversity Application and Regulation in Xinjiang/ International Center for the Collaborative Management of Cross-border Pest in Central Asia College of Life Sciences, School of Life Sciences, Xinjiang Normal University, Urumqi Xinjiang 830017, China.
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of Xinjiang Wool-sheep & Cashmere-goat (XJYS1105), Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi Xinjiang 830011, China.
| |
Collapse
|
7
|
Wu S, Kou X, Niu Y, Liu Y, Zheng B, Ma J, Liu M, Xue Z. Progress on the mechanism of natural products alleviating androgenetic alopecia. Eur J Med Chem 2024; 264:116022. [PMID: 38086191 DOI: 10.1016/j.ejmech.2023.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
Androgenetic alopecia (AGA) has become a widespread problem that leads to considerable impairment of the psyche and daily life. The currently approved medications for the treatment of AGA are associated with significant adverse effects, high costs, and prolonged treatment duration. Therefore, natural products are being considered as possible complementary or alternative treatments. This review aims to enhance comprehension of the mechanisms by which natural products treat AGA. To achieve this, pertinent studies were gathered and subjected to analysis. In addition, the therapeutic mechanisms associated with these natural products were organized and summarized. These include the direct modulation of signaling pathways such as the Wnt/β-catenin pathway, the PI3K/AKT pathway, and the BMP pathway. Additionally, they exert effects on cytokine secretion, anti-inflammatory, and antioxidant capabilities, as well as apoptosis and autophagy. Furthermore, the review briefly discusses the relationship between signaling pathways and autophagy and apoptosis in the context of AGA, systematically presents the mechanisms of action of existing natural products, and analyzes the potential therapeutic targets based on the active components of these products. The aim is to provide a theoretical basis for the development of pharmaceuticals, nutraceuticals, or dietary supplements.
Collapse
Affiliation(s)
- Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Yazhou Liu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Bowen Zheng
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Juan Ma
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, 135 Yaguan Road, Jinnan District, Tianjin, 300072, China.
| |
Collapse
|
8
|
Qiao L, Gu Y, Guo S, Li S, Wang J, Hao Z, Luo Y, Liu X, Li S, Zhao F, Li M. The Identification and Characteristics of miRNAs Related to Cashmere Fiber Traits in Skin Tissue of Cashmere Goats. Genes (Basel) 2023; 14:473. [PMID: 36833400 PMCID: PMC9957446 DOI: 10.3390/genes14020473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
microRNAs (miRNAs) are involved in the regulation of biological phenomena by down-regulating the expression of mRNAs. In this study, Liaoning cashmere (LC) goats (n = 6) and Ziwuling black (ZB) goats (n = 6) with different cashmere fiber production performances were selected. We supposed that miRNAs are responsible for the cashmere fiber trait differences. To test the hypothesis, the expression profiles of miRNAs from the skin tissue of the two caprine breeds were compared using small RNA sequencing (RNA-seq). A total of 1293 miRNAs were expressed in the caprine skin samples, including 399 known caprine miRNAs, 691 known species-conserved miRNAs, and 203 novel miRNAs. Compared with ZB goats, 112 up-regulated miRNAs, and 32 down-regulated miRNAs were found in LC goats. The target genes of the differentially expressed miRNAs were remarkably concentrated on some terms and pathways associated with cashmere fiber performance, including binding, cell, cellular protein modification process, and Wnt, Notch, and MAPK signaling pathways. The miRNA-mRNA interaction network found that 14 miRNAs selected may contribute to cashmere fiber traits regulation by targeting functional genes associated with hair follicle activities. The results have reinforced others leading to a solid foundation for further investigation of the influences of individual miRNAs on cashmere fiber traits in cashmere goats.
Collapse
Affiliation(s)
| | | | | | | | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Engineered Nanovesicles from Fibroblasts Modulate Dermal Papillae Cells In Vitro and Promote Human Hair Follicle Growth Ex Vivo. Cells 2022; 11:cells11244066. [PMID: 36552830 PMCID: PMC9777471 DOI: 10.3390/cells11244066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/27/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Alopecia is a common medical condition affecting both sexes. Dermal papilla (DP) cells are the primary source of hair regeneration in alopecia patients. Therapeutic applications of extracellular vesicles (EVs) are restricted by low yields, high costs, and their time-consuming collection process. Thus, engineered nanovesicles (eNVs) have emerged as suitable therapeutic biomaterials in translational medicine. We isolated eNVs by the serial extrusion of fibroblasts (FBs) using polycarbonate membrane filters and serial and ultracentrifugation. We studied the internalization, proliferation, and migration of human DP cells in the presence and absence of FB-eNVs. The therapeutic potential of FB-eNVs was studied on ex vivo organ cultures of human hair follicles (HFs) from three human participants. FB-eNVs (2.5, 5, 7.5, and 10 µg/mL) significantly enhanced DP cell proliferation, with the maximum effect observed at 7.5 µg/mL. FB-eNVs (5 and 10 µg/mL) significantly enhanced the migration of DP cells at 36 h. Western blotting results suggested that FB-eNVs contain vascular endothelial growth factor (VEGF)-a. FB-eNV treatment increased the levels of PCNA, pAKT, pERK, and VEGF-receptor-2 (VEGFR2) in DP cells. Moreover, FB-eNVs increased the human HF shaft size in a short duration ex vivo. Altogether, FB-eNVs are promising therapeutic candidates for alopecia.
Collapse
|
10
|
Liu YW, Zhang J, Bi W, Zhou M, Li J, Xiong T, Yang N, Zhao L, Chen X, Zhou Y, He W, Yang T, Wang H, Xu L, Dai SS. Histones of Neutrophil Extracellular Traps Induce CD11b Expression in Brain Pericytes Via Dectin-1 after Traumatic Brain Injury. Neurosci Bull 2022; 38:1199-1214. [PMID: 35819574 PMCID: PMC9554061 DOI: 10.1007/s12264-022-00902-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/03/2022] [Indexed: 10/17/2022] Open
Abstract
The brain pericyte is a unique and indispensable part of the blood-brain barrier (BBB), and contributes to several pathological processes in traumatic brain injury (TBI). However, the cellular and molecular mechanisms by which pericytes are regulated in the damaged brain are largely unknown. Here, we show that the formation of neutrophil extracellular traps (NETs) induces the appearance of CD11b+ pericytes after TBI. These CD11b+ pericyte subsets are characterized by increased permeability and pro-inflammatory profiles compared to CD11b- pericytes. Moreover, histones from NETs by Dectin-1 facilitate CD11b induction in brain pericytes in PKC-c-Jun dependent manner, resulting in neuroinflammation and BBB dysfunction after TBI. These data indicate that neutrophil-NET-pericyte and histone-Dectin-1-CD11b are possible mechanisms for the activation and dysfunction of pericytes. Targeting NETs formation and Dectin-1 are promising means of treating TBI.
Collapse
Affiliation(s)
- Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Jingyu Zhang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wanda Bi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China
- Brigade 1 of Medical Undergraduates, School of Basic Medicine, Army Medical University, Battalion 1, Chongqing, 400038, China
| | - Mi Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Jiabo Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Tiantian Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Nan Yang
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Li Zhao
- Department of Pathophysiology, College of High Altitude Medicine, Army Medical University, Chongqing, 400038, China
| | - Xing Chen
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuanguo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wenhui He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Teng Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China
| | - Hao Wang
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
11
|
Ramkar S, Suresh PK. Finasteride-loaded nano-lipidic carriers for follicular drug delivery: preformulation screening and Box-Behnken experimental design for optimization of variables. Heliyon 2022; 8:e10175. [PMID: 36042733 PMCID: PMC9420366 DOI: 10.1016/j.heliyon.2022.e10175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/18/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
Finasteride (FIN), a 5-α reductase enzyme inhibitor is mainly used orally for the treatment of androgenic alopecia and benign prostate hyperplasia. The present study was undertaken for systematic optimization and assessment of the designed nanostructured lipid carriers (NLC) to enhance follicular delivery of FIN by topical administration. The NLCs were prepared by microemulsion method, by employing a 33 Box-Behnken design and subsequently confirmed by ANOVA analysis. Compritol ATO-888 and Fenugreek oil were selected as the solid lipid and liquid lipid respectively for the fabrication of NLCs. The formulations were characterized for particle size, zeta potential, entrapment efficiency, storage stability and in vitro drug release profile. Morphological profile of the NLCs nanocarriers was studied by transmission electron microscopy (TEM). The Fourier Transform Infrared Spectroscopy (FT-IR) spectrum and differential scanning calorimetry (DSC) thermogram demonstrated that FIN entrapment within NLCs was devoid of chemical interaction with the components. The prepared NLCs had satisfactory particle dimensions, zeta potential and entrapment efficiency. The numerical optimization process indicated the optimal NLC composition with 3 mg of SPC, 6 mg lipid and 5 mg of drug. NLCs loaded with FIN had acceptable particle size at 379.8 nm, zeta potential of −37.1 mV and an entrapment efficiency of 84%. Transmission electron microscopy indicated the spherical morphology. In vitro release profile indicated a fast initial release and subsequently a prolonged release of FIN from the carrier for 24 h. The release kinetics data displayed a Higuchi diffusion release model with the best match R2 value (0.848). Short-term stability tests conducted over 4 weeks at 6° and 25 °C demonstrated that the formulation could retain their initial properties during the test period.
Collapse
|
12
|
Wang X, Liu F, An Q, Wang W, Cheng Z, Dai Y, Meng Q, Zhang Y. Lactoferrin Deficiency Impairs Proliferation of Satellite Cells via Downregulating the ERK1/2 Signaling Pathway. Int J Mol Sci 2022; 23:ijms23137478. [PMID: 35806481 PMCID: PMC9267821 DOI: 10.3390/ijms23137478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Lactoferrin (Ltf), a naturally active glycoprotein, possesses anti-inflammatory, anti-microbial, anti-tumor, and immunomodulatory activities. Many published studies have indicated that Ltf modulates the proliferation of stem cells. However, the role of Ltf in the proliferation of satellite cells, an important cell type in muscle regeneration, has not yet been reported. Here, by using Ltf systemic knockout mice, we illustrate the role of Ltf in skeletal muscle. Results shows that Ltf deficiency impaired proliferation of satellite cells (SCs) and the regenerative capability of skeletal muscle. Mechanistic studies showed that ERK1/2 phosphorylation was significantly downregulated after Ltf deletion in SCs. Simultaneously, the cell cycle-related proteins cyclin D and CDK4 were significantly downregulated. Intervention with exogenous recombinant lactoferrin (R-Ltf) at a concentration of 1000 μg/mL promoted proliferation of SCs. In addition, intraperitoneal injection of Ltf effectively ameliorated the skeletal muscle of mice injured by 1.2% BaCl2 solution. Our results suggest a protective effect of Ltf in the repair of skeletal muscle damage. Ltf holds promise as a novel therapeutic agent for skeletal muscle injuries.
Collapse
Affiliation(s)
- Xiong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Fan Liu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (F.L.); (Y.D.); (Q.M.)
| | - Qin An
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Zhimei Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
| | - Yunping Dai
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (F.L.); (Y.D.); (Q.M.)
| | - Qingyong Meng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (F.L.); (Y.D.); (Q.M.)
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Tsing Hua Road No. 17, Haidian District, Beijing 100083, China; (X.W.); (Q.A.); (W.W.); (Z.C.)
- Correspondence: ; Tel.: +86-010-6273-7465
| |
Collapse
|
13
|
Elucidation of the Potential Hair Growth-Promoting Effect of Botryococcus terribilis, Its Novel Compound Methylated-Meijicoccene, and C32 Botryococcene on Cultured Hair Follicle Dermal Papilla Cells Using DNA Microarray Gene Expression Analysis. Biomedicines 2022; 10:biomedicines10051186. [PMID: 35625924 PMCID: PMC9138970 DOI: 10.3390/biomedicines10051186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
A person’s quality of life can be adversely affected by hair loss. Microalgae are widely recognized for their abundance and rich functional components. Here, we evaluated the hair growth effect of a green alga, Botryococcus terribilis (B. terribilis), in vitro using hair follicle dermal papilla cells (HFDPCs). We isolated two types of cells from B. terribilis—green and orange cells, obtained from two different culture conditions. Microarray and real time-PCR results revealed that both cell types stimulated the expression of several pathways and genes associated with different aspect of the hair follicle cycle. Additionally, we demonstrated B. terribilis’ effect on collagen and keratin synthesis and inflammation reduction. We successfully isolated a novel compound, methylated-meijicoccene (me-meijicoccene), and C32 botryococcene from B. terribilis to validate their promising effects. Our study revealed that treatment with the two compounds had no cytotoxic effect on HFDPCs and significantly enhanced the gene expression levels of hair growth markers at low concentrations. Our study provides the first evidence of the underlying hair growth promoting effect of B. terribilis and its novel compound, me-meijicoccene, and C32 botryococcene.
Collapse
|
14
|
Shen H, Li C, He M, Huang Y, Wang J, Luo J, Wang M, Yue B, Zhang X. Whole blood transcriptome profiling identifies candidate genes associated with alopecia in male giant pandas (Ailuropoda melanoleuca). BMC Genomics 2022; 23:297. [PMID: 35413801 PMCID: PMC9004003 DOI: 10.1186/s12864-022-08501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background The giant panda (Ailuropoda melanoleuca) is a threatened species endemic to China. Alopecia, characterized by thinning and broken hair, mostly occurs in breeding males. Alopecia significantly affects the health and public image of the giant panda and the cause of alopecia is unclear. Results Here, we researched gene expression profiles of four alopecia giant pandas and seven healthy giant pandas. All pandas were approximately ten years old and their blood samples collected during the breeding season. A total of 458 up-regulated DEGs and 211 down-regulated DEGs were identified. KEGG pathway enrichment identified that upregulated genes were enriched in the Notch signaling pathway and downregulated genes were enriched in ribosome, oxidative phosphorylation, and thermogenesis pathways. We obtained 28 hair growth-related DEGs, and identified three hub genes NOTCH1, SMAD3, and TGFB1 in PPI analysis. Five hair growth-related signaling pathways were identified with abnormal expression, these were Notch, Wnt, TGF-β, Mapk, and PI3K-Akt. The overexpression of NOTCH1 delays inner root sheath differentiation and results in hair shaft abnormalities. The delayed hair regression was associated with a significant decrease in the expression levels of TGFB1. Conclusions Our data confirmed the abnormal expression of several hair-related genes and pathways and identified alopecia candidate genes in the giant panda. Results of this study provide theoretical basis for the establishment of prevention and treatment strategies for giant pandas with alopecia. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08501-z.
Collapse
Affiliation(s)
- Haibo Shen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Ming He
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Jing Wang
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Jing Luo
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Minglei Wang
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China. .,No. 24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
15
|
The effects of centipedegrass extract on hair growth via promotion of anagen inductive activity. PLoS One 2022; 17:e0265532. [PMID: 35320304 PMCID: PMC8942214 DOI: 10.1371/journal.pone.0265532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/03/2022] [Indexed: 12/02/2022] Open
Abstract
To investigate the CGE on hair growth and to explore the mechanism that is involved in the acceleration of anagen induction, we investigated the effects of CGE studied on cell proliferation and molecular mechanism in human hair dermal papilla cells (hDPCs) and keratinocytes (HaCaT cells). Additionally, hair growth evaluation was carried out following topical treatment of the dorsal skin of telogen C57BL/6 mice with CGE for 14 days. As result, CGE increased cell viability and ALP activity in hDPCs. Moreover, CGE increased the expression of catenin beta 1 (CTNNB1), ALP, sex-determining region Y-box 2 (SOX2), insulin-like growth factor 1 (IGF1), and vascular endothelial growth factor A (VEGFA) genes in hDPCs. CGE increased the expression of proteins such as ALP, β-catenin, and phosphorylation of glycogen synthase kinase 3β (pGSK3β), and protein kinase B (pAKT) in hDPCs. Furthermore, CGE induced the proliferation of HaCaT cells and up-regulated AKT-ERK-GSKβ-β-catenin signaling in HaCaT cells. Additionally, the anagen induction effects of CGE were confirmed on the telogen-anagen transition mice model. these findings demonstrated that CGE promoted the entering the growth phase of hair follicle via activation of β-catenin signaling pathways in vivo. Thus, this study suggests that CGE might be a potential therapeutic reagent for hair growth.
Collapse
|
16
|
Kim H, Jang Y, Kim EH, Jang H, Cho H, Han G, Song HK, Kim SH, Yang Y. Potential of Colostrum-Derived Exosomes for Promoting Hair Regeneration Through the Transition From Telogen to Anagen Phase. Front Cell Dev Biol 2022; 10:815205. [PMID: 35359449 PMCID: PMC8960251 DOI: 10.3389/fcell.2022.815205] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Human hair dermal papillary (DP) cells comprising mesenchymal stem cells in hair follicles contribute critically to hair growth and cycle regulation. The transition of hair follicles from telogen to anagen phase is the key to regulating hair growth, which relies heavily on the activation of DP cells. In this paper, we suggested exosomes derived from bovine colostrum (milk exosomes, Milk-exo) as a new effective non-surgical therapy for hair loss. Results showed that Milk-exo promoted the proliferation of hair DP cells and rescued dihydrotestosterone (DHT, androgen hormones)-induced arrest of follicle development. Milk-exo also induced dorsal hair re-growth in mice at the level comparable to minoxidil treatment, without associated adverse effects such as skin rashes. Our data demonstrated that Milk-exo accelerated the hair cycle transition from telogen to anagen phase by activating the Wnt/β-catenin pathway. Interestingly, Milk-exo has been found to stably retain its original properties and efficacy for hair regeneration after freeze-drying and resuspension, which is considered critical to use it as a raw material applied in different types of alopecia medicines and treatments. Overall, this study highlights a great potential of an exosome from colostrum as a therapeutic modality for hair loss.
Collapse
Affiliation(s)
- Hyosuk Kim
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
| | - Yeongji Jang
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
- Department of Life Science, Korea University, Seoul, South Korea
| | - Eun Hye Kim
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
- Department of Life Science, Korea University, Seoul, South Korea
| | - Hochung Jang
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio‐Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Haeun Cho
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
- Department of Biotechnology, Korea University, Seoul, South Korea
| | - Geonhee Han
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Hyun Kyu Song
- Department of Life Science, Korea University, Seoul, South Korea
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
- *Correspondence: Sun Hwa Kim, ; Yoosoo Yang,
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, South Korea
- Division of Bio‐Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
- *Correspondence: Sun Hwa Kim, ; Yoosoo Yang,
| |
Collapse
|
17
|
Zhao B, Wu C, Sammad A, Ma Z, Suo L, Wu Y, Fu X. The fiber diameter traits of Tibetan cashmere goats are governed by the inherent differences in stress, hypoxic, and metabolic adaptations: an integrative study of proteome and transcriptome. BMC Genomics 2022; 23:191. [PMID: 35255833 PMCID: PMC8903710 DOI: 10.1186/s12864-022-08422-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Background Tibetan cashmere goats are served as a valuable model for high altitude adaptation and hypoxia complications related studies, while the cashmere produced by these goats is an important source of income for the herders. The aim of this study was to investigate the differences in protein abundance underlying the fine (average 12.20 ± 0.03 μm of mean fiber diameter) and coarse cashmere (average 14.67 ± 0.05 μm of mean fiber diameter) producing by Tibetan cashmere goats. We systematically investigated the genetic determinants of fiber diameter by integrated analysis with proteomic and transcriptomic datasets from skin tissues of Tibetan cashmere goats. Results We identified 1980 proteins using a label-free proteomics approach. They were annotated to three different databases, while 1730 proteins were mapped to the original protein coding genes (PCGs) of the transcriptomic study. Comparative analyses of cashmere with extremely fine vs. coarse phenotypes yielded 29 differentially expressed proteins (DEPs), for instance, APOH, GANAB, AEBP1, CP, CPB2, GPR142, VTN, IMPA1, CTSZ, GLB1, and HMCN1. Functional enrichment analysis of these DEPs revealed their involvement in oxidation-reduction process, cell redox homeostasis, metabolic, PI3K-Akt, MAPK, and Wnt signaling pathways. Transcription factors enrichment analysis revealed the proteins mainly belong to NF-YB family, HMG family, CSD family. We further validated the protein abundance of four DEPs (GC, VTN, AEBP1, and GPR142) through western blot, and considered they were the most potential candidate genes for cashmere traits in Tibetan cashmere goats. Conclusions These analyses indicated that the major biological variations underlying the difference of cashmere fiber diameter in Tibetan cashmere goats were attributed to the inherent adaptations related to metabolic, hypoxic, and stress response differences. This study provided novel insights into the breeding strategies for cashmere traits and enhance the understanding of the biological and genetic mechanisms of cashmere traits in Tibetan cashmere goats. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08422-x.
Collapse
Affiliation(s)
- Bingru Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Abdul Sammad
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Ma
- Key Laboratory of Genetics Breeding and Reproduction of the Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Langda Suo
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yujiang Wu
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China.
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of the Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China.
| |
Collapse
|
18
|
Li B, Zhang B, Liu X, Zheng Y, Han K, Liu H, Wu C, Li J, Fan S, Peng W, Zhang F, Liu X. The effect of lactoferrin in aging: role and potential. Food Funct 2021; 13:501-513. [PMID: 34928288 DOI: 10.1039/d1fo02750f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging is frequently accompanied by various types of physiological deterioration, which increases the risk of human pathologies. Global public health efforts to increase human lifespan have increasingly focused on lowering the risk of aging-related diseases, such as diabetes, neurodegenerative diseases, cardiovascular disease, and cancers. Dietary intervention is a promising approach to maintaining human health during aging. Lactoferrin (LF) is known for its physiologically pleiotropic properties. Anti-aging interventions of LF have proven to be safe and effective for various pharmacological activities, such as anti-oxidation, anti-cellular senescence, anti-inflammation, and anti-carcinogenic. Moreover, LF has a pivotal role in modulating the major signaling pathways that influence the longevity of organisms. Thus, LF is expected to be able to attenuate the process of aging and greatly ameliorate its effects.
Collapse
Affiliation(s)
- Bing Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Bo Zhang
- Henan Key Laboratory of Rare Earth Functional Materials, The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, Henan, PR China
| | - Xudong Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Yidan Zheng
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Kuntong Han
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Henan Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Changjing Wu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Jin Li
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Shuhua Fan
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Weifeng Peng
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Fuli Zhang
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| | - Xiaomeng Liu
- Institute of Neuroscience and Translational Medicine, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, Henan, PR China.
| |
Collapse
|
19
|
Im J, Hyun J, Kim SW, Bhang SH. Enhancing the Angiogenic and Proliferative Capacity of Dermal Fibroblasts with Mulberry (Morus alba. L) Root Extract. Tissue Eng Regen Med 2021; 19:49-57. [PMID: 34674183 DOI: 10.1007/s13770-021-00404-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Enhancing blood flow and cell proliferation in the hair dermis is critical for treating hair loss. This study was designed to aid the development of alternative and effective solutions to overcome alopecia. Specifically, we examined the effects of Morus alba. L root extract (MARE, which has been used in traditional medicine as a stimulant for hair proliferation) on dermal fibroblasts and other cell types found in the epidermis. METHODS We first optimized the concentration of MARE that could be used to treat human dermal fibroblasts (HDFs) without causing cytotoxicity. After optimization, we focused on the effect of MARE on HDFs since these cells secrete paracrine factors related to cell proliferation and angiogenesis that affect hair growth. Conditioned medium (CM) derived from MARE-treated HDFs (MARE HDF-CM) was used to treat human umbilical vein endothelial cells (HUVECs) and hair follicle dermal papilla cells (HFDPCs). RESULTS Concentrations of MARE up to 20 wt% increased the expression of proliferative and anti-apoptotic genes in HDFs. MARE HDF-CM significantly improved the tubular structure formation and migration capacity of HUVECs. Additionally, MARE HDF-CM treatment upregulated the expression of hair growth-related genes in HFDPCs. CM collected from MARE-treated HDFs promoted the proliferation of HFDPCs and the secretion of angiogenic paracrine factors from these cells. CONCLUSION Since it can stimulate the secretion of pro-proliferative and pro-angiogenic paracrine factors from HDFs, MARE has therapeutic potential as a hair loss preventative.
Collapse
Affiliation(s)
- Jisoo Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Sung-Won Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
20
|
Nam W, Kim H, Bae C, Kim J, Nam B, Kim J, Park S, Lee J, Sim J. Lactobacillus paracasei HY7015 Promotes Hair Growth in a Telogenic Mouse Model. J Med Food 2021; 24:741-748. [PMID: 34280032 DOI: 10.1089/jmf.2020.4860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this study, we describe the effects of Lactobacillus paracasei HY7015 (HY7015) on promoting mouse hair growth. Since our purpose was to increase hair growth through oral administration, medicinal yeast, at a suitable concentration for application in mice, was used as a positive control. First, experiments were conducted to determine the effect of HY7015 on proliferation of hair follicle dermal papilla cells (HFDPC), which are important contributors to hair growth. HY7015 stimulated HFDPC proliferation in vitro and increased their secretion of vascular endothelial growth factor and insulin-like growth factor-1. In mouse experiments, oral administration of HY7015 promoted hair growth and hair follicle maturation in the dorsal skin, as well as increasing growth factor levels in mouse serum. In summary, we demonstrate that L. paracasei HY7015 consumption can promote hair growth by stimulating HFDPC proliferation and growth factor secretion. Follow-up studies are warranted to determine the underlying mechanism, using various approaches, including investigation of changes in intestinal microbiota and alteration of gene and protein expression.
Collapse
Affiliation(s)
- Woo Nam
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Hyeonji Kim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Chuhyun Bae
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Jisoo Kim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Bora Nam
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Jooyun Kim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Soodong Park
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | | | - Jaehun Sim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| |
Collapse
|
21
|
Wei YS, Feng K, Li SF, Hu TG, Linhardt RJ, Zong MH, Wu H. Oral fate and stabilization technologies of lactoferrin: a systematic review. Crit Rev Food Sci Nutr 2021; 62:6341-6358. [PMID: 33749401 DOI: 10.1080/10408398.2021.1900774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactoferrin (Lf), a bioactive protein initially found in many biological secretions including milk, is regarded as the nutritional supplement or therapeutic ligand due to its multiple functions. Research on its mode of action reveals that intact Lf or its active peptide (i.e., lactoferricin) shows an important multifunctional performance. Oral delivery is considered as the most convenient administration route for this bioactive protein. Unfortunately, Lf is sensitive to the gastrointestinal (GI) physicochemical stresses and lactoferricin is undetectable in GI digesta. This review introduces the functionality of Lf at the molecular level and its degradation behavior in GI tract is discussed in detail. Subsequently, the absorption and transport of Lf from intestine into the blood circulation, which is pivotal to its health promoting effects in various tissues, and some assisting labeling methods are discussed. Stabilization technologies aiming at preserving the structural integrity and functional properties of orally administrated Lf are summarized and compared. Altogether, this work comprehensively reviews the structure-function relationship of Lf, its oral fate and the development of stabilization technologies for the enhancement of the oral bioavailability of Lf. The existing limitations and scope for future research are also discussed.
Collapse
Affiliation(s)
- Yun-Shan Wei
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Kun Feng
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Shu-Fang Li
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
22
|
Lactoferrin as a regenerative agent: The old-new panacea? Pharmacol Res 2021; 167:105564. [PMID: 33744427 DOI: 10.1016/j.phrs.2021.105564] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 01/17/2023]
Abstract
Lactoferrin (Lf) possesses various biological properties and therapeutic potentials being a perspective anti-inflammatory, antibacterial, antiviral, antioxidant, antitumor, and immunomodulatory agent. A significant body of literature has also demonstrated that Lf modulates regenerative processes in different anatomical structures, such as bone, cartilage, skin, mucosa, cornea, tendon, vasculature, and adipose tissue. Hence, this review collected and analyzed the data on the regenerative effects of Lf, as well as paid specific attention to their molecular basis. Furthermore, tissue and condition-specific activities of different Lf types as well as problems of their delivery to the targeted organs were discussed. The authors strongly hope that this review will stimulate researchers to focus on the highlighted topics thus accelerating the progress of Lf's wider clinical application.
Collapse
|
23
|
Choi YK, Kang JI, Hyun JW, Koh YS, Kang JH, Hyun CG, Yoon KS, Lee KS, Lee CM, Kim TY, Yoo ES, Kang HK. Myristoleic Acid Promotes Anagen Signaling by Autophagy through Activating Wnt/β-Catenin and ERK Pathways in Dermal Papilla Cells. Biomol Ther (Seoul) 2021; 29:211-219. [PMID: 33518533 PMCID: PMC7921852 DOI: 10.4062/biomolther.2020.169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Alopecia is a distressing condition caused by the dysregulation of anagen, catagen, and telogen in the hair cycle. Dermal papilla cells (DPCs) regulate the hair cycle and play important roles in hair growth and regeneration. Myristoleic acid (MA) increases Wnt reporter activity in DPCs. However, the action mechanisms of MA on the stimulation of anagen signaling in DPCs is not known. In this study, we evaluated the effects of MA on anagen-activating signaling pathways in DPCs. MA significantly increased DPC proliferation and stimulated the G2/M phase, accompanied by increasing cyclin A, Cdc2, and cyclin B1. To elucidate the mechanism by which MA promotes DPC proliferation, we evaluated the effect of MA on autophagy and intracellular pathways. MA induced autophagosome formation by decreasing the levels of the phospho-mammalian target of rapamycin (phospho-mTOR) and increasing autophagy-related 7 (Atg7) and microtubule-associated protein 1A/1B-light chain 3II (LC3II). MA also increased the phosphorylation levels of Wnt/β-catenin proteins, such as GSK3β (Ser9) and β-catenin (Ser552 and Ser675). Treatment with XAV939, an inhibitor of the Wnt/β-catenin pathway, attenuated the MA-induced increase in β-catenin nuclear translocation. Moreover, XAV939 reduced MA-induced effects on cell cycle progression, autophagy, and DPC proliferation. On the other hand, MA increased the levels of phospho (Thr202/Tyr204)-extracellular signal regulated kinases (ERK). MA-induced ERK phosphorylation led to changes in the expression levels of Cdc2, Atg7 and LC3II, as well as DPC proliferation. Our results suggest that MA promotes anagen signaling via autophagy and cell cycle progression by activating the Wnt/β-catenin and ERK pathways in DPCs.
Collapse
Affiliation(s)
- Youn Kyung Choi
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jung-Il Kang
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Young Sang Koh
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Ji-Hoon Kang
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Chang-Gu Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Department of Chemistry & Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyung-Sup Yoon
- Department of Chemistry & Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Kwang Sik Lee
- DSongpa R&D Center, Coreana Cosmetic Co., Ltd, Cheonan 31041, Republic of Korea
| | - Chun Mong Lee
- DSongpa R&D Center, Coreana Cosmetic Co., Ltd, Cheonan 31041, Republic of Korea
| | - Tae Yang Kim
- DSongpa R&D Center, Coreana Cosmetic Co., Ltd, Cheonan 31041, Republic of Korea
| | - Eun-Sook Yoo
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Hee-Kyoung Kang
- Department of Medicine, School of Medicine, Jeju National University, Jeju 63243, Republic of Korea.,Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
24
|
Oda H, Kolawole AO, Mirabelli C, Wakabayashi H, Tanaka M, Yamauchi K, Abe F, Wobus CE. Antiviral effects of bovine lactoferrin on human norovirus. Biochem Cell Biol 2020; 99:166-172. [PMID: 32348689 DOI: 10.1139/bcb-2020-0035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human noroviruses cause significant morbidity and mortality worldwide, but lack approved antivirals or vaccines to treat or prevent infections. The recent development of two cell culture systems in human transformed B cells (BJABs) and non-transformed human intestinal enteroid cultures overcomes a main limitation in identifying molecules with anti-norovirus activities. Lactoferrin is an iron-binding glycoprotein found in the milk of most mammals, with broad spectrum antimicrobial activities, including against the related murine norovirus in cell culture. In a Japanese clinical trial, ingestion of lactoferrin reduced the incidence of infectious gastroenteritis in the participants. Because human noroviruses were the most common cause of gastroenteritis in Japan during the clinical trial period, we sought to determine whether lactoferrin could inhibit infection with human norovirus. Our study, using a B cell culture model, demonstrates that lactoferrin reduces human norovirus infection. The mechanism of antiviral action is likely indirect and may involve the induction of innate interferon responses. Therefore, future studies are warranted to test the antiviral efficacy of lactoferrin against human norovirus infection in patients.
Collapse
Affiliation(s)
- Hirotsugu Oda
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, 2528583, Japan
| | - Abimbola O Kolawole
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48130, USA
| | - Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48130, USA
| | - Hiroyuki Wakabayashi
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, 2528583, Japan
| | - Miyuki Tanaka
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, 2528583, Japan
| | - Koji Yamauchi
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, 2528583, Japan
| | - Fumiaki Abe
- Food Ingredients and Technology Institute, R&D Division, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, 2528583, Japan
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48130, USA
| |
Collapse
|