1
|
Shen C, Fan X, Mao Y, Jiang J. Amphiregulin in lung diseases: A review. Medicine (Baltimore) 2024; 103:e37292. [PMID: 38394508 PMCID: PMC10883632 DOI: 10.1097/md.0000000000037292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Amphiregulin is a member of the EGFR family, which is involved in many physiological and pathological processes through its binding with EGFR. Studies have found that amphiregulin plays an important role in the occurrence and development of lung diseases. This paper mainly reviews the structure and function of amphiregulin and focuses on the important role of amphiregulin in lung diseases.
Collapse
Affiliation(s)
- Chao Shen
- Department of Pediatrics, Linping Branch, the Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Xiaoping Fan
- Department of Pediatrics, Linping Branch, the Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yueyan Mao
- Department of Pediatrics, Linping Branch, the Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Junsheng Jiang
- Department of Pediatrics, Linping Branch, the Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Hsu CY, Faisal Mutee A, Porras S, Pineda I, Ahmed Mustafa M, J Saadh M, Adil M, H A Z. Amphiregulin in infectious diseases: Role, mechanism, and potential therapeutic targets. Microb Pathog 2024; 186:106463. [PMID: 38036111 DOI: 10.1016/j.micpath.2023.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Amphiregulin (AREG) serves as a ligand for the epidermal growth factor receptor (EGFR) and is involved in vital biological functions, including inflammatory responses, tissue regeneration, and immune system function. Upon interaction with the EGFR, AREG initiates a series of signaling cascades necessary for several physiological activities, such as metabolism, cell cycle regulation, and cellular proliferation. Recent findings have provided evidence for the substantial role of AREG in maintaining the equilibrium of homeostasis in damaged tissues and preserving epithelial cell structure in the context of viral infections affecting the lungs. The development of resistance to influenza virus infection depends on the presence of type 1 cytokine responses. Following the eradication of the pathogen, the lungs are subsequently colonized by several cell types that are linked with type 2 immune responses. These cells contribute to the process of repairing and resolving the tissue injury and inflammation caused by infections. Following influenza infection, the activation of AREG promotes the regeneration of bronchial epithelial cells, enhancing the tissue's structural integrity and increasing the survival rate of infected mice. In the same manner, mice afflicted with influenza experience rapid mortality due to a subsequent bacterial infection in the pulmonary region when both bacterial and viral infections manifest concurrently inside the same host. The involvement of AREG in bacterial infections has been demonstrated. The gene AREG experiences increased transcriptional activity inside host cells in response to bacterial infections caused by pathogens such as Escherichia coli and Neisseria gonorrhea. In addition, AREG has been extensively studied as a mitogenic stimulus in epithelial cell layers. Consequently, it is regarded as a prospective contender that might potentially contribute to the observed epithelial cell reactions in helminth infection. Consistent with this finding, mice that lack the AREG gene exhibit a delay in the eradication of the intestinal parasite Trichuris muris. The observed delay is associated with a reduction in the proliferation rate of colonic epithelial cells compared to the infected animals in the control group. The aforementioned findings indicate that AREG plays a pivotal role in facilitating the activation of defensive mechanisms inside the epithelial cells of the intestinal tissue. The precise cellular sources of AREG in this specific context have not yet been determined. However, it is evident that the increased proliferation of the epithelial cell layer in infected mice is reliant on CD4+ T cells. The significance of this finding lies in its demonstration of the crucial role played by the interaction between immunological and epithelial cells in regulating the AREG-EGFR pathway. Additional research is necessary to delve into the cellular origins and signaling mechanisms that govern the synthesis of AREG and its tissue-protective properties, independent of infection.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Sandra Porras
- Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Indira Pineda
- Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Iraq; Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Iraq.
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Zainab H A
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| |
Collapse
|
3
|
Bai L, Ding X, Sun C, Zhou J, Lu J. Effects of gallus epidermal growth factor(gEGF)from chicken embryos on growth performance, serum biochemical indices, immune function and intestinal morphology of broilers. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1976684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Luhong Bai
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, The People’s Republic of China
| | - Xiaoqing Ding
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, The People’s Republic of China
| | - Chuansong Sun
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, The People’s Republic of China
| | - Jianyong Zhou
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, The People’s Republic of China
| | - Jianjun Lu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, The People’s Republic of China
| |
Collapse
|
4
|
Wagner C, Torow N, Hornef MW, Lelouard H. Spatial and temporal key steps in early-life intestinal immune system development and education. FEBS J 2021; 289:4731-4757. [PMID: 34076962 DOI: 10.1111/febs.16047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/15/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Education of our intestinal immune system early in life strongly influences adult health. This education strongly relies on series of events that must occur in well-defined time windows. From initial colonization by maternal-derived microbiota during delivery to dietary changes from mother's milk to solid foods at weaning, these early-life events have indeed long-standing consequences on our immunity, facilitating tolerance to environmental exposures or, on the contrary, increasing the risk of developing noncommunicable diseases such as allergies, asthma, obesity, and inflammatory bowel diseases. In this review, we provide an outline of the recent advances in our understanding of these events and how they are mechanistically related to intestinal immunity development and education. First, we review the susceptibility of neonates to infections and inflammatory diseases, related to their immune system and microbiota changes. Then, we highlight the maternal factors involved in protection and education of the mucosal immune system of the offspring, the role of the microbiota, and the nature of neonatal immune system until weaning. We also present how the development of some immune responses is intertwined in temporal and spatial windows of opportunity. Finally, we discuss pending questions regarding the neonate particular immune status and the activation of the intestinal immune system at weaning.
Collapse
Affiliation(s)
- Camille Wagner
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Natalia Torow
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | | |
Collapse
|
5
|
Xue J, Xie L, Liu B, Zhou L, Hu Y, Ajuwon KM, Fang R. Dietary Supplementation of EGF Ameliorates the Negatively Effects of LPS on Early-Weaning Piglets: From Views of Growth Performance, Nutrient Digestibility, Microelement Absorption and Possible Mechanisms. Animals (Basel) 2021; 11:ani11061598. [PMID: 34071588 PMCID: PMC8227379 DOI: 10.3390/ani11061598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary This study aims to investigate how epidermal growth factor (EGF) attenuates the effect of lipopolysaccharide (LPS) on the growth performance, nutrient digestibility, microelement absorption of early-weaned pigs. A total of 48 early weaned piglets were randomly distributed to four groups consisting of a 2 × 2 factorial design. The main factors were the level of LPS (HLPS = high LPS: 100 μg/kg body weight; ZLPS = low LPS: 0 μg/kg body weight) and EGF (HEGF = high EGF: 2 mg/kg diet; ZEGF = low EGF: 0 mg/kg diet). Each group had four replicates and each replicate consisted of three piglets. The results showed that HLPS level decreased the growth performance and the apparent digestibility of crude fat, while HEGF level increased the average daily feed intake. The concentration of most microelements in the gastrointestinal tract chyme and feces were increased by HLPS level and decreased by HEGF level. The expression levels of most microelement transport-relative genes in the mucosa of gastrointestinal tissues were decreased by HLPS level and increased by HEGF level. In conclusion, dietary EGF could attenuate the negative effect of LPS exposure on the apparent digestibility of crude fat and microelement absorption through changing the expression levels of microelement transport-relative genes. EGF can be used as an additive to increase the essential trace elements absorption in the early weaning piglets. Abstract Epidermal growth factor (EGF) plays an important role in nutrients absorption. However, whether it can be an effective additive to improve the growth performance and nutrients absorption in lipopolysaccharide (LPS) challenged early weaning piglets is still unknown. A 14-days trial was conducted to investigate how EGF attenuates the effect of LPS on the growth performance, nutrient digestibility, microelement absorption of early-weaned pigs, and study the underlying mechanism. A total of 48 early weaned piglets, aged 25 days, were randomly distributed to four groups (control, EGF, LPS and EGF + LPS groups) consisting of a 2 × 2 factorial design. The main factors were the level of LPS (HLPS = high LPS: 100 μg/kg body weight; ZLPS = low LPS: 0 μg/kg body weight) and EGF (HEGF = high EGF: 2 mg/kg diet; ZEGF = low EGF: 0 mg/kg diet). Each group had four replicates and each replicate consisted of three piglets. The results showed that piglets injected with HLPS level significantly decreased the average daily gain (ADG), and significantly increased the feed conversion ratio (FCR) compared with the piglets injected with ZLPS level, while piglets fed HEGF level significantly increased the average daily feed intake (ADFI) compared with the piglets fed ZEGF level (p < 0.05). Piglets injected with HLPS level significantly decreased the apparent digestibility of crude fat compared with the piglets injected with ZLPS level (p < 0.05). Piglets injected with HLPS level significantly increased the concentration of most microelements in the gastrointestinal tract chyme and feces, and significantly decreased the expression levels of most microelement transport-relative genes in the mucosa of gastrointestinal tissues compared with the piglets injected with ZLPS level (p < 0.05). Piglets fed HEGF level significantly decreased the concentration of microelement in the gastrointestinal tract chyme and feces, and significantly increased the expression levels of the microelement transport-relative genes in the mucosa of gastrointestinal tissues compared with the piglets fed ZEGF level (p < 0.05). In conclusion, dietary EGF could attenuate the negative effect of LPS exposure on the apparent digestibility of crude fat and microelement absorption of early-weaning piglets. EGF and LPS influenced the absorption of essential trace element through changing the expression levels of microelement transport-relative genes in the mucosa of gastrointestinal tissues. In the early weaning piglets, EGF can be used as an additive to increase the essential trace elements absorption.
Collapse
Affiliation(s)
- Junjing Xue
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (J.X.); (L.X.); (B.L.); (L.Z.); (Y.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Liang Xie
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (J.X.); (L.X.); (B.L.); (L.Z.); (Y.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Bo Liu
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (J.X.); (L.X.); (B.L.); (L.Z.); (Y.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Liyuan Zhou
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (J.X.); (L.X.); (B.L.); (L.Z.); (Y.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Yajun Hu
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (J.X.); (L.X.); (B.L.); (L.Z.); (Y.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Kolapo Matthew Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907-2054, USA;
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha 410128, China; (J.X.); (L.X.); (B.L.); (L.Z.); (Y.H.)
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Correspondence: ; Tel.: +86-(0)731-8618177
| |
Collapse
|
6
|
Knoop KA, McDonald KG, Coughlin PE, Kulkarni DH, Gustafsson JK, Rusconi B, John V, Ndao IM, Beigelman A, Good M, Warner BB, Elson CO, Hsieh CS, Hogan SP, Tarr PI, Newberry RD. Synchronization of mothers and offspring promotes tolerance and limits allergy. JCI Insight 2020; 5:137943. [PMID: 32759496 DOI: 10.1172/jci.insight.137943] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022] Open
Abstract
Allergic disorders, characterized by Th2 immune responses to environmental substances, are increasingly common in children in Western societies. Multiple studies indicate that breastfeeding, early complementary introduction of food allergens, and antibiotic avoidance in the first year of life reduces allergic outcomes in at-risk children. Why the benefit of these practices is restricted to early life is largely unknown. We identified a preweaning interval during which dietary antigens are assimilated by the colonic immune system. This interval is under maternal control via temporal changes in breast milk, coincides with an influx of naive T cells into the colon, and is followed by the development of a long-lived population of colonic peripherally derived Tregs (pTregs) that can be specific for dietary antigens encountered during this interval. Desynchronization of mothers and offspring produced durable deficits in these pTregs, impaired tolerance to dietary antigens introduced during and after this preweaning interval, and resulted in spontaneous Th2 responses. These effects could be rescued by pTregs from the periweaning colon or by Tregs generated in vitro using periweaning colonic antigen-presenting cells. These findings demonstrate that mothers and their offspring are synchronized for the development of a balanced immune system.
Collapse
Affiliation(s)
| | | | | | | | | | - Brigida Rusconi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - I Malick Ndao
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Avraham Beigelman
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.,The Kipper Institute of Allergy and Immunology, Schneider Children's Medical Center of Israel, Tel Aviv University, Israel
| | - Misty Good
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charles O Elson
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Simon P Hogan
- Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
7
|
Understanding the Elements of Maternal Protection from Systemic Bacterial Infections during Early Life. Nutrients 2020; 12:nu12041045. [PMID: 32290170 PMCID: PMC7230816 DOI: 10.3390/nu12041045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Late-onset sepsis (LOS) and other systemic bloodstream infections are notable causes of neonatal mortality, particularly in prematurely born very low birth weight infants. Breastfeeding in early life has numerous health benefits, impacting the health of the newborn in both the short-term and in the long-term. Though the known benefits of an exclusive mother's own milk diet in early life have been well recognized and described, it is less understood how breastfed infants enjoy a potential reduction in risk of LOS and other systemic infections. Here we review how gut residing pathogens within the intestinal microbiota of infants can cause a subset of sepsis cases and the components of breastmilk that may prevent the dissemination of pathogens from the intestine.
Collapse
|
8
|
Knoop KA, Coughlin PE, Floyd AN, Ndao IM, Hall-Moore C, Shaikh N, Gasparrini AJ, Rusconi B, Escobedo M, Good M, Warner BB, Tarr PI, Newberry RD. Maternal activation of the EGFR prevents translocation of gut-residing pathogenic Escherichia coli in a model of late-onset neonatal sepsis. Proc Natl Acad Sci U S A 2020; 117:7941-7949. [PMID: 32179676 PMCID: PMC7148560 DOI: 10.1073/pnas.1912022117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Late-onset sepsis (LOS) is a highly consequential complication of preterm birth and is defined by a positive blood culture obtained after 72 h of age. The causative bacteria can be found in patients' intestinal tracts days before dissemination, and cohort studies suggest reduced LOS risk in breastfed preterm infants through unknown mechanisms. Reduced concentrations of epidermal growth factor (EGF) of maternal origin within the intestinal tract of mice correlated to the translocation of a gut-resident human pathogen Escherichia coli, which spreads systemically and caused a rapid, fatal disease in pups. Translocation of Escherichia coli was associated with the formation of colonic goblet cell-associated antigen passages (GAPs), which translocate enteric bacteria across the intestinal epithelium. Thus, maternally derived EGF, and potentially other EGFR ligands, prevents dissemination of a gut-resident pathogen by inhibiting goblet cell-mediated bacterial translocation. Through manipulation of maternally derived EGF and alteration of the earliest gut defenses, we have developed an animal model of pathogen dissemination which recapitulates gut-origin neonatal LOS.
Collapse
Affiliation(s)
- Kathryn A Knoop
- Department of Immunology, Mayo Clinic, Rochester, MN 55905;
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Paige E Coughlin
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Alexandria N Floyd
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - I Malick Ndao
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Carla Hall-Moore
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Nurmohammad Shaikh
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Andrew J Gasparrini
- The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brigida Rusconi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Marilyn Escobedo
- Department of Pediatrics, University of Oklahoma School of Medicine, Oklahoma City, OK 73019
| | - Misty Good
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Rodney D Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
9
|
Xiang G, Liu F, Liu J, Meng Q, Li N, Niu Y. Prognostic role of Amphiregulin and the correlation with androgen receptor in invasive breast cancer. Pathol Res Pract 2019; 215:152414. [PMID: 31040043 DOI: 10.1016/j.prp.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/24/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND In androgen-sensitive prostate cancer, androgenic stimulation induces the synthesis of amphiregulin (AREG). Research is lacking on the role of AREG in invasive breast cancer and the co-expression with androgen receptor (AR) status. MATERIALS AND METHODS The present study investigated the prognostic role of AREG in invasive breast cancer cases (N = 298) and the co-expression with the AR status as analysed by immunohistochemistry (IHC). RESULTS The samples were divided into groups according to AREG expression levels: low/no expression (AREGlow/no) and high expression (AREGhigh). As shown by cytoplasmic immunostaining, 46.0% (137/298) of invasive breast cancers were AREGhigh, and 54.0% (161/298) of cases were AREGlow/no. Co-expression of the AR and AREG accounted for 62.4% (186/298) of cases. A Kaplan-Meier analysis revealed that AREGhigh and AR+/AREGhigh decreased patients' overall survival (OS) (P = 0.002 and P = 0.006, respectively) and disease-free survival (DFS) (P < 0.001 and P < 0.001, respectively). In Cox models, AR+/AREGhigh remained an independent prognostic indicator of OS and DFS in invasive breast cancer (hazard ratio [HR], 0.591, 95% confidence interval [CI], 0.407-0.859, P = 0.006; HR, 0.449, 95% CI, 0.236-0.853, P = 0.014, respectively). AREGhigh remained an independent prognostic indicator of OS and DFS in estrogen receptor (ER)-negative tumours (P < 0.05). CONCLUSIONS This study suggested that AREG and the AR were co-expressed in invasive breast cancer. Thus, AREG and the AR may be valuable prognostic biomarkers in invasive breast cancer and promising therapeutic targets, especially in ER-negative breast cancer.
Collapse
Affiliation(s)
- Guomin Xiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Fang Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Jing Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Qingxiang Meng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Nannan Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Yun Niu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China; Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital. West Huanhu Road, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.
| |
Collapse
|
10
|
Role of Epidermal Growth Factor Receptor (EGFR) and Its Ligands in Kidney Inflammation and Damage. Mediators Inflamm 2018; 2018:8739473. [PMID: 30670929 PMCID: PMC6323488 DOI: 10.1155/2018/8739473] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by persistent inflammation and progressive fibrosis, ultimately leading to end-stage renal disease. Although many studies have investigated the factors involved in the progressive deterioration of renal function, current therapeutic strategies only delay disease progression, leaving an unmet need for effective therapeutic interventions that target the cause behind the inflammatory process and could slow down or reverse the development and progression of CKD. Epidermal growth factor receptor (EGFR) (ERBB1), a membrane tyrosine kinase receptor expressed in the kidney, is activated after renal damage, and preclinical studies have evidenced its potential as a therapeutic target in CKD therapy. To date, seven official EGFR ligands have been described, including epidermal growth factor (EGF) (canonical ligand), transforming growth factor-α, heparin-binding epidermal growth factor, amphiregulin, betacellulin, epiregulin, and epigen. Recently, the connective tissue growth factor (CTGF/CCN2) has been described as a novel EGFR ligand. The direct activation of EGFR by its ligands can exert different cellular responses, depending on the specific ligand, tissue, and pathological condition. Among all EGFR ligands, CTGF/CCN2 is of special relevance in CKD. This growth factor, by binding to EGFR and downstream signaling pathway activation, regulates renal inflammation, cell growth, and fibrosis. EGFR can also be “transactivated” by extracellular stimuli, including several key factors involved in renal disease, such as angiotensin II, transforming growth factor beta (TGFB), and other cytokines, including members of the tumor necrosis factor superfamily, showing another important mechanism involved in renal pathology. The aim of this review is to summarize the contribution of EGFR pathway activation in experimental kidney damage, with special attention to the regulation of the inflammatory response and the role of some EGFR ligands in this process. Better insights in EGFR signaling in renal disease could improve our current knowledge of renal pathology contributing to therapeutic strategies for CKD development and progression.
Collapse
|
11
|
Supplementation of p40, a Lactobacillus rhamnosus GG-derived protein, in early life promotes epidermal growth factor receptor-dependent intestinal development and long-term health outcomes. Mucosal Immunol 2018; 11:1316-1328. [PMID: 29875401 PMCID: PMC6162144 DOI: 10.1038/s41385-018-0034-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 04/01/2018] [Accepted: 04/15/2018] [Indexed: 02/04/2023]
Abstract
The beneficial effects of the gut microbiota on growth in early life are well known. However, knowledge about the mechanisms underlying regulating intestinal development by the microbiota is limited. p40, a Lactobacillus rhamnosus GG-derived protein, transactivates epidermal growth factor receptor (EGFR) in intestinal epithelial cells for protecting the intestinal epithelium against injury and inflammation. Here, we developed p40-containing pectin/zein hydrogels for targeted delivery of p40 to the small intestine and the colon. Treatment with p40-containing hydrogels from postnatal day 2 to 21 significantly enhanced bodyweight gain prior to weaning and functional maturation of the intestine, including intestinal epithelial cell proliferation, differentiation, and tight junction formation, and IgA production in early life in wild-type mice. These p40-induced effects were abolished in mice with specific deletion of EGFR in intestinal epithelial cells, suggesting that transactivation of EGFR in intestinal epithelial cells may mediate p40-regulated intestinal development. Furthermore, neonatal p40 treatment reduced the susceptibility to intestinal injury and colitis and promoted protective immune responses, including IgA production and differentiation of regulatory T cells, in adult mice. These findings reveal novel roles of neonatal supplementation of probiotic-derived factors in promoting EGFR-mediated maturation of intestinal functions and innate immunity, which likely promote long-term beneficial outcomes.
Collapse
|
12
|
Knoop KA, Gustafsson JK, McDonald KG, Kulkarni DH, Coughlin PE, McCrate S, Kim D, Hsieh CS, Hogan SP, Elson CO, Tarr PI, Newberry RD. Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria. Sci Immunol 2017; 2:eaao1314. [PMID: 29246946 PMCID: PMC5759965 DOI: 10.1126/sciimmunol.aao1314] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/06/2017] [Indexed: 12/28/2022]
Abstract
We have a mutually beneficial relationship with the trillions of microorganisms inhabiting our gastrointestinal tract. However, maintaining this relationship requires recognizing these organisms as affable and restraining inflammatory responses to these organisms when encountered in hostile settings. How and when the immune system develops tolerance to our gut microbial members is not well understood. We identify a specific preweaning interval in which gut microbial antigens are encountered by the immune system to induce antigen-specific tolerance to gut bacteria. For some bacterial taxa, physiologic encounters with the immune system are restricted to this interval, despite abundance of these taxa in the gut lumen at later times outside this interval. Antigen-specific tolerance to gut bacteria induced during this preweaning interval is stable and maintained even if these taxa are encountered later in life in an inflammatory setting. However, inhibiting microbial antigen encounter during this interval or extending these encounters beyond the normal interval results in a failure to induce tolerance and robust antigen-specific effector responses to gut bacteria upon reencounter in an inflammatory setting. Thus, we have identified a defined preweaning interval critical for developing tolerance to gut bacteria and maintaining the mutually beneficial relationship with our gut microbiota.
Collapse
Affiliation(s)
- Kathryn A Knoop
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jenny K Gustafsson
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Keely G McDonald
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Devesha H Kulkarni
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paige E Coughlin
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephanie McCrate
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dongyeon Kim
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Simon P Hogan
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Charles O Elson
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Wang B, Yong H, Zhu H, Ni D, Tang S, Zhang S, Wang W, Zhou Y, Zhao W, Ding G, Zhu J, Li X, Feng Z. Abnormal amphiregulin expression correlates with gastric cancer prognosis. Oncotarget 2016; 7:76684-76692. [PMID: 27713123 PMCID: PMC5363540 DOI: 10.18632/oncotarget.12436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/27/2016] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is a global health issue with a high mortality rate. Early diagnosis and tracking of GC is a challenge due to a lack of reliable tools. Amphiregulin (AREG) is a member of the epidermal growth factor (EGF) family that activates growth signaling upon binding of EGF receptors. Elevated AREG expression is associated with various pathological conditions, including cancer. Here, we investigated whether increased AREG expression is a disease indicator and/or prognostic biomarker for GC. We used tissue microarray and quantitative real-time polymerase chain reaction to assess AREG expression in clinical tissue specimens at various stages of GC and a conducted bioinformatics analysis to evaluate the value of AREG over-expression as a GC biomarker. We found that both mRNA and protein expression of AREG were increased in the tissues of GC patients when compared to tissues from non-cancer patients or normal tissues. High expression of AREG was also associated with GC clinicopathological characteristics and poor survival. Thus, over-expression of AREG could serve as a novel GC biomarker, and active surveillance of its expression could be a novel approach to GC diagnosis and monitoring.
Collapse
Affiliation(s)
- Bing Wang
- Center for Pathology and Laboratory Medicine, Zhangjiagang Ao Yang Hospital, Zhangjiagang, Jiangsu, China
- Department of Oncology, Zhangjiagang Ao Yang Hospital, Zhangjiagang, Jiangsu, China
| | - Hongmei Yong
- Department of Oncology, Huai'an Hospital Affiliated of Xuzhou Medical College and Huai'an Second People's Hospital, Huai'an, Jiangsu, China
| | - Huijun Zhu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Daguang Ni
- Center for Pathology and Laboratory Medicine, Zhangjiagang Ao Yang Hospital, Zhangjiagang, Jiangsu, China
| | - Sijie Tang
- Center for Pathology and Laboratory Medicine, Zhangjiagang Ao Yang Hospital, Zhangjiagang, Jiangsu, China
| | - Shu Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yan Zhou
- Department of Oncology, Zhangjiagang Ao Yang Hospital, Zhangjiagang, Jiangsu, China
| | - Wei Zhao
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Guipeng Ding
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Xiaohua Li
- Center for Pathology and Laboratory Medicine, Zhangjiagang Ao Yang Hospital, Zhangjiagang, Jiangsu, China
- School of Medicine, Jiangsu University, Jiangsu, China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenqing Feng
- Department of Oncology, Zhangjiagang Ao Yang Hospital, Zhangjiagang, Jiangsu, China
- Department of Pathology, Nanjing Medical University, Nanjing, China
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
- Jiangsu Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Impact of a new aggressive nutrition policy incorporating early introduction of parenteral nutrition and mother's own milk on growth of preterm infants. World J Pediatr 2016; 12:450-454. [PMID: 27286688 DOI: 10.1007/s12519-016-0037-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/31/2015] [Indexed: 10/21/2022]
Abstract
BACKGROUND Most of the evidence on early feeding of preterm infants was derived from high income settings, it is equally important to evaluate whether it can be successfully implemented into less resourced settings. This study aimed to compare growth and feeding of preterm infants before and after the introduction of a new aggressive feeding policy in Penang Hospital, a tertiary referral hospital in a middle income country. METHODS The new aggressive feeding policy was developed mainly from Cochrane review evidence, using early parenteral and enteral nutrition with standardized breastfeeding counselling aimed at empowering mothers to provide early expressed milk. A total of 80 preterm babies (34 weeks and below) discharged from NICU were included (40 pre- and 40 post-intervention). Pre and post-intervention data were compared. The primary outcome was growth at day 7, 14, 21 and at discharge and secondary outcomes were time to full oral feeding, breastfeeding rates, and adverse events. RESULTS Complete data were available for all babies to discharge. One baby was discharged prior to day 14 and 10 babies before day 21, so growth data for these babies were unavailable. Baseline data were similar in the two groups. There was no significant weight difference at 7, 14, 21 days and at discharge. More post-intervention babies were breastfed at discharge than pre-intervention babies (21 vs. 8, P=0.005). Nosocomial infection (11 vs. 4, P=0.045), and blood transfusion were significantly lower in the postintervention babies than in the pre-intervention babies (31 vs. 13, P=0.01). The post-intervention babies were more likely to achieve shorter median days (interquartile range) to full oral feeding [11 (6) days vs. 13 (11) days, P=0.058] and with lower number affecting necrotising enterocolitis (0 vs. 5, P=0.055). CONCLUSION Early aggressive parenteral nutrition and early provision of mother's milk did not result in improved growth as evidenced by weight gain at discharge. However we found more breastfeeding babies, lower nosocomial infection and transfusion rates. Our findings suggest that implementing a more aggressive feeding policy supported by high level scientific evidence is able to improve important outcomes.
Collapse
|
15
|
Epidermal Growth Factor and Intestinal Barrier Function. Mediators Inflamm 2016; 2016:1927348. [PMID: 27524860 PMCID: PMC4976184 DOI: 10.1155/2016/1927348] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/26/2016] [Indexed: 02/08/2023] Open
Abstract
Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.
Collapse
|
16
|
Bedford A, Chen T, Huynh E, Zhu C, Medeiros S, Wey D, de Lange C, Li J. Epidermal growth factor containing culture supernatant enhances intestine development of early-weaned pigs in vivo: potential mechanisms involved. J Biotechnol 2015; 196-197:9-19. [PMID: 25615942 DOI: 10.1016/j.jbiotec.2015.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/31/2014] [Accepted: 01/05/2015] [Indexed: 12/17/2022]
Abstract
We have previously generated epidermal factor expressing Lactococcus lactis (EGF-LL) using a bioengineering approach, and shown that EGF-LL fermentation supernatant enhanced newly weaned pigs growth. The objective of the current study was to further understand the mechanisms behind this improved performance. Sixty-four piglets were weaned at 3 weeks of age and then fed ad libitum according to a 2-phase feeding program. Four pens with 8 pigs per pen were assigned to each of two treatments for 3 weeks: (1) EGF containing supernatant from EGF-LL culture (SuperEGF) or (2) blank M17GE media (Control). Consistent with previous findings, SuperEGF pigs had an increased average daily gain during week 3 post-weaning (433.4 ± 10.86 vs 388.7 ± 7.76 g; P<0.05) and overall gain:feed ratio (0.757 ± 0.03 vs 0.677 ± 0.01 kg/kg, P < 0.05). Moreover, jejunal structure development was enhanced, and inflammation index was minimized in SuperEGF pigs as indicated by increased villi height (P<0.05), decreased lamina propria width (P<0.05), and higher expression of anti-inflammatory cytokine, IL-13 (P<0.05). Further, goblet cell numbers and Muc2 levels were increased in SuperEGF pigs. Interestingly, the weaning-induced decrease of glucose cotransporter sodium-glucose linked transporter 1 (SGLT1) and glucagon-like peptide-2 (GLP2) levels was reversed by SuperEGF supplementation. Our findings add to our understanding of the mechanisms behind enhancing piglet performance by EGF containing fermentation product.
Collapse
Affiliation(s)
- Andrea Bedford
- Department of Animal and Poultry Science, University of Guelph, Canada
| | - Tao Chen
- Department of Animal and Poultry Science, University of Guelph, Canada; College of Veterinary Medicine, Hunan Agricultural University, PR China
| | - Evanna Huynh
- Department of Animal and Poultry Science, University of Guelph, Canada
| | - Cuilan Zhu
- Department of Animal and Poultry Science, University of Guelph, Canada
| | - Samantha Medeiros
- Department of Animal and Poultry Science, University of Guelph, Canada
| | - Doug Wey
- Department of Animal and Poultry Science, University of Guelph, Canada
| | - Cornelis de Lange
- Department of Animal and Poultry Science, University of Guelph, Canada
| | - Julang Li
- Department of Animal and Poultry Science, University of Guelph, Canada.
| |
Collapse
|
17
|
Zeng F, Harris RC. Epidermal growth factor, from gene organization to bedside. Semin Cell Dev Biol 2014; 28:2-11. [PMID: 24513230 DOI: 10.1016/j.semcdb.2014.01.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 02/07/2023]
Abstract
In 1962, epidermal growth factor (EGF) was discovered by Dr. Stanley Cohen while studying nerve growth factor (NGF). It was soon recognized that EGF is the prototypical member of a family of peptide growth factors that activate the EGF receptors, and that the EGF/EGF receptor signaling pathway plays important roles in proliferation, differentiation and migration of a variety of cell types, especially in epithelial cells. After the basic characterization of EGF function in the first decade or so after its discovery, the studies related to EGF and its signaling pathway have extended to a broad range of investigations concerning its biological and pathophysiological roles in development and in human diseases. In this review, we briefly describe the gene organization and tissue distribution of EGF, with emphasis on its biological and pathological roles in human diseases.
Collapse
Affiliation(s)
- Fenghua Zeng
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States; Department of Veterans Affairs, Nashville, TN, United States.
| |
Collapse
|
18
|
Berasain C, Avila MA. Amphiregulin. Semin Cell Dev Biol 2014; 28:31-41. [PMID: 24463227 DOI: 10.1016/j.semcdb.2014.01.005] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Abstract
Amphiregulin (AREG) is a ligand of the epidermal growth factor receptor (EGFR), a widely expressed transmembrane tyrosine kinase. AREG is synthesized as a membrane-anchored precursor protein that can engage in juxtacrine signaling on adjacent cells. Alternatively, after proteolytic processing by cell membrane proteases, mainly TACE/ADAM17, AREG is secreted and behaves as an autocrine or paracrine factor. AREG gene expression and release is induced by a plethora of stimuli including inflammatory lipids, cytokines, hormones, growth factors and xenobiotics. Through EGFR binding AREG activates major intracellular signaling cascades governing cell survival, proliferation and motility. Physiologically, AREG plays an important role in the development and maturation of mammary glands, bone tissue and oocytes. Chronic elevation of AREG expression is increasingly associated with different pathological conditions, mostly of inflammatory and/or neoplastic nature. Here we review the essential aspects of AREG structure, function and regulation, discuss the basis for its differential role within the EGFR family of ligands, and identify emerging aspects in AREG research with translational potential.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| | - Matías A Avila
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| |
Collapse
|
19
|
Growth performance of early-weaned pigs is enhanced by feeding epidermal growth factor-expressing Lactococcus lactis fermentation product. J Biotechnol 2014; 173:47-52. [PMID: 24445174 DOI: 10.1016/j.jbiotec.2014.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/28/2013] [Accepted: 01/08/2014] [Indexed: 01/22/2023]
Abstract
We have previously generated epidermal growth factor expressing Lactococcus lactis (EGF-LL) using bioengineering approach, and shown that feeding newly-weaned piglets EGF-LL improves digestive function. To address concerns over the use of genetically modified organisms (GMO), the objective of the current study was to investigate the effect of feeding the EGF-LL fermentation product, after removal of the genetically modified EGF-LL, on growth performance and intestine development of newly-weaned piglets. One hundred and twenty newly-weaned piglets were fed ad libitum according to a 2-phase feeding program. Four pens were assigned to each of three treatments: (1) complete EGF-LL fermentation product (Ferm), (2) supernatant of EGF-LL fermentation product, after removal of EGF-LL (Supern), or (3) blank M17GE media (Control). EGF-LL or its fermented supernatant was administrated to piglets in the first 3 weeks post-weaning; their growth performance was monitored throughout treatment, and for the following week. Daily body weight gain (254.8g vs. 200.5g) and Gain:Feed (0.541kg/kg vs. 0.454kg/kg) of pigs on the Supern group were significantly improved compared to that of Control, although no difference was observed between the Ferm and Control pigs. Intestinal sucrase activity was increased in Supern- compared to Control group (166.3±62.1 vs. 81.4±56.5nmol glucose released/mg protein; P<0.05). The lack of growth response with Ferm pigs may be attributed to an overload of bacteria (daily dose included 4.56×10(10)CFU/kg BW/day EGF-LL). These results suggest that GMO-free EGF-LL fermentation product is effective in increasing growth performance of early-weaned piglets.
Collapse
|
20
|
Chatterton DE, Nguyen DN, Bering SB, Sangild PT. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. Int J Biochem Cell Biol 2013; 45:1730-47. [DOI: 10.1016/j.biocel.2013.04.028] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/25/2013] [Accepted: 04/28/2013] [Indexed: 01/04/2023]
|
21
|
Sacerdote P, Mussano F, Franchi S, Panerai A, Bussolati G, Carossa S, Bartorelli A, Bussolati B. Biological components in a standardized derivative of bovine colostrum. J Dairy Sci 2013; 96:1745-54. [DOI: 10.3168/jds.2012-5928] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/26/2012] [Indexed: 02/01/2023]
|