Juárez-Vázquez CI, Gurrola-Díaz CM, Vargas-Guerrero B, Domínguez-Rosales JA, Rodriguez-Ortiz JF, Barros-Núñez P, Flores-Martínez SE, Sánchez-Corona J, Rosales-Reynoso MA. Insulin glargine affects the expression of
Igf-1r,
Insr, and
Igf-1 genes in colon and liver of diabetic rats.
IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018;
21:489-494. [PMID:
29922429 PMCID:
PMC6000212 DOI:
10.22038/ijbms.2018.24867.6185]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective(s):
The mitogenic effect of the analogous insulin glargine is currently under debate since several clinical studies have raised the possibility that insulin glargine treatment has a carcinogenic potential in different tissues. This study aimed to evaluate the Igf-1r, Insr, and Igf-1 gene expression in colon and liver of streptozotocin-induced diabetic rats in response to insulin glargine, neutral protamine Hagedorn (NPH) insulin, and metformin treatments.
Materials and Methods:
Male Wistar rats were induced during one week with streptozotocin to develop Type 2 Diabetes (T2D) and then randomly distributed into four groups. T2D rats included in the first group received insulin glargine, the second group received NPH insulin, the third group received metformin; finally, untreated T2D rats were included as the control group. All groups were treated for seven days; after the treatment, tissue samples of liver and colon were obtained. Quantitative PCR (qPCR) was performed to analyze the Igf-1r, Insr and Igf-1 gene expression in each tissue sample.
Results:
The liver tissue showed overexpression of the Insr and Igf-1r genes (P>0.001) in rats treated with insulin glargine in comparison with the control group. Similar results were observed for the Insr gene (P>0.011) in colonic tissue of rats treated with insulin glargine.
Conclusion:
These observations demonstrate that insulin glargine promote an excess of insulin and IGF-1 receptors in STZ-induced diabetic rats, which could overstimulate the mitogenic signaling pathways.
Collapse