1
|
Sidell N, Rajakumar A. Retinoic Acid Action in Cumulus Cells: Implications for Oocyte Development and In Vitro Fertilization. Int J Mol Sci 2024; 25:1709. [PMID: 38338985 PMCID: PMC10855907 DOI: 10.3390/ijms25031709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
In the field of human in vitro fertilization (IVF), selecting the best oocyte for freezing or embryo for transfer remains an important focus of clinical practice. Although several techniques are and have been used for this goal, results have generally not been favorable and/or are invasive such that damage to some embryos occurs, resulting in a reduced number of healthy births. Therefore, the search continues for non-invasive oocyte and embryo quality markers that signal the development of high-quality embryos. Multiple studies indicate the important positive effects of retinoic acid (RA) on oocyte maturation and function. We previously showed that a high follicular fluid (FF) RA concentration at the time of oocyte retrieval in IVF protocols was associated with oocytes, giving rise to the highest quality embryos, and that cumulus granulosa cells (CGCs) are the primary source of follicle RA synthesis. Data also demonstrated that connexin-43 (Cx43), the main connexin that forms gap junctions in CGCs, is regulated by RA and that RA induces a rapid increase in gap junction communication. Here, we hypothesize that CGC RA plays a causal role in oocyte competency through its action on Cx43 and, as such, may serve as a biomarker of oocyte competence. Multiple studies have demonstrated the requirement for Cx43 in CGCs for the normal progression of folliculogenesis, and that the increased expression of this connexin is linked to the improved developmental competence of the oocyte. The data have shown that RA can up-regulate gap junction intercellular communication (GJIC) in the cumulus-oocyte complex via a non-genomic mechanism that results in the dephosphorylation of Cx43 and enhanced GJIC. Recognizing the positive role played by gap junctions in CGCs in oocyte development and the regulation of Cx43 by RA, the findings have highlighted the possibility that CGC RA levels may serve as a non-invasive indicator for selecting high-quality oocytes for IVF procedures. In addition, the data suggest that the manipulation of Cx43 with retinoid compounds could provide new pharmacological approaches to improve IVF outcomes in cases of failed implantation, recurrent miscarriage, or in certain diseases that are characterized by reduced fecundity, such as endometriosis.
Collapse
Affiliation(s)
- Neil Sidell
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | | |
Collapse
|
2
|
Yang F, Hu D, Du S, Wu L, Gong M, Zhang Y, Yang X, Yang Y, Chen R, Xu Y, Zeng Q. Assessing the double-edged of extracellular signal-regulated kinase/CCAAT-enhancer-binding protein beta signaling pathway in arsenic-induced skin damage and its potential foodborne interventions. ENVIRONMENTAL TOXICOLOGY 2023; 38:2867-2880. [PMID: 37565747 DOI: 10.1002/tox.23922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
Arsenic exposure is a major environmental public health challenge worldwide. As typical manifestations for arsenic exposure, the pathogenesis of arsenic-induced skin lesions has not been fully elucidated, as well as the lack of effective control measures. In this study, we first determined the short-term and high-dose arsenic exposure can increase the apoptosis rates, while long-term low-dose arsenic exposure decrease the apoptosis rates. Then, the HaCaT cells with knockdown and overexpression of CCAAT-enhancer-binding protein β (CEBPB) and extracellular signal-regulated kinase (ERK) were constructed. The results demonstrate that knockdown of CEBPB and ERK can reduce NaAsO2 -induced cell apoptosis by inhibiting ERK/CEBPB signaling pathway and vice versa. Further cells were treated with Kaji-Ichigoside F1 (KF1). The results clearly show that KF1 can decrease the arsenic-induced cell apoptosis rates and the expression of ERK/CEBPB signaling pathway-related genes. These results provide evidence that ERK/CEBPB signaling pathway acts as a double-edged sword in arsenic-induced skin damage. Another interesting finding was that KF1 can alleviate arsenic-induced skin cell apoptosis by inhibiting the ERK/CEBPB signaling pathway. This study will contribute to a deeper understanding of the mechanisms of arsenic-induced skin cell apoptosis, and our findings will help to identify a potential food-borne intervention in arsenic detoxification.
Collapse
Affiliation(s)
- Fan Yang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Dexiu Hu
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Sufei Du
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Liping Wu
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Maoyuan Gong
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yuhong Zhang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Xingcan Yang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yang Yang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Ruobi Chen
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yuyan Xu
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
| | - Qibing Zeng
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Ecological Food Creation Engineering Research Center, Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Guo M, Lv J, Chen X, Wu M, Zhao Q, Hai X. Arsenic Trioxide Therapy During Pregnancy: ATO and Its Metabolites in Maternal Blood and Amniotic Fluid of Acute Promyelocytic Leukemia Patients. Front Oncol 2022; 12:887026. [PMID: 35646703 PMCID: PMC9133345 DOI: 10.3389/fonc.2022.887026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/13/2022] [Indexed: 12/05/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is extremely fatal if treatment is delayed. Management of APL in pregnancy is a challenging situation. Arsenic trioxide (ATO) is successfully applied to treat APL. ATO can be transformed into different arsenic species [arsenite (AsIII), monomethylated arsenic (MMA, consists of MMAIII and MMAV), dimethylated arsenic (DMA, consists of DMAIII and DMAV), and arsenate (AsV)], which produce different toxic effects. Investigating the maternal and fetal exposure to arsenic species is critical in terms of assessing maternal and fetal outcomes, choice of optimal treatment, and making decisions for attempting to preserve the obstetrical and fetal wellbeing. In this study, maternal blood and amniotic fluid (AF) from APL patients treated with ATO in pregnancy and blood samples of non-pregnant patients were collected. Concentrations of inorganic arsenic (iAs, iAs = AsIII+AsV), MMA, and DMA were analyzed by high-performance liquid chromatography–hydride generation–atomic fluorescence spectrometry (HPLC–HG–AFS). The difference in arsenic species of plasma between pregnant patients and non-pregnant patients, distribution of arsenic compounds in AF and maternal plasma, and arsenic penetration into AF were explored. The outcomes of pregnant women treated with ATO and their fetus were analyzed. No significant differences in arsenic concentration, percentage, and methylation index [PMI: primary methylation index (MMA/iAs); SMI: secondary methylation index (DMA/MMA)] between pregnant women and non-pregnant women (p > 0.05) were observed. The mean ratios of AF to maternal plasma were as follows: iAs, 2.09; DMA, 1.04; MMA, 0.49; and tAs, 0.98. Abortion rate is higher with the diagnosis at an earlier gestational age, with 0%, 67%, and 100% of pregnancies ending in abortion during the third, second, and first trimester, respectively. The age of the pregnant women, the dose of ATO, and the duration of fetal exposure in utero had no influence on fetal outcomes. All APL women achieved complete remission (CR). Collectively, ATO and its metabolites can easily cross the placenta. Levels and distribution of arsenic species in maternal plasma and AF gave evidence that arsenic species had a different ability to penetrate the placenta into AF (iAs > DMA > MMA) and indicated a relatively high fetal exposure to ATO and its metabolites in utero. Gestational age at diagnosis was more likely to be closely related to fetal outcomes, but had no effects on mother outcomes.
Collapse
Affiliation(s)
- Meihua Guo
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jian Lv
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaotong Chen
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengliang Wu
- Department of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qilei Zhao
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Hai
- Department of Pharmacy, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Wu L, Yang F, Du S, Hu T, Wei S, Wang G, Zeng Q, Luo P. Inorganic arsenic promotes apoptosis of human immortal keratinocytes through the TGF-β1/ERK signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1321-1331. [PMID: 35142421 DOI: 10.1002/tox.23486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Chronic exposure to high-dose inorganic arsenic through groundwater, air, or food remains a major environmental public health issue worldwide. Apoptosis, a method of cell death, has recently become a hot topic of research in biology and medicine. Previous studies have demonstrated that extracellular signal-regulated kinase (ERK) is related to arsenic-induced apoptosis. However, the reports are contradictory, and the knowledge of the above-mentioned mechanisms and their mutual regulation remains limited. In this study, the associations between the TGF-β1/ERK signaling pathway and arsenic-induced cell apoptosis were confirmed using the HaCaT cell model. The relative expressions of the indicators of the TGF-β1/ERK signaling pathway, apoptosis-related genes (cytochrome C, caspase-3, caspase-9, cleaved caspase-3, cleaved caspase-9, and Bax), the mitochondrial membrane potential, and the total apoptosis rate were significantly increased (P < .05), while the expression of the antiapoptosis gene Bcl-2 was significantly decreased (P < .05) in cells of the group exposed to arsenic. Moreover, the results demonstrated that the ERK inhibitor (PD98059) and TGF-β1 inhibitor (LY364947) could inhibit the activation of the ERK signaling pathway, thereby reducing the mitochondrial membrane potential, the total apoptosis rate, and the expression of pro-apoptosis-related genes in the cells, while the expression of the antiapoptosis gene Bcl-2 was significantly increased (P < .05). By contrast, the recombinant human TGF-β1 could promote apoptosis of the HaCaT cells by increasing the activation of the ERK signaling pathway (P < .05). These results indicate that inorganic arsenic promotes the apoptosis of human immortal keratinocytes through the TGF-β1/ERK signaling pathway.
Collapse
Affiliation(s)
- Liping Wu
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Fan Yang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Sufei Du
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Ting Hu
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang, China
| | - Shaofeng Wei
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang, China
| | - Guoze Wang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang, China
| | - Qibing Zeng
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang, China
| | - Peng Luo
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
Liu H, Wang S, Lin JM, Lin Z, Li HF. Investigation of the lipidomic changes in differentiated glioblastoma cells after drug treatment using MALDI-MS. Talanta 2021; 233:122570. [PMID: 34215066 DOI: 10.1016/j.talanta.2021.122570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023]
Abstract
Lipids differences between tumor and normal tissue have been proved to be of diagnostic and therapeutic significance. The research of lipidomics in tumor is more and more important. Mass spectrometry like matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) can be more convenient and informative for lipids researching in biological and clinical researches. Most of malignant tumors like glioblastoma are characterized by incomplete differentiation, so differentiation therapy has made important progress in tumor treatment. Lipid profiles changes after therapy are worthy investigating. In our study, glioblastoma cell line U87-MG cells were treated by inducers of sodium phenylbutyrate (SPB) and all-trans retinoic acid (ATRA). The changes in lipids on cell membrane were profiled by MALDI-MS. The differentiation degree was assessed by cell proliferation, cell cycle, morphology and protein expression before MALDI-MS analysis. Comparing the inducer treated and untreated U87-MG cells, reduced proliferation rate, blocked cell cycle, benign nucleus morphology and changed expression of protein CD133 and glial fibrillary acidic protein (GFAP), were found after drug treatment. Moreover, the lipids of cell membrane presented distinguished differences in the drug treated cells. Most of the glycerophosphocholines (PC) with an increasing abundance are unsaturated PCs (PC (38:1), 816 m/z; PC (36:1), 788 m/z; PC (31:1), 725 m/z), and those decreasing are saturated PCs (PC (32:0), 734 m/z). These results provide the lipidomic differentiation which may be a significant guidance for evaluating the therapeutic effect of tumor therapy.
Collapse
Affiliation(s)
- Hongxing Liu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China; Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China
| | - Shiqi Wang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China
| | - Zhixiong Lin
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| | - Hai-Fang Li
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Santolaria A, Perales A, Montesinos P, Sanz MA. Acute Promyelocytic Leukemia during Pregnancy: A Systematic Review of the Literature. Cancers (Basel) 2020; 12:E968. [PMID: 32295152 PMCID: PMC7225915 DOI: 10.3390/cancers12040968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
The management of pregnant women with acute promyelocytic leukemia (APL) is a challenging situation where limited evidence-based information is available. We performed a systematic literature review to analyze the outcomes reported for both mother and fetus when APL is diagnosed during pregnancy. PubMed, Scopus and Web of Science databases were systematically searched to identify studies reporting cases of APL during pregnancy. Sixty-six articles met the eligibility criteria (53 single case reports). Ninety-two patients were eligible for induction therapy, with most them being treated with all-trans retinoic acid alone (32%) or combined with chemotherapy (43%), while the remaining patients received chemotherapy alone. Three patients were treated with arsenic-based regimens after delivery. Overall complete remission rate was 89%, with no statistically significant differences according to the type of induction and gestational age. During the first trimester, women were more likely to experience spontaneous and induced abortion compared to those during the second trimester (88% vs. 30%) (p < 0.0001), while only one patient diagnosed during the third trimester terminated in stillbirth. Twelve of 16 infants with neonatal complications had respiratory distress syndrome. Except two early deaths (Potter's syndrome and pulmonary hemorrhage), all neonates evolved favorably. This study confirms that gestational age does not affect the results in the mother, but is closely related to fetal viability. Our results may be useful for the process of decision making that requires the involvement of the patient, hematologist, obstetrician and neonatologist.
Collapse
Affiliation(s)
- Andrea Santolaria
- Department of Obstetrics and Gynecology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain; (A.S.); (A.P.)
| | - Alfredo Perales
- Department of Obstetrics and Gynecology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain; (A.S.); (A.P.)
- Department of Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain
| | - Pau Montesinos
- Department of Hematology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, 28029 Madrid, Spain
| | - Miguel A. Sanz
- Department of Hematology, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, 28029 Madrid, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
7
|
Liu Y, Liu Q, Chen S, Liu Y, Huang Y, Chen P, Li X, Gao G, Xu K, Fan S, Zeng Z, Xiong W, Tan M, Li G, Zhang W. APLNR is involved in ATRA‐induced growth inhibition of nasopharyngeal carcinoma and may suppress EMT through PI3K‐Akt‐mTOR signaling. FASEB J 2019; 33:11959-11972. [DOI: 10.1096/fj.201802416rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yi Liu
- Department of Medical Laboratory ScienceThe Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Qingluan Liu
- Department of Medical Laboratory ScienceThe Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Shumin Chen
- Department of HematologyPeking University People's HospitalBeijingChina
| | - Yijun Liu
- Department of Medical Laboratory ScienceThe Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Yumei Huang
- Department of Medical Laboratory ScienceThe Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Pan Chen
- Hunan Cancer Hospital‐The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Xiayu Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute, Central South UniversityChangshaChina
| | - Ge Gao
- Department of Medical Laboratory ScienceThe Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Keqian Xu
- Department of Medical Laboratory ScienceThe Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Songqing Fan
- Department of PathologyThe Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute, Central South UniversityChangshaChina
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute, Central South UniversityChangshaChina
| | - Ming Tan
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute, Central South UniversityChangshaChina
- Mitchell Cancer Institute, USAHealth‐University of South AlabamaMobileAlabamaUSA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute, Central South UniversityChangshaChina
| | - Wenling Zhang
- Department of Medical Laboratory ScienceThe Third Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
8
|
Sun Y, Wang C, Wang L, Dai Z, Yang K. Arsenic trioxide induces apoptosis and the formation of reactive oxygen species in rat glioma cells. Cell Mol Biol Lett 2018; 23:13. [PMID: 29610575 PMCID: PMC5870496 DOI: 10.1186/s11658-018-0074-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023] Open
Abstract
Background Arsenic trioxide (As2O3) has a dramatic therapeutic effect on acute promyelocytic leukemia (APL) patients. It can also cause apoptosis in various tumor cells. This study investigated whether As2O3 has an antitumor effect on glioma and explored the underlying mechanism. Results MTT and trypan blue assays showed that As2O3 remarkably inhibited growth of C6 and 9 L glioma cells. Cell viability decreased in glioma cells to a greater extent than in normal glia cells. The annexin V-FITC/PI and Hoechest/PI staining assays revealed a significant increase in apoptosis that correlated with the duration of As2O3 treatment and occurred in glioma cells to a greater extent than in normal glial cells. As2O3 treatment induced reactive oxygen species (ROS) production in C6 and 9 L cells in a time-dependent manner. Cells pretreated with the antioxidant N-acetylcysteine (NAC) showed significantly lower As2O3-induced ROS generation. As2O3 significantly inhibited the expression of the anti-apoptotic gene Bcl-2, and upregulated the proapoptotic gene Bax in both C6 and 9 L glioma cells in a time-dependent manner. Conclusions As2O3 can significantly inhibit the growth of glioma cells and it can induce cell apoptosis in a time- and concentration-dependent manner. ROS were found to be responsible for apoptosis in glioma cells induced by As2O3. These results suggest As2O3 is a promising agent for the treatment of glioma.
Collapse
Affiliation(s)
- Yuanyuan Sun
- 1Nursing Support Center, First Affiliated Hospital, Harbin Medical University, Harbin, 150000 China
| | - Chen Wang
- 2Neurosurgery Department, First Affiliated Hospital, Harbin Medical University, Nangang District, Harbin, 150000 China
| | - Ligang Wang
- 2Neurosurgery Department, First Affiliated Hospital, Harbin Medical University, Nangang District, Harbin, 150000 China
| | - Zhibo Dai
- 2Neurosurgery Department, First Affiliated Hospital, Harbin Medical University, Nangang District, Harbin, 150000 China
| | - Kongbin Yang
- 2Neurosurgery Department, First Affiliated Hospital, Harbin Medical University, Nangang District, Harbin, 150000 China
| |
Collapse
|