1
|
Orlicky DJ, Smith EE, Johnson J, Hilton AE, Guess MK, Rascoff LG, Arruda JS, Hutchinson-Colas JA, Yang I, Connell KA. Inflammatory Cells in Control and Prolapsed Uterosacral Ligament Tissue. Reprod Sci 2024; 31:3026-3038. [PMID: 38907126 PMCID: PMC11438740 DOI: 10.1007/s43032-024-01618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
Pelvic organ prolapse (POP), a downward descent of the vagina and/or uterus through the vaginal canal, is a prevalent condition affecting up to 40% of women. Several risk factors of POP have been identified, including childbirth, connective tissue defects, and chronic intra-abdominal pressure; however, the underlying etiologies of POP development are not fully understood, leading to a high burden on patients and the healthcare systems. The uterosacral ligaments are key support structures of the uterus and upper vagina. Our previous work describes observed histopathological changes in uterosacral ligament (USL) tissue and demonstrates the presence of neutrophils in a subgroup of POP individuals. This presence of neutrophils prompted an examination for the presence of a broader spectrum of inflammatory cell types in the USL. Immunohistochemical staining was performed to identify neutrophils, lymphocytes, macrophages, and mast cells outside of the vasculature. All 4 inflammatory cell types were increased in the POP-HQ system-defined POP-Inflammatory (POP-I) phenotype USL tissue relative to the USL tissues of control or other POP-HQ phenotypes. Focal T-lymphocyte and macrophage co-accumulations were observed in the arterial walls from some patients of the POP-vascular (POP-V) phenotype suggesting previous arterial injury. In addition, 1 control and 2 POP-V subjects' USLs contained arterial wall foamy macrophages, evidence of atherosclerosis. These findings further support a complex etiology for POP and indicate that personalized approaches to preventing and treating the condition may be warranted.
Collapse
Affiliation(s)
- David J Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA.
| | - E Erin Smith
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joshua Johnson
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ashley E Hilton
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marsha K Guess
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Lauren G Rascoff
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jaime S Arruda
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Juana A Hutchinson-Colas
- Department of Obstetrics, Gynecology and Reproductive Sciences, Robert Wood Johnson Medical School, Rutgers Health, New Brunswick, NJ, USA
| | - Ivana Yang
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kathleen A Connell
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
2
|
Li Y, Wang Z, Kong M, Yong Y, Yang X, Liu C. The role of GZMA as a target of cysteine and biomarker in Alzheimer's disease, pelvic organ prolapse, and tumor progression. Front Pharmacol 2024; 15:1447605. [PMID: 39228516 PMCID: PMC11368878 DOI: 10.3389/fphar.2024.1447605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Objective: This study aims to investigate how changes in peripheral blood metabolites in Alzheimer's Disease (AD) patients affect the development of Pelvic Organ Prolapse (POP) using a multi-omics approach. We specifically explore the interactions of signaling pathways, gene expression, and protein-metabolite interactions, with a focus on GZMA and cysteine in age-related diseases. Methods: This study utilized multi-omics analysis, including metabolomics and transcriptomics, to evaluate the perturbations in peripheral blood metabolites and their effect on POP in AD patients. Additionally, a comprehensive pan-cancer and immune infiltration analysis was performed on the core targets of AD combined with POP, exploring their potential roles in tumor progression and elucidating their pharmacological relevance to solid tumors. Results: We identified 47 differential metabolites linked to 9 significant signaling pathways, such as unsaturated fatty acid biosynthesis and amino acid metabolism. A thorough gene expression analysis revealed numerous differentially expressed genes (DEGs), with Gene Set Enrichment Analysis (GSEA) showing significant changes in gene profiles of AD and POP. Network topology analysis highlighted central nodes in the AD-POP co-expressed genes network. Functional analyses indicated involvement in critical biological processes and pathways. Molecular docking studies showed strong interactions between cysteine and proteins PTGS2 and GZMA, and molecular dynamics simulations confirmed the stability of these complexes. In vitro validation demonstrated that cysteine reduced ROS levels and protected cell viability. GZMA was widely expressed in various cancers, associated with immune cells, and correlated with patient survival prognosis. Conclusion: Multi-omics analysis revealed the role of peripheral blood metabolites in the molecular dynamics of AD and their interactions with POP. This study identified potential biomarkers and therapeutic targets, emphasizing the effectiveness of integrative approaches in treating AD and POP concurrently. The findings highlight the need for in-depth research on novel targets and biomarkers to advance therapeutic strategies.
Collapse
Affiliation(s)
- Yan Li
- Department of Gynecology and Obstetrics, Affiliated Beijing Chaoyang Hospital of Capital Medical University, Beijing, China
- Department of Gynecology and Obstetrics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhuo Wang
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Min Kong
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Yong
- Department of Gynecology and Obstetrics, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xin Yang
- Department of Gynecology and Obstetrics, Ningxia Medical University, Yinchuan, China
| | - Chongdong Liu
- Department of Gynecology and Obstetrics, Chaoyang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Liu X, Su M, Wei L, Zhang J, Wang W, Hao Q, Lin X, Wang L. Single-cell analysis of uterosacral ligament revealed cellular heterogeneity in women with pelvic organ prolapse. Commun Biol 2024; 7:159. [PMID: 38326542 PMCID: PMC10850063 DOI: 10.1038/s42003-024-05808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Pelvic organ prolapse (POP) markedly affects the quality of life of women, including significant financial burden. Using single-cell RNA sequencing, we constructed a transcriptional profile of 30,452 single cells of the uterosacral ligament in POP and control samples, which has never been constructed before. We identified 10 major cell types, including smooth muscle cells, endothelial cells, fibroblasts, neutrophils, macrophages, monocytes, mast cells, T cells, B cells, and dendritic cells. We performed subpopulation analysis and pseudo-time analysis of POP primary cells, and explored differentially expressed genes. We verified previous cell clusters of human neutrophils of uterosacral ligaments. We found a significant reduction in receptor-ligand pairs related to ECM and cell adhesion between fibroblasts and endothelial cells in POP. The transcription factors related to the extracellular matrix, development, and immunity were identified in USL. Here we provide insight into the molecular mechanisms of POP and valuable information for future research directions.
Collapse
Affiliation(s)
- Xiaochun Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032, Taiyuan, China.
| | - Minna Su
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032, Taiyuan, China
| | - Lingyun Wei
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032, Taiyuan, China
| | - Jia Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032, Taiyuan, China
| | - Wenzhen Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032, Taiyuan, China
| | - Qian Hao
- Taiyuan Health School, 030012, Taiyuan, China
| | - Xiling Lin
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032, Taiyuan, China
| | - Lili Wang
- Taiyuan University of Technology, 030024, Taiyuan, China
| |
Collapse
|
4
|
Zhou Q, Lu M, Li GS, Peng GL, Song YF. Identification of potential molecular mechanisms and therapeutic targets for recurrent pelvic organ prolapse. Heliyon 2023; 9:e19440. [PMID: 37681155 PMCID: PMC10481308 DOI: 10.1016/j.heliyon.2023.e19440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Background The pathogenesis of recurrent pelvic organ prolapse (POP) is currently unclear. Therefore, developing targeted preventive measures is difficult. This study identified potential key pathways, crucial genes, comorbidities, and therapeutic targets associated with the occurrence and development of recurrent POP. Methods The original microarray data GSE28660, GSE53868, and GSE12852 were downloaded from the GEO database. Identification and validation of differentially expressed genes (DEGs) and hub genes associated with recurrent POP were performed using R software and cytoHubba of Cytoscape. Protein-protein interaction (PPI) networks were constructed using the STRING tool and visualized using Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Gene and Genome (KEGG) enrichment analyses were effectively performed using DAVID platforms. In addition, the NetworkAnalyst platform was used to explore and visualize the miRNA-hub gene network, TF-hub gene network, hub gene-disease network, and hub gene-drug/chemical network. Results A total of 110 DEGs and 6 hub genes (ADIPOQ, IL6, PPARG, CEBPA, LPL, and LIPE) were identified in this study. These genes were primarily enriched in the PPAR, AMPK, and adipocytokine, non-alcoholic fatty liver disease, and signaling pathways related to glycerol metabolism. Moreover, 96 miRNAs and 97 TFs were identified to as being associated with recurrent POP. These genes were closely linked to adipocyte metabolism and distribution, energy metabolism, and the longevity regulatory pathway. In addition, 192 diseases or chronic complications were potentially related to the recurrence of POP, including diabetes, hypertension, obesity, inflammatory diseases, and chronic obstructive pulmonary disease. Furthermore, 954 drugs or compounds were shown to have therapeutic potential for recurrent POP, and the most critical target drugs were dexamethasone, bisphenol A, efavirenz, 1-methyl-3-isobutylxanthine, and estradiol. Conclusions The results of this study revealed that ADIPOQ, IL6, PPARG, CEBPA, LPL, and LIPE as potential hub genes associated with recurrent POP, and these hub genes may aid in the understanding of the mechanism underlying POP recurrence and the development of potential molecular drugs.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Gynecology and Obstetrics, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, PR China
- Department of Gynecology and Obstetrics, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, 443000, PR China
| | - Man Lu
- Department of Gynecology and Obstetrics, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, 443000, PR China
| | - Guo-Sheng Li
- Department of Gynecology and Obstetrics, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, 443000, PR China
| | - Gan-Lu Peng
- Department of Gynecology and Obstetrics, The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, 443000, PR China
| | - Yan-Feng Song
- Department of Gynecology and Obstetrics, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian, PR China
| |
Collapse
|
5
|
Feng J, Li Y, Jin X, Gong R, Xia Z. ATF3 regulates oxidative stress and extracellular matrix degradation via p38/Nrf2 signaling pathway in pelvic organ prolapse. Tissue Cell 2021; 73:101660. [PMID: 34666282 DOI: 10.1016/j.tice.2021.101660] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022]
Abstract
Pelvic organ prolapse (POP) is a common disorder in women, and it is characterized by weakening of pelvic supportive structure with extracellular matrix (ECM) degradation. Activating transcription factor 3 (ATF3) was upregulated in anterior vaginal wall tissues of POP patients. We hypothesized that upregulation of ATF3 might contribute to POP development. This study aims to unveil the role of ATF3 in the pathogenesis of POP using a H2O2-induced in vitro model. Vaginal fibroblasts were isolated from woman with POP-Q stage greater than II and asymptomatic women with normal pelvic floor support. Knockdown of ATF3 enhanced cell viability and decreased cell apoptosis. Flow cytometry and immunnofluorescence showed that ATF3 deficiency inhibited H2O2-induced ROS production and the expression of 8 OHdG and 4-HNE. Western blot and Real-time PCR analysis revealed that ATF3 deficiency attenuated ECM component degradation (increasing collagen I, collagen III and elastin) and MMPs/TIMPs imbalance (decreasing MMP2 and MMP9 and increasing TIMP2). Moreover, knockdown of ATF3 induced the activation of p38/Nrf2/HO-1 signaling pathway. Further treatment with p38 inhibitor SB203580 abolished the protection of ATF3 deficiency against H2O2-induced cell damage, which was reverted by Nrf2 activator TBHQ. Thus, ATF3 likely contributes to POP progression by inducing cell apoptosis, oxidative stress and ECM degradation via regulating p38/Nrf2 pathway, which provides a potential therapeutic target for POP.
Collapse
Affiliation(s)
- Jiuxiang Feng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Department of Gynecology, Dalian Women and Children's Medical Group, Dalian, Liaoning, China
| | - Ying Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Department of Obstetrics, Dalian Women and Children's Medical Group, Dalian, Liaoning, China
| | - Xin Jin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Runqi Gong
- Liaoning Province Hospital for Women and Children, Shenyang, Liaoning, China
| | - Zhijun Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Liaoning Province Hospital for Women and Children, Shenyang, Liaoning, China.
| |
Collapse
|
6
|
Deng ZM, Dai FF, Yuan MQ, Yang DY, Zheng YJ, Cheng YX. Advances in molecular mechanisms of pelvic organ prolapse (Review). Exp Ther Med 2021; 22:1009. [PMID: 34345291 PMCID: PMC8311251 DOI: 10.3892/etm.2021.10442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022] Open
Abstract
Pelvic organ prolapse (POP) is a common gynecological benign disease occurring in middle-aged and elderly females. Its incidence increases every year. To date, the majority of studies investigating its etiology have not evaluated the underlying molecular mechanisms, which has caused substantial difficulties in the prevention, treatment and prognosis of POP. In the present narrative review, recent research studies concerning the molecular mechanisms of POP were systematically reviewed and the advances were summarized. The association between the incidence of POP and the reduction of the extracellular matrix, activation of oxidative stress, genetic susceptibility, denervation of the pelvic floor and reduction of estrogen infiltration were explored. POP is mainly associated with damage of pelvic floor muscles and connective tissue, which are directly caused by pregnancy and vaginal delivery. The majority of the molecular and genetic mutations associated with POP involve specific components of connective tissue synthesis and degradation. It is likely that macroscopic parameters, such as anatomy, lifestyle and reproductive factors, interact with microscopic parameters, such as physiology and genetics in the female pelvic floor, leading to POP. Additional research studies investigating the molecular mechanisms of POP should be performed, since they may aid public health strategies. In the present narrative review, a summary of these molecular mechanisms underlying the development of POP is provided. This included the relevant proteins and genes involved. On this basis, countermeasures were proposed.
Collapse
Affiliation(s)
- Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Meng-Qin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Dong-Yong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ya-Jing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
7
|
Li Y, Zhang QY, Sun BF, Ma Y, Zhang Y, Wang M, Ma C, Shi H, Sun Z, Chen J, Yang YG, Zhu L. Single-cell transcriptome profiling of the vaginal wall in women with severe anterior vaginal prolapse. Nat Commun 2021; 12:87. [PMID: 33397933 PMCID: PMC7782707 DOI: 10.1038/s41467-020-20358-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022] Open
Abstract
Anterior vaginal prolapse (AVP) is the most common form of pelvic organ prolapse (POP) and has deleterious effects on women's health. Despite recent advances in AVP diagnosis and treatment, a cell atlas of the vaginal wall in AVP has not been constructed. Here, we employ single-cell RNA-seq to construct a transcriptomic atlas of 81,026 individual cells in the vaginal wall from AVP and control samples and identify 11 cell types. We reveal aberrant gene expression in diverse cell types in AVP. Extracellular matrix (ECM) dysregulation and immune reactions involvement are identified in both non-immune and immune cell types. In addition, we find that several transcription factors associated with ECM and immune regulation are activated in AVP. Furthermore, we reveal dysregulated cell-cell communication patterns in AVP. Taken together, this work provides a valuable resource for deciphering the cellular heterogeneity and the molecular mechanisms underlying severe AVP.
Collapse
Affiliation(s)
- Yaqian Li
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 100730, Beijing, China
| | - Qing-Yang Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Bao-Fa Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China
- China National Center for Bioinformation, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yidi Ma
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Ye Zhang
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Min Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Congcong Ma
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Honghui Shi
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Zhijing Sun
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Juan Chen
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.
- China National Center for Bioinformation, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Lan Zhu
- Departments of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
8
|
Wu Y, Xia L, Guo Q, Zhu J, Deng Y, Wu X. Identification of Chemoresistance-Associated Key Genes and Pathways in High-Grade Serous Ovarian Cancer by Bioinformatics Analyses. Cancer Manag Res 2020; 12:5213-5223. [PMID: 32636682 PMCID: PMC7335306 DOI: 10.2147/cmar.s251622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/12/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose High-grade serous ovarian cancer (HGSOC) is the leading cause of death among gynecological malignancies. This is mainly attributed to its high rates of chemoresistance. To date, few studies have investigated the molecular mechanisms underlying this resistance to treatment in ovarian cancer patients. In this study, we aimed to explore these molecular mechanisms using bioinformatics analysis. Methods We analyzed microarray data set GSE51373, which included 16 platinum-sensitive HGSOC samples and 12 platinum-resistant control samples. Differentially expressed genes (DEGs) were identified using RStudio. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using DAVID, and a DEG-associated protein–protein interaction (PPI) network was constructed using STRING. Hub genes in the PPI network were identified, and the prognostic value of the top ten hub genes was evaluated. MGP, one of the hub genes, was verified by immunohistochemistry. Results All samples were confirmed to be of high quality. A total of 109 DEGs were identified, and the top ten enriched GO terms and four KEGG pathways were obtained. Specifically, the PI3K-AKT signaling pathway and the Rap1 signaling pathway were identified as having significant roles in chemoresistance in HGSOC. Furthermore, based on the PPI network, KIT, FOXM1, FGF2, HIST1H4D, ZFPM2, IFIT2, CCNO, MGP, RHOBTB3, and CDC7 were identified as hub genes. Five of these hub genes could predict the prognosis of HGSOC patients. Positive immunostaining signals for MGP were observed in the chemoresistant samples. Conclusion Taken together, the findings of this study may provide novel insights into HGSOC chemoresistance and identify important therapeutic targets.
Collapse
Affiliation(s)
- Yong Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Lingfang Xia
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qinhao Guo
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jun Zhu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yu Deng
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Olafsdottir T, Thorleifsson G, Sulem P, Stefansson OA, Medek H, Olafsson K, Ingthorsson O, Gudmundsson V, Jonsdottir I, Halldorsson GH, Kristjansson RP, Frigge ML, Stefansdottir L, Sigurdsson JK, Oddsson A, Sigurdsson A, Eggertsson HP, Melsted P, Halldorsson BV, Lund SH, Styrkarsdottir U, Steinthorsdottir V, Gudmundsson J, Holm H, Tragante V, Asselbergs FW, Thorsteinsdottir U, Gudbjartsson DF, Jonsdottir K, Rafnar T, Stefansson K. Genome-wide association identifies seven loci for pelvic organ prolapse in Iceland and the UK Biobank. Commun Biol 2020; 3:129. [PMID: 32184442 PMCID: PMC7078216 DOI: 10.1038/s42003-020-0857-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
Pelvic organ prolapse (POP) is a downward descent of one or more of the pelvic organs, resulting in a protrusion of the vaginal wall and/or uterus. We performed a genome-wide association study of POP using data from Iceland and the UK Biobank, a total of 15,010 cases with hospital-based diagnosis code and 340,734 female controls, and found eight sequence variants at seven loci associating with POP (P < 5 × 10-8); seven common (minor allele frequency >5%) and one with minor allele frequency of 4.87%. Some of the variants associating with POP also associated with traits of similar pathophysiology. Of these, rs3820282, which may alter the estrogen-based regulation of WNT4, also associates with leiomyoma of uterus, gestational duration and endometriosis. Rs3791675 at EFEMP1, a gene involved in connective tissue homeostasis, also associates with hernias and carpal tunnel syndrome. Our results highlight the role of connective tissue metabolism and estrogen exposure in the etiology of POP.
Collapse
Affiliation(s)
| | | | - Patrick Sulem
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | | | - Helga Medek
- Department of Obstetrics and Gynecology, Landspitali University Hospital, 101, Reykjavik, Iceland
| | - Karl Olafsson
- Department of Obstetrics and Gynecology, Landspitali University Hospital, 101, Reykjavik, Iceland
| | - Orri Ingthorsson
- Department of Obstetrics and Gynecology, Akureyri Hospital, 600, Akureyri, Iceland
| | - Valur Gudmundsson
- Department of Obstetrics and Gynecology, Akureyri Hospital, 600, Akureyri, Iceland
| | - Ingileif Jonsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, 101, Reykjavik, Iceland
- Department of Immunology, Landspitali University Hospital, 101, Reykjavik, Iceland
| | | | | | | | | | | | | | | | | | - Pall Melsted
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, 101, Reykjavik, Iceland
| | - Bjarni V Halldorsson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, 101, Reykjavik, Iceland
| | - Sigrun H Lund
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | | | | | | | - Hilma Holm
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | - Vinicius Tragante
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, 101, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, 101, Reykjavik, Iceland
| | - Kristin Jonsdottir
- Department of Obstetrics and Gynecology, Landspitali University Hospital, 101, Reykjavik, Iceland
| | - Thorunn Rafnar
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE Genetics/Amgen, Sturlugata 8, 101, Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, 101, Reykjavik, Iceland.
| |
Collapse
|