1
|
Leponce S, Buxant F, Noël JC. Primary retroperitoneal mucinous carcinoma with BRAF, KIT, NF2, and AR mutations: A case report and review of the literature. Case Rep Womens Health 2025; 45:e00681. [PMID: 39896835 PMCID: PMC11786903 DOI: 10.1016/j.crwh.2025.e00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Primary retroperitoneal mucinous carcinoma is an extremely rare malignancy, posing diagnostic and therapeutic challenges due to its nonspecific clinical presentation and lack of established management guidelines. The present article reports the case of a 39-year-old woman with progressive abdominal bloating and ascites, initially evaluated for a suspected ovarian mass. Imaging studies revealed a large mass with cystic and solid components mimicking an ovarian origin. However, surgical exploration revealed a retroperitoneal mass. Subsequent pathological analysis confirmed the diagnosis of mucinous Mullerian carcinoma. Molecular analysis revealed several mutations, including BRAF (V600E). Surgical resection was successful in treating the mass and the patient was in full remission at two-year follow-up. Despite its rarity, mucinous carcinoma should always be considered in the differential diagnosis of retroperitoneal masses. This case report discusses the anatomopathological features of primary retroperitoneal mucinous carcinoma and highlights the need for further research to elucidate the optimal management strategies and prognostic factors for this rare malignancy.
Collapse
Affiliation(s)
- Sandrine Leponce
- Department of obstetrics and gynaecology, IRIS Hospitals South, 63 rue Jean Paquot, 1050 Brussels, Belgium
| | - Frédéric Buxant
- Department of obstetrics and gynaecology, IRIS Hospitals South, 63 rue Jean Paquot, 1050 Brussels, Belgium
| | - Jean-Christophe Noël
- Department of pathology, Hôpital Universitaire de Bruxelles, Free University of Brussels, 808 route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
2
|
Drymiotou S, Theodorou E, Rallis KS, Nicolaides M, Sideris M. Molecular Biomarkers in Borderline Ovarian Tumors: Towards Personalized Treatment and Prognostic Assessment. Cancers (Basel) 2025; 17:545. [PMID: 39941911 PMCID: PMC11816664 DOI: 10.3390/cancers17030545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Borderline Ovarian Tumours (BOTs) are a heterogenous group of ovarian neoplasms which have increased mitotic activity but lack stromal invasion. We performed a narrative review of the literature, aiming to identify prognostic molecular biomarkers that can potentially be used for treatment personalisation. We identified and discussed BRAF/KRAS, Cancer Antigen 125 (Ca 125), Calprotectin, p16ink4a, and Microsatellite instability (MSI) as the most studied biomarkers related to BOTs. Overall, BRAF and KRAS mutations are associated with earlier-stage and favourable prognosis; KRASmt may indicate extraovarian disease in serous BOT (sBOT). Ca125, the only currently clinically used biomarker, can be assessed pre-operatively and has an established role in post-operative surveillance, especially when it is raised pre-operatively or a high potential for malignant transformation is suspected post-operatively. p16ink4a expression trends could also indicate the malignant transformation of the tumour. Calprotectin has an inferior specificity to Ca125 and is not yet established as a biomarker, whilst there is very limited evidence available for MSI. As new evidence is coming along with artificial intelligence platforms, these biomarkers can be integrated and used towards the development of a precision model for treatment stratification and counselling in women diagnosed with BOTs.
Collapse
Affiliation(s)
- Stefania Drymiotou
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK; (S.D.); (E.T.); (K.S.R.)
| | - Efthymia Theodorou
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK; (S.D.); (E.T.); (K.S.R.)
| | - Kathrine Sofia Rallis
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK; (S.D.); (E.T.); (K.S.R.)
| | - Marios Nicolaides
- Guy’s and St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London SE1 7EH, UK;
| | - Michail Sideris
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK; (S.D.); (E.T.); (K.S.R.)
- Wolfson Institute of Population Health, Queen Mary University of London, Charterhouse Square Campus, Barbican, London EC1M 6BQ, UK
| |
Collapse
|
3
|
Wang Y, Peng L, Ye W, Lu Y. Multimodal diagnostic strategies and precision medicine in mucinous ovarian carcinoma: a comprehensive approach. Front Oncol 2024; 14:1391910. [PMID: 39040449 PMCID: PMC11260671 DOI: 10.3389/fonc.2024.1391910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Mucinous ovarian carcinoma (MOC) represents a distinct entity within ovarian malignancies, characterized by diagnostic challenges due to its rarity and the potential overlap with other tumor types. The determination of tumor origin is important for precise postsurgical treatment. This article highlights the accurate diagnosis and management of MOC, including the use of imaging modalities, serological tumor markers, immunohistochemistry, and genomic analyses. Transabdominal and transvaginal ultrasonography, complemented by MRI and CT, plays a pivotal role in differentiating MOC from other mucinous tumors and in surgical planning, particularly for fertility preservation. Serological markers like CA19-9, CA-125, and CEA, though not definitive, provide valuable preoperative insights. Immunohistochemistry aids in distinguishing primary MOC from metastatic mucinous carcinomas, while genomic profiling offers the potential for precision medicine through the identification of specific molecular signatures and treatment susceptibilities. Despite advancements in diagnostic techniques, no single method conclusively differentiates between primary and metastatic tumors intraoperatively. The paper reviews the origins, diagnosis, and differential diagnosis of primary mucinous ovarian carcinoma highlights the need for a multimodal diagnostic approach and advocates for the inclusion of MOC patients in clinical trials for personalized therapies, recognizing the heterogeneity of the disease at the molecular level.
Collapse
Affiliation(s)
- Yue Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Lina Peng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanlu Ye
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanming Lu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Sadlecki P, Walentowicz-Sadlecka M. Molecular landscape of borderline ovarian tumours: A systematic review. Open Med (Wars) 2024; 19:20240976. [PMID: 38859878 PMCID: PMC11163159 DOI: 10.1515/med-2024-0976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 06/12/2024] Open
Abstract
Borderline ovarian tumours (BOTs) show intriguing characteristics distinguishing them from other ovarian tumours. The aim of the systematic review was to analyse the spectrum of molecular changes found in BOTs and discuss their significance in the context of the overall therapeutic approach. The systematic review included articles published between 2000 and 2023 in the databases: PubMed, EMBASE, and Cochrane. After a detailed analysis of the available publications, we qualified for the systematic review: 28 publications on proto-oncogenes: BRAF, KRAS, NRAS, ERBB2, and PIK3CA, 20 publications on tumour suppressor genes: BRCA1/2, ARID1A, CHEK2, PTEN, 4 on adhesion molecules: CADM1, 8 on proteins: B-catenin, claudin-1, and 5 on glycoproteins: E-Cadherin. In addition, in the further part of the systematic review, we included eight publications on microsatellite instability and three describing loss of heterozygosity in BOT. Molecular changes found in BOTs can vary on a case-by-case basis, identifying carcinogenic mutations through molecular analysis and developing targeted therapies represent significant advancements in the diagnosis and treatment of ovarian malignancies. Molecular studies have contributed significantly to our understanding of BOT pathogenesis, but substantial research is still required to elucidate the relationship between ovarian neoplasms and extraneous disease, identify accurate prognostic indicators, and develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Pawel Sadlecki
- Medical Department, University of Science and Technology, Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, Regional Polyclinical Hospital, Grudziadz, Poland
| | - Malgorzata Walentowicz-Sadlecka
- Medical Department, University of Science and Technology, Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, Regional Polyclinical Hospital, Grudziadz, Poland
| |
Collapse
|
5
|
Dundr P, Hájková N, Kendall Bártů M, Cibula D, Drozenová J, Fabian P, Fadare O, Frühauf F, Hausnerová J, Hojný J, Laco J, Lax SF, Matěj R, Méhes G, Michálková R, Němejcová K, Singh N, Stolnicu S, Švajdler M, Zima T, McCluggage WG, Stružinská I. Refined criteria for p53 expression in ovarian mucinous tumours are highly concordant with TP53 mutation status, but p53 expression/TP53 status lack prognostic significance. Pathology 2023; 55:785-791. [PMID: 37500307 DOI: 10.1016/j.pathol.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/06/2023] [Accepted: 04/30/2023] [Indexed: 07/29/2023]
Abstract
In gynecological neoplasms, immunohistochemical (IHC) expression of p53 is generally an accurate predictor of TP53 mutation status if correctly interpreted by the pathologist. However, the literature concerning cut-offs, frequency and prognostic significance of p53 staining in ovarian mucinous tumours is limited and heterogeneous. We performed an analysis of 123 primary ovarian mucinous tumours including mucinous borderline tumours (MBT), mucinous carcinomas (MC), and tumours with equivocal features between MBT and MC. We assessed p53 expression for the three recognised patterns of aberrant staining in ovarian carcinoma [overexpression ('all'), null and cytoplasmic] but using a recently suggested cut-off for aberrant overexpression in ovarian mucinous tumours (strong nuclear p53 staining in ≥12 consecutive tumour cells) and correlated the results with next generation sequencing (NGS) in all qualitatively sufficient cases (92/123). Aberrant p53 expression was present in 25/75 (33.3%) MBT, 23/33 (69.7%) MC (75% of MC with expansile invasion and 61.5% with infiltrative invasion), and 10/15 (66.7%) tumours equivocal between MBT and MC. Regarding the 92 tumours with paired IHC and mutation results, 86 showed concordant results and six cases were discordant. Three discordant MBT cases showed aberrant expression but were TP53 wild-type on sequencing. Three cases had normal p53 expression but contained a TP53 mutation. Overall, IHC predicted the TP53 mutation status with high sensitivity (94.1%) and specificity (92.7%). The accuracy of IHC was 93.5% with a positive predictive value of 94.1% and a negative predictive value of 92.7%. When comparing MC cases with wild-type TP53 versus those with TP53 mutation, there were no significant differences concerning disease-free survival, local recurrence-free survival, or metastases-free survival (p>0.05). In the MBT subgroup, there were no events for survival analyses. In conclusion, using an independent large sample set of ovarian mucinous tumours, the results of our study confirm that the suggested refined cut-off of strong nuclear p53 staining in ≥12 consecutive tumour cells reflect high accuracy, sensitivity and specificity for an underlying TP53 mutation but the TP53 mutation status has no prognostic significance in either MC or MBT.
Collapse
Affiliation(s)
- Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Nikola Hájková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michaela Kendall Bártů
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - David Cibula
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Drozenová
- Department of Pathology, Charles University, 3rd Faculty of Medicine, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Pavel Fabian
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Oluwole Fadare
- Department of Pathology, University of California San Diego, San Diego, CA, USA
| | - Filip Frühauf
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jitka Hausnerová
- Department of Pathology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Jan Hojný
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| | - Sigurd F Lax
- Department of Pathology, General Hospital Graz II, Graz, Austria; Johannes Kepler University Linz, Austria
| | - Radoslav Matěj
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Department of Pathology, Charles University, 3rd Faculty of Medicine, University Hospital Kralovske Vinohrady, Prague, Czech Republic; Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Romana Michálková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kristýna Němejcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Naveena Singh
- Department of Cellular Pathology, Barts Health NHS Trust, Blizard Institute of Core Pathology, Queen Mary University of London, London, UK
| | - Simona Stolnicu
- Department of Pathology, George E. Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Romania
| | - Marián Švajdler
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, UK
| | - Ivana Stružinská
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
6
|
Razia S, Nakayama K, Yamashita H, Ishibashi T, Ishikawa M, Kanno K, Sato S, Kyo S. Histological and Genetic Diversity in Ovarian Mucinous Carcinomas: A Pilot Study. Curr Oncol 2023; 30:4052-4059. [PMID: 37185420 PMCID: PMC10137024 DOI: 10.3390/curroncol30040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/17/2023] Open
Abstract
Tumor heterogeneity remains an ongoing challenge in the field of cancer therapy. Intratumor heterogeneity significantly complicates the diagnosis of cancer and presents challenging clinical problems due to resistance to drug therapy. This study aimed to elucidate the genetic changes histologically (mucinous cystadenoma (MCA), mucinous borderline tumor (MBT), and mucinous ovarian carcinoma (MOC)) in a portion of mucinous ovarian tumors within the same sample. Seven tumor samples obtained from different patients were used to evaluate the genetic mutations in each component. Intratumor genetic heterogeneity was observed in all patients; among them, BRAF (V600E) and p53 (T118I, P142S, T150I, and T170M) point mutations were observed in the MBT component, while KRAS (G12D and G13D) and PIK3CA (E545K) mutations were found in the MOC component. The current findings suggest that diverse genetic alterations occur in mucinous tumors, according to tumor histology. Tumor heterogeneity and genetic diversity in mucinous ovarian tumors might be the cause of treatment failure. Knowledge of intertumor heterogeneity may lead to an increased understanding of the tumor response to treatment.
Collapse
Affiliation(s)
- Sultana Razia
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Hitomi Yamashita
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Kosuke Kanno
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Seiya Sato
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| |
Collapse
|
7
|
Dundr P, Bártů M, Bosse T, Bui QH, Cibula D, Drozenová J, Fabian P, Fadare O, Hausnerová J, Hojný J, Hájková N, Jakša R, Laco J, Lax SF, Matěj R, Méhes G, Michálková R, Šafanda A, Němejcová K, Singh N, Stolnicu S, Švajdler M, Zima T, Stružinská I, McCluggage WG. Primary Mucinous Tumors of the Ovary: An Interobserver Reproducibility and Detailed Molecular Study Reveals Significant Overlap Between Diagnostic Categories. Mod Pathol 2023; 36:100040. [PMID: 36788074 DOI: 10.1016/j.modpat.2022.100040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 01/19/2023]
Abstract
Primary ovarian mucinous tumors represent a heterogeneous group of neoplasms, and their diagnosis may be challenging. We analyzed 124 primary ovarian mucinous tumors originally diagnosed as mucinous borderline tumors (MBTs) or mucinous carcinomas (MCs), with an emphasis on interobserver diagnostic agreement and the potential for diagnostic support by molecular profiling using a next-generation sequencing targeted panel of 727 DNA and 147 RNA genes. Fourteen experienced pathologists independently assigned a diagnosis from preset options, based on a review of a single digitized slide from each tumor. After excluding 1 outlier participant, there was a moderate agreement in diagnosing the 124 cases when divided into 3 categories (κ = 0.524, for mucinous cystadenoma vs MBT vs MC). A perfect agreement for the distinction between mucinous cystadenoma/MBT as a combined category and MC was found in only 36.3% of the cases. Differentiating between MBTs and MCs with expansile invasion was particularly problematic. After a reclassification of the tumors into near-consensus diagnostic categories on the basis of the initial participant results, a comparison of molecular findings between the MBT and MC groups did not show major and unequivocal differences between MBTs and MCs or between MCs with expansile vs infiltrative pattern of invasion. In contrast, HER2 overexpression or amplification was found only in 5.3% of MBTs and in 35.3% of all MCs and in 45% of MCs with expansile invasion. Overall, HER2 alterations, including mutations, were found in 42.2% of MCs. KRAS mutations were found in 65.5% and PIK3CA mutations in 6% of MCs. In summary, although the diagnostic criteria are well-described, diagnostic agreement among our large group of experienced gynecologic pathologists was only moderate. Diagnostic categories showed a molecular overlap. Nonetheless, molecular profiling may prove to be therapeutically beneficial in advanced-stage, recurrent, or metastatic MCs.
Collapse
Affiliation(s)
- Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Michaela Bártů
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Quang Hiep Bui
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - David Cibula
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Drozenová
- Department of Pathology, Charles University, Third Faculty of Medicine, University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Pavel Fabian
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Oluwole Fadare
- Department of Pathology, University of California San Diego, San Diego, California
| | - Jitka Hausnerová
- Department of Pathology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Jan Hojný
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Nikola Hájková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Radek Jakša
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine Hradec Králové and University Hospital in Hradec Králové, Czech Republic
| | - Sigurd F Lax
- Department of Pathology, General Hospital Graz II, Graz, Austria; Johannes Kepler University Linz, Linz, Austria
| | - Radoslav Matěj
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Department of Pathology, Charles University, Third Faculty of Medicine, University Hospital Královské Vinohrady, Prague, Czech Republic; Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Romana Michálková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Adam Šafanda
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kristýna Němejcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Naveena Singh
- Department of Cellular Pathology, Barts Health NHS Trust, London, United Kingdom; Blizard Institute of Core Pathology, Queen Mary University of London, London, United Kingdom
| | - Simona Stolnicu
- Department of Pathology, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Romania
| | - Marián Švajdler
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ivana Stružinská
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, United Kingdom
| |
Collapse
|
8
|
Abstract
The RAS family of proteins is among the most frequently mutated genes in human malignancies. In ovarian cancer (OC), the most lethal gynecological malignancy, RAS, especially KRAS mutational status at codons 12, 13, and 61, ranges from 6-65% spanning different histo-types. Normally RAS regulates several signaling pathways involved in a myriad of cellular signaling cascades mediating numerous cellular processes like cell proliferation, differentiation, invasion, and death. Aberrant activation of RAS leads to uncontrolled induction of several downstream signaling pathways such as RAF-1/MAPK (mitogen-activated protein kinase), PI3K phosphoinositide-3 kinase (PI3K)/AKT, RalGEFs, Rac/Rho, BRAF (v-Raf murine sarcoma viral oncogene homolog B), MEK1 (mitogen-activated protein kinase kinase 1), ERK (extracellular signal-regulated kinase), PKB (protein kinase B) and PKC (protein kinase C) involved in cell proliferation as well as maintenance pathways thereby driving tumorigenesis and cancer cell propagation. KRAS mutation is also known to be a biomarker for poor outcome and chemoresistance in OC. As a malignancy with several histotypes showing varying histopathological characteristics, we focus on reviewing recent literature showcasing the involvement of oncogenic RAS in mediating carcinogenesis and chemoresistance in OC and its subtypes.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Hamad Medical Corporation, Doha, Qatar, 3050, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
| | - Anjana Anand
- Hamad Medical Corporation, Doha, Qatar, 3050, Qatar
| | | | | | - Hesham M. Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
| | - Shahab Uddin
- Hamad Medical Corporation, Doha, Qatar, 3050, Qatar
| |
Collapse
|
9
|
Beroukhim G, Ozgediz D, Cohen PJ, Hui P, Morotti R, Schwartz PE, Yang-Hartwich, Vash-Margita A. Progression of Cystadenoma to Mucinous Borderline Ovarian Tumor in Young Females: Case Series and Literature Review. J Pediatr Adolesc Gynecol 2022; 35:359-367. [PMID: 34843973 DOI: 10.1016/j.jpag.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
STUDY OBJECTIVE To study the progression of benign ovarian lesions to mucinous borderline ovarian tumors (mBOTs); analyze the clinicopathologic features, diagnosis, and management of mBOTs in pediatric and adolescent girls; and provide a review of the literature on mBOTs in this population. DESIGN Retrospective chart review of female adolescents younger than 18 years diagnosed with mBOTs between July 2017 and February 2021. SETTING Yale New Haven Hospital, New Haven, Connecticut; and Yale New Haven Health Bridgeport Hospital, Bridgeport, Connecticut. PARTICIPANTS Three female patients diagnosed with mBOTs between ages 12 and 17 years. INTERVENTIONS None. MAIN OUTCOME MEASURES Clinical presentation, preoperative characteristics, surgical technique, histology, tumor stage, treatment, progression, outcome, and rate of recurrence. RESULTS Three adolescent patients were identified to have mBOTs. All three patients presented with a chief complaint of abdominal pain. One of the 3 patients was premenarchal at presentation. Two of the 3 patients were initially diagnosed with a mucinous cystadenoma and had recurrences of an ovarian cyst in the same ovary within 5 and 17 months, respectively. Pathology of the recurrent cyst was consistent with mBOT. Two of the 3 patients initially underwent cystectomy, and all ultimately had a unilateral salpingo-oophorectomy. Subsequent surveillance over 2 to 4 years found no evidence of disease recurrence. CONCLUSION mBOTs are rare in the pediatric and adolescent population and could arise from benign ovarian tumors.
Collapse
Affiliation(s)
- Gabriela Beroukhim
- Department of Obstetrics, Gynecology and Reproductive Sciences at Yale New Haven Hospital and Yale University School of Medicine, New Haven, Connecticut
| | - Doruk Ozgediz
- Department of Pediatric Surgery at University of California, San Francisco (UCSF), San Francisco, California
| | - Paul J Cohen
- Department of Pathology at Bridgeport Hospital and Yale University, New Haven, Connecticut
| | - Pei Hui
- Department of Pathology at Yale New Haven Hospital and Yale University, New Haven, Connecticut
| | - Raffaella Morotti
- Department of Pathology at Yale New Haven Hospital and Yale University, New Haven, Connecticut
| | - Peter E Schwartz
- Department of Obstetrics, Gynecology and Reproductive Sciences at Yale New Haven Hospital and Yale University School of Medicine, New Haven, Connecticut
| | - Yang-Hartwich
- Department of Obstetrics, Gynecology and Reproductive Sciences at Yale New Haven Hospital and Yale University School of Medicine, New Haven, Connecticut; Yale Cancer Center, New Haven, Connecticut
| | - Alla Vash-Margita
- Department of Obstetrics, Gynecology and Reproductive Sciences at Yale New Haven Hospital and Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
10
|
Mutation Profiles of Ovarian Seromucinous Borderline Tumors in Japanese Patients. Curr Oncol 2022; 29:3658-3667. [PMID: 35621684 PMCID: PMC9139622 DOI: 10.3390/curroncol29050294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian seromucinous tumors (SMBTs) are relatively rare, and their carcinogenesis is largely unknown. In this study, the molecular features of SMBTs in Japan are assessed. DNA was extracted from microdissected paraffin-embedded sections from 23 SMBT cases. Genetic mutations (KRAS, BRAF, PIK3CA, and ERBB2) were evaluated using Sanger sequencing. Immunohistochemistry for p53, ARID1A, and PTEN was also performed as a surrogate for the loss of functional mutations in these tumor suppressor genes. The prevalence of KRAS, BRAF, PIK3CA, and ERBB2 mutations was 4.3% (1/23), 8.6% (2/23), 8.6% (2/23), and 17.3% (4/23), respectively. Overexpression or loss of p53 expression occurred in 26% (6/23), loss of ARID1A expression in 4.3% (1/23), and none of the cases showed expression of PTEN loss. These findings suggest that KRAS/BRAF/PIK3CA and PTEN mutations are rare carcinogenic events in SMBTs. The high frequency of positive p53 staining and a low frequency of loss of ARID1A staining suggests that SMBT carcinogenesis may be related to the alteration of p53 rather than that of ARID1A. ERBB2 oncogenic mutations may play an important role in the tumorigenesis of Japanese SMBTs.
Collapse
|
11
|
Dysregulated Immunological Functionome and Dysfunctional Metabolic Pathway Recognized for the Pathogenesis of Borderline Ovarian Tumors by Integrative Polygenic Analytics. Int J Mol Sci 2021; 22:ijms22084105. [PMID: 33921111 PMCID: PMC8071470 DOI: 10.3390/ijms22084105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
The pathogenesis and molecular mechanisms of ovarian low malignant potential (LMP) tumors or borderline ovarian tumors (BOTs) have not been fully elucidated to date. Surgery remains the cornerstone of treatment for this disease, and diagnosis is mainly made by histopathology to date. However, there is no integrated analysis investigating the tumorigenesis of BOTs with open experimental data. Therefore, we first utilized a functionome-based speculative model from the aggregated obtainable datasets to explore the expression profiling data among all BOTs and two major subtypes of BOTs, serous BOTs (SBOTs) and mucinous BOTs (MBOTs), by analyzing the functional regularity patterns and clustering the separate gene sets. We next prospected and assembled the association between these targeted biomolecular functions and their related genes. Our research found that BOTs can be accurately recognized by gene expression profiles by means of integrative polygenic analytics among all BOTs, SBOTs, and MBOTs; the results exhibited the top 41 common dysregulated biomolecular functions, which were sorted into four major categories: immune and inflammatory response-related functions, cell membrane- and transporter-related functions, cell cycle- and signaling-related functions, and cell metabolism-related functions, which were the key elements involved in its pathogenesis. In contrast to previous research, we identified 19 representative genes from the above classified categories (IL6, CCR2 for immune and inflammatory response-related functions; IFNG, ATP1B1, GAS6, and PSEN1 for cell membrane- and transporter-related functions; CTNNB1, GATA3, and IL1B for cell cycle- and signaling-related functions; and AKT1, SIRT1, IL4, PDGFB, MAPK3, SRC, TWIST1, TGFB1, ADIPOQ, and PPARGC1A for cell metabolism-related functions) that were relevant in the cause and development of BOTs. We also noticed that a dysfunctional pathway of galactose catabolism had taken place among all BOTs, SBOTs, and MBOTs from the analyzed gene set databases of canonical pathways. With the help of immunostaining, we verified significantly higher performance of interleukin 6 (IL6) and galactose-1-phosphate uridylyltransferase (GALT) among BOTs than the controls. In conclusion, a bioinformatic platform of gene-set integrative molecular functionomes and biophysiological pathways was constructed in this study to interpret the complicated pathogenic pathways of BOTs, and these important findings demonstrated the dysregulated immunological functionome and dysfunctional metabolic pathway as potential roles during the tumorigenesis of BOTs and may be helpful for the diagnosis and therapy of BOTs in the future.
Collapse
|
12
|
Dundr P, Singh N, Nožičková B, Němejcová K, Bártů M, Stružinská I. Primary mucinous ovarian tumors vs. ovarian metastases from gastrointestinal tract, pancreas and biliary tree: a review of current problematics. Diagn Pathol 2021; 16:20. [PMID: 33706757 PMCID: PMC7953678 DOI: 10.1186/s13000-021-01079-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 01/10/2023] Open
Abstract
Background Making the distinction between primary mucinous and metastatic ovarian tumors is often difficult, especially in tumors with a primary source from the gastrointestinal tract, pancreas and biliary tree. The aim of the following paper is to provide an overview of the problematics, with a focus on the possibilities of the differential diagnosis at the macroscopic, microscopic and immunohistochemical level. Main body The three main aspects of mucinous ovarian tumors are described in detail, including the comparison of the available diagnostic algorithms based on the evaluation of mostly macroscopic features, characterization of the spectrum of microscopic features, and a detailed analysis of the immunophenotype comparing 20 antibodies with the assessment of their statistical significance for differential diagnosis purposes. Specific features, including Krukenberg tumor and pseudomyxoma peritonei, are also discussed. Conclusion Despite the growing knowledge of the macroscopic and microscopic features of ovarian mucinous tumors and the availability of a wide range of immunohistochemical antibodies useful in this setting, there still remains a group of tumors which cannot be precisely classified without close clinical-pathological cooperation.
Collapse
Affiliation(s)
- Pavel Dundr
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic.
| | - Naveena Singh
- Department of Cellular Pathology, Barts Health NHS Trust, Queen Mary University of London, London, UK.,Blizard Institute of Core Pathology, Queen Mary University of London, London, UK
| | - Barbora Nožičková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Kristýna Němejcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Michaela Bártů
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Ivana Stružinská
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| |
Collapse
|