2
|
Shikonin inhibits growth, invasion and glycolysis of nasopharyngeal carcinoma cells through inactivating the phosphatidylinositol 3 kinase/AKT signal pathway. Anticancer Drugs 2021; 31:932-941. [PMID: 32282369 DOI: 10.1097/cad.0000000000000920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor which is commonly found in East Asia and Africa. The present clinical treatment of NPC is still mainly based on chemotherapeutics and is prone to drug resistance and adverse reactions. Shikonin has been demonstrated to play the antitumor effect in various cancers. However, the specific effects and related regulatory mechanism of Shikonin in NPC have not been clearly declared yet. Cell viability was valued through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation was detected through colony formation assay and Bromodeoxyuridine (BrdU) assay. Hochest 33258 staining was used to value cell apoptosis. Cell migration and invasion were valued through wound healing and transwell invasion assay, respectively. Glucose uptake, lactate release, ATP level and pyruvate kinase M2 isoform (PKM2) activity were measured using corresponding assay kits. Western blotting was used to examine the expression of proteins related to cell proliferation, cell apoptosis, cell migration and the phosphatidylinositol 3 kinase (PI3K)/AKT signal pathway. We found that Shikonin treatment effectively suppressed cell proliferation and induced obvious cell apoptosis compared with the control. Besides, Shikonin treatment suppressed cell migration and invasion effectively. The detection about glycolysis showed that Shikonin treatment suppressed cell glucose uptake, lactate release and ATP level. The activity of PKM2 was also largely inhibited by Shikonin. Further study revealed that the PI3K/AKT signal pathway was inactivated by Shikonin treatment. In addition, the inducer of the PI3K/AKT signal pathway largely abolished the antitumor effect of Shikonin on cell proliferation, cell apoptosis, cell mobility and aerobic glycolysis in NPC cells. Shikonin inhibits growth and invasion of NPC cells through inactivating the PI3K/AKT signal pathway.
Collapse
|
3
|
Xu Y, Huang T, Mao M, Zhai J, Chen J. Metastatic Patterns and Prognosis of de novo Metastatic Nasopharyngeal Carcinoma in the United States. Laryngoscope 2020; 131:E1130-E1138. [PMID: 32833262 DOI: 10.1002/lary.28983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To evaluate the distant metastatic patterns and prognostic factors for overall survival (OS) and cancer-specific survival (CSS) in de novo metastatic nasopharyngeal carcinoma (mNPC) using the Surveillance, Epidemiology, and End Results (SEER) database. METHODS Patients with de novo mNPC who had been diagnosed between 2004 and 2016 were identified from the SEER database. Kaplan-Meier analysis was used to calculate OS and CSS. Log-rank tests were employed to measure survival variation among subgroups. Individual predictors of CSS and OS were examined using Cox proportional-hazards regression models in patients with de novo mNPC. RESULTS We evaluated 224 patients with de novo mNPC who matched our inclusion criteria. Three-year CSS and OS for the whole cohort was 29.8% and 27.9%, respectively. Univariate analysis indicated that CSS and OS were influenced by age, histology, radiotherapy, chemotherapy, and liver metastasis. Neither the number of metastatic sites nor their specific location in bone, lungs, distant lymph nodes or brain significantly affected CSS or OS. The aforementioned independent prognosticators continued to significantly influence survival following multivariate analysis. Taking distant metastasis without liver involvement as a reference, liver metastasis was associated significantly with shorter OS at a hazard ratio (HR) of 1.581 (P = .021) and CSS at a HR of 1.643 (P = .016). Older age, keratinizing squamous cell carcinoma, no chemotherapy, and no radiotherapy were also prognosticators for poor OS (P < .05). Similar results were documented for CSS (P < .05). CONCLUSION For patients with de novo mNPC, liver metastasis is an independent prognosticator for inferior CSS and OS. LEVEL OF EVIDENCE 3a Laryngoscope, 131:E1130-E1138, 2021.
Collapse
Affiliation(s)
- Yali Xu
- Department of Otolaryngology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Taoyuan Huang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Min Mao
- Department of Otolaryngology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jinming Zhai
- Department of Otolaryngology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jinhai Chen
- Department of Otolaryngology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
4
|
Chen S, Youhong T, Tan Y, He Y, Ban Y, Cai J, Li X, Xiong W, Zeng Z, Li G, Yi M, Liu W, Xiang B. EGFR-PKM2 signaling promotes the metastatic potential of nasopharyngeal carcinoma through induction of FOSL1 and ANTXR2. Carcinogenesis 2020; 41:723-733. [PMID: 31665243 PMCID: PMC7351130 DOI: 10.1093/carcin/bgz180] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/13/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is notorious for its aggressiveness and high metastatic potential. NPC patients with distant metastasis have a particularly poor prognosis; however, evaluating metastatic potential by expression profiles of primary tumors is challenging. This study aimed to investigate the association between activation of epidermal growth factor receptor (EGFR) signaling and NPC metastasis and the underlying mechanisms. We found an association between EGFR protein overexpression and intense EGFR immunostaining in NPC samples with advanced tumor node metastasis stage, clinical stage, and distant metastasis in NPC patients. Exogenous EGF stimulates NPC mobility and invasiveness in vitro. Activation of EGFR signaling prompted PKM2 translocation to the nucleus. Silencing either EGFR or PKM2 attenuates NPC cell aggressiveness in vitro and in vivo. Blocking EGFR signaling with cetuximab suppressed NPC cell invasiveness in vitro and metastatic potential in vivo. Comprehensive analyses of transcriptome profiles indicated that the EGFR-PKM2 axis activates a number of novel metastasis promoters, including F3, FOSL1, EPHA2, ANTXR2, and AKR1C2. Finally, we found that the metastasis-promoting function of the EGFR-PKM2 axis is dependent on nuclear PKM2 regulation of the transcription of metastasis-related genes, including FOSL1 and ANTXR2. Our study indicates that EGFR-PKM2 signaling promotes NPC cell invasion and metastasis through induction of FOSL1 and ANTXR2 and identifies EGFR as a promising biomarker for predicting the risk of distant metastasis.
Collapse
Affiliation(s)
- Shengnan Chen
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| | - Tang Youhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Yixin Tan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan
| | - Yuxiang He
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Yuanyuan Ban
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| | - Jing Cai
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| | - Xiaoling Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| | - Wei Xiong
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| | - Zhaoyang Zeng
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| | - Guiyuan Li
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| | - Mei Yi
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Wei Liu
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Department of Endocrinology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiang
- Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha, Hunan
- NHC Key Laboratory of Carcinogenesis (Central South University) and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan
| |
Collapse
|
5
|
Nong S, Pan X, Chen K, Li Y, Zhu X. Therapeutic Effect of Chemotherapy Cycle in Nasopharyngeal Carcinoma (NPC) Patients Who Developed Bone-Only Metastasis. Med Sci Monit 2020; 26:e922244. [PMID: 32541642 PMCID: PMC7315802 DOI: 10.12659/msm.922244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background To compare the effects of chemotherapy dose escalation on survival and prognosis of nasopharyngeal carcinoma (NPC) patients who developed bone-only metastasis. Material/Methods Between October 2000 to March 2017, 58 NPC patients with initial bone-only metastasis were retrospectively analyzed. Patients who received <6 or ≥6 cycles of chemotherapy were matched and grouped using receiver operating characteristic curve (ROC) analysis. Overall survival (OS) was assessed using the Kaplan-Meier method, log-rank test, and Cox regression analysis. Results The median OS for the entire group was 24 months, while the 1-, 2-, and 3-year OS rates were 78.5%, 49.4%, and 26.8%, respectively. The median OS for patients who received <6 cycles of chemotherapy was 21 months, with 1-, 2-, and 3-year OS rates of 64.8%, 34.3%, and 17.2%, respectively. The median OS of patients who received ≥6 cycles of chemotherapy was 26 months, with 1-, 2-, and 3-year OS rates of 92.6%, 54.9%, and 30.9%, respectively. Multivariate analysis showed that the number of metastatic sites (≥3 vs. <3) and chemotherapy cycles (<6 vs. ≥6) were independent prognostic factors for OS. Conclusions NPC patients who had less than 3 bone metastatic sites and who received ≥6 cycles of chemotherapy had better survival and prognosis.
Collapse
Affiliation(s)
- Sikai Nong
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Xinbin Pan
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Kaihua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Ye Li
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| |
Collapse
|