1
|
Justin Margret J, Jayasankaran C, Amritkumar P, Azaiez H, Srisailapathy CRS. Unraveling the Genetic Basis of Combined Deafness and Male Infertility Phenotypes through High-Throughput Sequencing in a Unique Cohort from South India. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300206. [PMID: 38884051 PMCID: PMC11170077 DOI: 10.1002/ggn2.202300206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/15/2024] [Indexed: 06/18/2024]
Abstract
The co-occurrence of sensorineural hearing loss and male infertility has been reported in several instances, suggesting potential shared genetic underpinnings. One such example is the contiguous gene deletion of CATSPER2 and STRC genes, previously associated with deafness-infertility syndrome (DIS) in males. Fifteen males with both hearing loss and infertility from southern India after exclusion for the DIS contiguous gene deletion and the FOXI1 gene mutations are subjected to exome sequencing. This resolves the genetic etiology in four probands for both the phenotypes; In the remaining 11 probands, two each conclusively accounted for deafness and male infertility etiologies. Genetic heterogeneity is well reflected in both phenotypes. Four recessive (TRIOBP, SLC26A4, GJB2, COL4A3) and one dominant (SOX10) for the deafness; six recessive genes (LRGUK, DNAH9, ARMC4, DNAH2, RSPH6A, and ACE) for male infertility can be conclusively ascribed. LRGUK and RSPH6A genes are implicated earlier only in mice models, while the ARMC4 gene is implicated in chronic destructive airway diseases due to primary ciliary dyskinesia. This study would be the first to document the role of these genes in the male infertility phenotype in humans. The result suggests that deafness and infertility are independent events and do not segregate together among the probands.
Collapse
Affiliation(s)
- Jeffrey Justin Margret
- Department of Genetics Dr. ALM Post Graduate Institute of Basic Medical Sciences University of Madras Taramani Campus Chennai 600 113 India
- Department of Pediatrics Louisiana State University Health Sciences Center Shreveport LA 71103 USA
| | - Chandru Jayasankaran
- Department of Genetics Dr. ALM Post Graduate Institute of Basic Medical Sciences University of Madras Taramani Campus Chennai 600 113 India
- Department of Personalized Health Care Roche Products India Pvt., Ltd. Bengaluru Karnataka 560 025 India
| | - Pavithra Amritkumar
- Department of Genetics Dr. ALM Post Graduate Institute of Basic Medical Sciences University of Madras Taramani Campus Chennai 600 113 India
- Meenakshi Academy of Higher Education and Research (MAHER) Chennai 600 078 India
| | - Hela Azaiez
- Department of Otolaryngology Carver College of Medicine University of Iowa Iowa City Iowa 52242 USA
| | - C R Srikumari Srisailapathy
- Department of Genetics Dr. ALM Post Graduate Institute of Basic Medical Sciences University of Madras Taramani Campus Chennai 600 113 India
| |
Collapse
|
2
|
Different Rates of the SLC26A4-Related Hearing Loss in Two Indigenous Peoples of Southern Siberia (Russia). Diagnostics (Basel) 2021; 11:diagnostics11122378. [PMID: 34943614 PMCID: PMC8699871 DOI: 10.3390/diagnostics11122378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Hereditary hearing loss (HL) is known to be highly locus/allelic heterogeneous, and the prevalence of different HL forms significantly varies among populations worldwide. Investigation of region-specific landscapes of hereditary HL is important for local healthcare and medical genetic services. Mutations in the SLC26A4 gene leading to nonsyndromic recessive deafness (DFNB4) and Pendred syndrome are common genetic causes of hereditary HL, at least in some Asian populations. We present for the first time the results of a thorough analysis of the SLC26A4 gene by Sanger sequencing in the large cohorts of patients with HL of unknown etiology belonging to two neighboring indigenous Turkic-speaking Siberian peoples (Tuvinians and Altaians). A definite genetic diagnosis based on the presence of biallelic SLC26A4 mutations was established for 28.2% (62/220) of all enrolled Tuvinian patients vs. 4.3% (4/93) of Altaian patients. The rate of the SLC26A4-related HL in Tuvinian patients appeared to be one of the highest among populations worldwide. The SLC26A4 mutational spectrum was characterized by the presence of Asian-specific mutations c.919-2A>G and c.2027T>A (p.Leu676Gln), predominantly found in Tuvinian patients, and c.2168A>G (p.His723Arg), which was only detected in Altaian patients. In addition, a novel pathogenic variant c.1545T>G (p.Phe515Leu) was found with high frequency in Tuvinian patients. Overall, based on the findings of this study and our previous research, we were able to uncover the genetic causes of HL in 50.5% of Tuvinian patients and 34.5% of Altaian patients.
Collapse
|
3
|
Vanniya S P, Chandru J, Jeffrey JM, Rabinowitz T, Brownstein Z, Krishnamoorthy M, Avraham KB, Cheng L, Shomron N, Srisailapathy CRS. PNPT1, MYO15A, PTPRQ, and SLC12A2-associated genetic and phenotypic heterogeneity among hearing impaired assortative mating families in Southern India. Ann Hum Genet 2021; 86:1-13. [PMID: 34374074 DOI: 10.1111/ahg.12442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
The study was conducted between 2018 and 2020. From a cohort of 113 hearing impaired (HI), five non-DFNB12 probands identified with heterozygous CDH23 variants were subjected to exome analysis. This resolved the etiology of hearing loss (HL) in four South Indian assortative mating families. Six variants, including three novel ones, were identified in four genes: PNPT1 p.(Ala46Gly) and p.(Asn540Ser), MYO15A p.(Leu1485Pro) and p.(Tyr1891Ter), PTPRQ p.(Gln1336Ter), and SLC12A2 p.(Pro988Ser). Compound heterozygous PNPT1 variants were associated with DFNB70 causing prelingual profound sensorineural hearing loss (SNHL), vestibular dysfunction, and unilateral progressive vision loss in one family. In the second family, MYO15A variants in the myosin motor domain, including a novel variant, causing DFNB3, were found to be associated with prelingual profound SNHL. A novel PTPRQ variant was associated with postlingual progressive sensorineural/mixed HL and vestibular dysfunction in the third family with DFNB84A. In the fourth family, the SLC12A2 novel variant was found to segregate with severe-to-profound HL causing DFNA78, across three generations. Our results suggest a high level of allelic, genotypic, and phenotypic heterogeneity of HL in these families. This study is the first to report the association of PNPT1, PTPRQ, and SLC12A2 variants with HL in the Indian population.
Collapse
Affiliation(s)
- Paridhy Vanniya S
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Jayasankaran Chandru
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India.,LifeBytes India Pvt. Ltd., Bengaluru, India
| | - Justin Margret Jeffrey
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Tom Rabinowitz
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zippora Brownstein
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mathuravalli Krishnamoorthy
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Le Cheng
- BGI Genomics, Shenzhen, P. R. China
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - C R Srikumari Srisailapathy
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India
| |
Collapse
|