1
|
Petrikis P, Polyzou A, Premeti K, Roumelioti A, Karampas A, Georgiou G, Grigoriadis D, Leondaritis G. GSK3β and mTORC1 Represent 2 Distinct Signaling Markers in Peripheral Blood Mononuclear Cells of Drug-Naive, First Episode of Psychosis Patients. Schizophr Bull 2022; 48:1136-1144. [PMID: 35757972 PMCID: PMC9434466 DOI: 10.1093/schbul/sbac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is characterized by a complex interplay between genetic and environmental risk factors converging on prominent signaling pathways that orchestrate brain development. The Akt/GSK3β/mTORC1 pathway has long been recognized as a point of convergence and etiological mechanism, but despite evidence suggesting its hypofunction, it is still not clear if this is already established during the first episode of psychosis (FEP). STUDY DESIGN Here, we performed a systematic phosphorylation analysis of Akt, GSK3β, and S6, a mTORC1 downstream target, in fresh peripheral blood mononuclear cells from drug-naive FEP patients and control subjects. STUDY RESULTS Our results suggest 2 distinct signaling endophenotypes in FEP patients. GSK3β hypofunction exhibits a promiscuous association with psychopathology, and it is normalized after treatment, whereas mTORC1 hypofunction represents a stable state. CONCLUSIONS Our study provides novel insight on the peripheral hypofunction of the Akt/GSK3β/mTORC1 pathway and highlights mTORC1 activity as a prominent integrator of altered peripheral immune and metabolic states in FEP patients.
Collapse
Affiliation(s)
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Kyriaki Premeti
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Argyro Roumelioti
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Andreas Karampas
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Georgios Georgiou
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Dionysios Grigoriadis
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridgeshire, UK
| | - George Leondaritis
- To whom correspondence should be addressed; Department of Pharmacology, Faculty of Medicine, School of Health Sciences and Institute of Biosciences, University Research Center of Ioannina, 45110 Ioannina, Greece; tel: +302651007555, fax: +302651007859, e-mail:
| |
Collapse
|
4
|
Xiong Z, Cheng M, Zhu P, Huang S, Guo J, Zhang W, Zhou H, Shu Y, Li Q. Association of blood cell counts with the risk of olanzapine- or clozapine-induced dyslipidemia in Chinese schizophrenia patients. Hum Psychopharmacol 2019; 34:e2699. [PMID: 31273857 DOI: 10.1002/hup.2699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The aim of this study was to investigate correlation of peripheral blood cell counts with the dyslipidemia induced by olanzapine or clozapine in Chinese schizophrenia patients. METHODS A total of 703 eligible schizophrenia patients were enrolled . The counts of red blood cell (RBC), platelet, white blood cell (WBC) and its subtypes, and serum lipids were determined for all participants before and after 2-4 weeks of olanzapine or clozapine treatment. RESULTS The two representative second-generation antipsychotics (SGAs), olanzapine and clozapine, markedly caused dyslipidemia in Chinese schizophrenia patients. The tertiles of total RBC counts were positively associated with the odds of having abnormal triglyceride (p < .01) and high-density lipoprotein cholesterol (HDL-C) levels (.05). The tertiles of platelet counts were also positively associated with the odds of having abnormal total cholesterol (.03), low-density lipoprotein cholesterol (p < .01), HDL-C (.01), and non-HDL-C (p < .01). However, the counts of WBC and its some subtypes were negatively correlated with the risk of dyslipidemia in these patients. CONCLUSION The profile of peripheral blood cells may be an early biomarker for predicting the risk of metabolic disorders and cardiovascular diseases in schizophrenia patients treated with SGAs.
Collapse
Affiliation(s)
- Zongping Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Ming Cheng
- Department of Clinical Psychology, Hunan Brain Hospital, Changsha, 410007, P. R. China
| | - Peng Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Shiqiong Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Jun Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Yan Shu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| |
Collapse
|
5
|
Turner A, McGrath JJ, Dean OM, Dodd S, Baker A, Cotton SM, Scott JG, Kavanagh BE, Ashton MM, Walker AJ, Brown E, Berk M. Protocol and Rationale: A 24-week Double-blind, Randomized, Placebo Controlled Trial of the Efficacy of Adjunctive Garcinia mangostanaLinn. (Mangosteen) Pericarp for Schizophrenia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:297-307. [PMID: 30905130 PMCID: PMC6478095 DOI: 10.9758/cpn.2019.17.2.297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Objective Garcinia mangostana Linn., commonly known as mangosteen, is a tropical fruit with a thick pericarp rind containing bioactive compounds that may be beneficial as an adjunctive treatment for schizophrenia. The biological underpinnings of schizophrenia are believed to involve altered neurotransmission, inflammation, redox systems, mitochondrial dysfunction, and neurogenesis. Mangosteen pericarp contains xanthones which may target these biological pathways and improve symptoms; this is supported by preclinical evidence. Here we outline the protocol for a double-blind randomized placebo-controlled trial evaluating the efficacy of adjunctive mangosteen pericarp (1,000 mg/day), compared to placebo, in the treatment of schizophrenia. Methods We aim to recruit 150 participants across two sites (Geelong and Brisbane). Participants diagnosed with schizophrenia or schizoaffective disorder will be randomized to receive 24 weeks of either adjunctive 1,000 mg/day of mangosteen pericarp or matched placebo, in addition to their usual treatment. The primary outcome measure is mean change in the Positive and Negative Symptom Scale (total score) over the 24 weeks. Secondary outcomes include positive and negative symptoms, general psychopathology, clinical global severity and improvement, depressive symptoms, life satisfaction, functioning, participants reported overall improvement, substance use, cognition, safety and biological data. A 4-week post treatment interview at week 28 will explore post-discontinuations effects. Results Ethical and governance approvals were gained and the trial commenced. Conclusion A positive finding in this study has the potential to provide a new adjunctive treatment option for people with schizophrenia and schizoaffective disorder. It may also lead to a greater understanding of the pathophysiology of the disorder.
Collapse
Affiliation(s)
- Alyna Turner
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health.,Faculty of Health and Medicine, School of Medicine and Public Health, The University of Newcastle.,Department of Psychiatry, University of Melbourne, Royal Melbourne Hospital
| | - John J McGrath
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health.,Queensland Brain Institute, University of Queensland.,National Centre for Register-based Research, School of Business and Social Sciences, Aarhus University
| | - Olivia M Dean
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health.,Department of Psychiatry, University of Melbourne, Royal Melbourne Hospital.,Florey Institute of Neuroscience and Mental Health, University of Melbourne
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health.,Department of Psychiatry, University of Melbourne, Royal Melbourne Hospital.,Centre for Youth Mental Health, The University of Melbourne
| | - Andrea Baker
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health
| | - Susan M Cotton
- Centre for Youth Mental Health, The University of Melbourne.,Orygen, The National Centre of Excellence in Youth Mental Health
| | - James G Scott
- Queensland Centre for Mental Health Research, The Park Centre for Mental Health.,Metro North Mental Health Service.,Faculty of Medicine, The University of Queensland
| | - Bianca E Kavanagh
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health
| | - Melanie M Ashton
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health.,Florey Institute of Neuroscience and Mental Health, University of Melbourne.,Department of Psychiatry, University of Melbourne, Professorial Unit, The Melbourne Clinic
| | - Adam J Walker
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health
| | - Ellie Brown
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health.,Centre for Youth Mental Health, The University of Melbourne.,Orygen, The National Centre of Excellence in Youth Mental Health
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Barwon Health.,Department of Psychiatry, University of Melbourne, Royal Melbourne Hospital.,Florey Institute of Neuroscience and Mental Health, University of Melbourne.,Orygen, The National Centre of Excellence in Youth Mental Health
| |
Collapse
|