1
|
Yang Q, Yao Y, Yuan X, Chen C, Wang Y, Liu H, Zhang K. Effects of subanesthetic repeated esketamine infusions on memory function and NGF in patients with depression: An open-label study. J Affect Disord 2025; 369:1183-1189. [PMID: 39326589 DOI: 10.1016/j.jad.2024.09.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Subanesthetic ketamine is a rapidly acting antidepressant, yet the effects of ketamine on cognitive function are inconsistent. The primary objective of this study was to explore the effects of esketamine on memory function and plasma levels of nerve growth factor (NGF) in patients with depression. METHODS A total of 132 patients with depression completed six intravenous esketamine infusions (0.4 mg/kg) over 11 days. Depressive symptoms and neurocognitive function were assessed using the Montgomery-Asberg Depression Rating Scale (MADRS) and Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Plasma NGF levels were assayed by enzyme-linked immunosorbent assay (ELISA). RESULTS The mean MADRS score of depressed patients decreased from 32.11 ± 10.06 to 15.10 ± 8.62 after six infusions. Significant improvement in immediate memory, language, attention, and delayed memory were observed. NGF plasma levels increased from 226.13 ± 61.73 to 384.37 ± 56.89. Pearson's correlation analysis showed a positive correlation between memory function and NGF levels at baseline. The baseline memory function was negatively associated with the changes in NGF levels. LIMITATION The major limitation of this study is the open-label design. CONCLUSIONS Subanesthetic esketamine infusions could improve depressive symptoms and neurocognitive function. Our study showed increased plasma NGF levels in depressed patients after treatment, suggesting that NGF may play a role in the improvement of memory function by esketamine.
Collapse
Affiliation(s)
- Qiongyao Yang
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China; Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Yitan Yao
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China; Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Xiaoping Yuan
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China; Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Chuanchuan Chen
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China; Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China; Anhui Psychiatric Center, Anhui Medical University, Hefei, China
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China; Anhui Psychiatric Center, Anhui Medical University, Hefei, China.
| | - Kai Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, China; Anhui Psychiatric Center, Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Leal GC, Lima-Araújo I, Roiter DG, Caliman-Fontes AT, Mello RP, Kapczinski F, Lacerda ALT, Quarantini LC. Arketamine: a scoping review of its use in humans. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01945-2. [PMID: 39680139 DOI: 10.1007/s00406-024-01945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
Arketamine (R-ketamine), an enantiomer of ketamine, has historically been less studied than esketamine (S-ketamine) and the racemic mixture. Recent preclinical studies suggest that arketamine may offer prolonged antidepressant effects and a superior safety profile. This scoping review aims to assess and synthesise existing literature on the clinical use of arketamine in humans. This review follows the PRISMA for Scoping Reviews guidelines, with a comprehensive search conducted in PubMed, Embase, ClinicalTrials.gov, and the WHO International Clinical Trials Registry. Eligible studies included those reporting the administration of arketamine to humans. Data were extracted and synthesised descriptively. A total of 20 studies involving 410 subjects were included. Arketamine was primarily investigated for pain management and depression. While early evidence suggests arketamine may be effective in reducing pain, most studies were small and conducted in non-clinical settings. In psychiatry, trials indicate potential antidepressant effects, but results are inconsistent, and some studies remain unpublished. A consistent observation across most studies is arketamine's favourable safety profile, showing lower incidences of dissociative and psychotomimetic effects compared to esketamine and racemic ketamine. Arketamine may have a role in pain management and psychiatry, with a favourable safety profile compared to other forms of ketamine. However, the small scale of many studies limits the generalizability of findings, and results in depression trials are mixed. Larger, well-designed studies, possibly with higher doses, are needed to determine its therapeutic potential and establish its place in clinical practice.
Collapse
Affiliation(s)
- Gustavo C Leal
- Laboratório de Neuropsicofarmacologia (LANP), Psychiatry Service, Hospital Universitário Professor Edgard Santos, Serviço de Psiquiatria, Universidade Federal da Bahia, Rua Dr. Augusto Viana, s/n-Canela, Salvador, Bahia, 40110-060, Brazil
- Faculdade de Medicina da Bahia, Programa de Pós-Graduação em Medicina e Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Isabel Lima-Araújo
- Laboratório de Neuropsicofarmacologia (LANP), Psychiatry Service, Hospital Universitário Professor Edgard Santos, Serviço de Psiquiatria, Universidade Federal da Bahia, Rua Dr. Augusto Viana, s/n-Canela, Salvador, Bahia, 40110-060, Brazil
| | - David G Roiter
- Laboratório de Neuropsicofarmacologia (LANP), Psychiatry Service, Hospital Universitário Professor Edgard Santos, Serviço de Psiquiatria, Universidade Federal da Bahia, Rua Dr. Augusto Viana, s/n-Canela, Salvador, Bahia, 40110-060, Brazil
| | - Ana Teresa Caliman-Fontes
- Laboratório de Neuropsicofarmacologia (LANP), Psychiatry Service, Hospital Universitário Professor Edgard Santos, Serviço de Psiquiatria, Universidade Federal da Bahia, Rua Dr. Augusto Viana, s/n-Canela, Salvador, Bahia, 40110-060, Brazil
- Faculdade de Medicina da Bahia, Programa de Pós-Graduação em Medicina e Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Rodrigo P Mello
- Laboratório de Neuropsicofarmacologia (LANP), Psychiatry Service, Hospital Universitário Professor Edgard Santos, Serviço de Psiquiatria, Universidade Federal da Bahia, Rua Dr. Augusto Viana, s/n-Canela, Salvador, Bahia, 40110-060, Brazil
- Faculdade de Medicina da Bahia, Programa de Pós-Graduação em Medicina e Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Flávio Kapczinski
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Acioly L T Lacerda
- Programa de Transtornos Afetivos (Mood Disorders Unit), Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, State of São Paulo, Brazil
| | - Lucas C Quarantini
- Laboratório de Neuropsicofarmacologia (LANP), Psychiatry Service, Hospital Universitário Professor Edgard Santos, Serviço de Psiquiatria, Universidade Federal da Bahia, Rua Dr. Augusto Viana, s/n-Canela, Salvador, Bahia, 40110-060, Brazil.
- Faculdade de Medicina da Bahia, Programa de Pós-Graduação em Medicina e Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil.
| |
Collapse
|
3
|
Xu D, Liu G, Zhao M, Wan X, Qu Y, Murayama R, Hashimoto K. Effects of arketamine on depression-like behaviors and demyelination in mice exposed to chronic restrain stress: A role of transforming growth factor-β1. J Affect Disord 2024; 367:745-755. [PMID: 39236893 DOI: 10.1016/j.jad.2024.08.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Chronic restrain stress (CRS) induces depression-like behaviors and demyelination in the brain; however, the relationship between these depression-like behaviors and demyelination remains unclear. Arketamine, the (R)-enantiomer of ketamine, has shown rapid antidepressant-like effects in CRS-exposed mice. METHODS We examined whether arketamine can improve both depression-like behaviors and demyelination in the brains of CRS-exposed mice. Additionally, we investigated the role of transforming growth factor β1 (TGF-β1) in the beneficial effects of arketamine. RESULTS A single dose of arketamine (10 mg/kg) improved both depression-like behavior and demyelination in the corpus callosum of CRS-exposed mice. Correlations were found between depression-like behaviors and demyelination in this region. Furthermore, pretreatment with RepSox, an inhibitor of TGF-β1 receptor, significantly blocked the beneficial effects of arketamine on depression-like behaviors and demyelination in CRS-exposed mice. Finally, a single intranasal administration of TGF-β1 ameliorated both depression-like behaviors and demyelination in CRS-exposed mice. LIMITATIONS The precise mechanisms by which TGF-β1 contributes to the effects of arketamine remain unclear. CONCLUSIONS These data suggest that CRS-induced demyelination in the corpus callosum may contribute to depression-like behaviors, and that arketamine can mitigate these changes through a TGF-β1-dependent mechanism.
Collapse
Affiliation(s)
- Dan Xu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Guilin Liu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, PR China
| | - Mingming Zhao
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Xiayun Wan
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Rumi Murayama
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
4
|
Zhao MM, Zhu TT, Xu D, Wan X, Liu G, Murayama R, Cai Y, Yue Y, Wang XM, Yang JJ, Hashimoto K. Transforming growth factor-β1 mediates the beneficial effects of arketamine on demyelination and remyelination in the brains of cuprizone-treated mice. Eur J Pharmacol 2024; 985:177096. [PMID: 39500390 DOI: 10.1016/j.ejphar.2024.177096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
The novel antidepressant arketamine, the (R)-enantiomer of ketamine, has been shown to ameliorate demyelination and facilitate remyelination in the brains of cuprizone (CPZ)-treated mice. However, the mechanisms behind its effects remain unclear. Given the role of transforming growth factor β1 (TGF-β1) in arketamine's antidepressant-like effects, we examined whether TGF-β1 also plays a role in arketamine's effects on demyelination and remyelination in CPZ-treated mice. Additionally, we investigated the effects of intranasal TGF-β1 on demyelination and remyelination in these mice. Repeated intermittent administration of arketamine (10 mg/kg/day, twice weekly for the last 2-weeks) attenuated demyelination in the corpus callosum (CC) of CPZ (6 weeks)-treated mice. Furthermore, pretreatment with RepSox (10 mg/kg/day), an inhibitor of the TGF-β receptor 1, significantly blocked the beneficial effects of arketamine on the demyelination in the CC of CPZ-treated mice. Additionally, repeated intermittent administration of TGF-β1 (3.0 μg/kg/day, twice weekly for 2 weeks) significantly ameliorated demyelination and facilitated remyelination in the CC of CPZ-treated mice. These data suggest that arketamine can mitigate demyelination and facilitates remyelination in the brains of CPZ-treated mice through a TGF-β1-dependent mechanism.
Collapse
Affiliation(s)
- Ming-Ming Zhao
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Ting-Ting Zhu
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Dan Xu
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiayun Wan
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Guilin Liu
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266100, China
| | - Rumi Murayama
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Yi Cai
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Yong Yue
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xing-Ming Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Liu G, Ma L, Sakamoto A, Fujimura L, Xu D, Zhao M, Wan X, Murayama R, Anzai N, Hashimoto K. Splenic γδ T cells mediate antidepressant and prophylactic actions of arketamine in lipopolysaccharide-induced depression in mice. Pharmacol Biochem Behav 2024; 245:173906. [PMID: 39549733 DOI: 10.1016/j.pbb.2024.173906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Arketamine, the (R)-enantiomer of ketamine, exhibits both therapeutic and sustained prophylactic effects in an inflammation-driven model of depression, although the precise mechanisms remain elusive. Given the involvement of γδ T cells in inflammatory processes, this study explored their role in the effects of arketamine. To assess therapeutic outcomes, mice received lipopolysaccharide (LPS:1.0 mg/kg), followed by either arketamine (10 mg/kg) or saline. For prophylactic assessment, arketamine or saline was administered six days prior to LPS exposure. A single dose of LPS (1.0 mg/kg) reduced the proportion of γδ T cells in the spleen but did not affect their levels in the blood, prefrontal cortex, or small intestine. Arketamine mitigated LPS-induced splenomegaly, counteracted the elevation of plasma interleukin-6 levels and the reduction in the proportion of splenic γδ T cells, and alleviated depression-like behavior as assessed by the forced swimming test. Notably, negative correlations were observed between the proportion of splenic γδ T cells and indicators of inflammation and depression. Furthermore, pretreatment with a γδ TCR antibody significantly countered the therapeutic and prophylactic effects of arketamine on LPS-induced changes. These findings highlight a novel role for splenic γδ T cells in inflammation-associated depression and suggest the potential of arketamine as a treatment option. Consequently, γδ T cells may represent a novel therapeutic target for inflammation-related depression. Further studies on the role of γδ T cells in depressed patients with inflammation are warranted.
Collapse
Affiliation(s)
- Guilin Liu
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Li Ma
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan
| | - Akemi Sakamoto
- Biomedical Research Center, Chiba University, Chiba 260-8677, Japan; Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Lisa Fujimura
- Biomedical Research Center, Chiba University, Chiba 260-8677, Japan
| | - Dan Xu
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingming Zhao
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiayun Wan
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan
| | - Rumi Murayama
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Center for Forensic Mental Health, Chiba University, Chiba 260-8670, Japan.
| |
Collapse
|
6
|
Kawczak P, Feszak I, Bączek T. Ketamine, Esketamine, and Arketamine: Their Mechanisms of Action and Applications in the Treatment of Depression and Alleviation of Depressive Symptoms. Biomedicines 2024; 12:2283. [PMID: 39457596 PMCID: PMC11505277 DOI: 10.3390/biomedicines12102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Research over the past years has compared the enantiomers (S)-ketamine (esketamine) and (R)-ketamine (arketamine) of the previously known racemic mixture called ketamine (R/S-ketamine). Esketamine has been found to be more potent, offering three times stronger analgesic effects and 1.5 times greater anesthetic efficacy than arketamine. It provides smoother anesthesia with fewer side effects and is widely used in clinical settings due to its neuroprotective, bronchodilatory, and antiepileptic properties. Approved by the FDA and EMA in 2019, esketamine is currently used alongside SSRIs or SNRIs for treatment-resistant depression (TRD). On the other hand, arketamine has shown potential for treating neurological disorders such as Alzheimer's, Parkinson's, and multiple sclerosis, offering possible antidepressant effects and anti-inflammatory benefits. While esketamine is already in clinical use, arketamine's future depends on further research to address its safety, efficacy, and optimal dosing. Both enantiomers hold significant clinical value, with esketamine excelling in anesthesia, and arketamine showing promise in neurological and psychiatric treatments.
Collapse
Affiliation(s)
- Piotr Kawczak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | - Igor Feszak
- Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
- Department of Nursing and Medical Rescue, Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland
| |
Collapse
|
7
|
Chang L, Wei Y, Qu Y, Zhao M, Zhou X, Long Y, Hashimoto K. Role of oxidative phosphorylation in the antidepressant effects of arketamine via the vagus nerve-dependent spleen-brain axis. Neurobiol Dis 2024; 199:106573. [PMID: 38901783 DOI: 10.1016/j.nbd.2024.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024] Open
Abstract
Arketamine, the (R)-enantiomer of ketamine, exhibits antidepressant-like effects in mice, though the precise molecular mechanisms remain elusive. It has been shown to reduce splenomegaly and depression-like behaviors in the chronic social defeat stress (CSDS) model of depression. This study investigated whether the spleen contributes to the antidepressant-like effects of arketamine in the CSDS model. We found that splenectomy significantly inhibited arketamine's antidepressant-like effects in CSDS-susceptible mice. RNA-sequencing analysis identified the oxidative phosphorylation (OXPHOS) pathway in the prefrontal cortex (PFC) as a key mediator of splenectomy's impact on arketamine's effects. Furthermore, oligomycin A, an inhibitor of the OXPHOS pathway, reversed the suppressive effects of splenectomy on arketamine's antidepressant-like effects. Specific genes within the OXPHOS pathways, such as COX11, UQCR11 and ATP5e, may contribute to these inhibitory effects. Notably, transforming growth factor (TGF)-β1, along with COX11, appears to modulate the suppressive effects of splenectomy and contribute to arketamine's antidepressant-like effects. Additionally, SRI-01138, an agonist of the TGF-β1 receptor, alleviated the inhibitory effects of splenectomy on arketamine's antidepressant-like effects. Subdiaphragmatic vagotomy also counteracted the inhibitory effects of splenectomy on arketamine's antidepressant-like effects in CSDS-susceptible mice. These findings suggest that the OXPHOS pathway and TGF-β1 in the PFC play significant roles in the antidepressant-like effects of arketamine, mediated through the spleen-brain axis via the vagus nerve.
Collapse
Affiliation(s)
- Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China
| | - Yan Wei
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Mingming Zhao
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiangyu Zhou
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China; Department of Thyroid and Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yang Long
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, China; Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
8
|
Shafique H, Demers JC, Biesiada J, Golani LK, Cerne R, Smith JL, Szostak M, Witkin JM. ( R)-(-)-Ketamine: The Promise of a Novel Treatment for Psychiatric and Neurological Disorders. Int J Mol Sci 2024; 25:6804. [PMID: 38928508 PMCID: PMC11203826 DOI: 10.3390/ijms25126804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
NMDA receptor antagonists have potential for therapeutics in neurological and psychiatric diseases, including neurodegenerative diseases, epilepsy, traumatic brain injury, substance abuse disorder (SUD), and major depressive disorder (MDD). (S)-ketamine was the first of a novel class of antidepressants, rapid-acting antidepressants, to be approved for medical use. The stereoisomer, (R)-ketamine (arketamine), is currently under development for treatment-resistant depression (TRD). The compound has demonstrated efficacy in multiple animal models. Two clinical studies disclosed efficacy in TRD and bipolar depression. A study by the drug sponsor recently failed to reach a priori clinical endpoints but post hoc analysis revealed efficacy. The clinical value of (R)-ketamine is supported by experimental data in humans and rodents, showing that it is less sedating, does not produce marked psychotomimetic or dissociative effects, has less abuse potential than (S)-ketamine, and produces efficacy in animal models of a range of neurological and psychiatric disorders. The mechanisms of action of the antidepressant effects of (R)-ketamine are hypothesized to be due to NMDA receptor antagonism and/or non-NMDA receptor mechanisms. We suggest that further clinical experimentation with (R)-ketamine will create novel and improved medicines for some of the neurological and psychiatric disorders that are underserved by current medications.
Collapse
Affiliation(s)
- Hana Shafique
- Duke University School of Medicine, Durham, NC 27710, USA
| | - Julie C. Demers
- Indiana University-Purdue University, Indianapolis, IN 46202, USA; (J.C.D.); (J.B.)
| | - Julia Biesiada
- Indiana University-Purdue University, Indianapolis, IN 46202, USA; (J.C.D.); (J.B.)
| | - Lalit K. Golani
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA;
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA; (R.C.); (J.L.S.)
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA; (R.C.); (J.L.S.)
| | - Marta Szostak
- Department of Psychology, SWPS University, 03-815 Warsaw, Poland;
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA; (R.C.); (J.L.S.)
- Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN 46260, USA
| |
Collapse
|
9
|
Chen S, Yang JJ, Zhang Y, Lei L, Qiu D, Lv HM, Sun ZT, Hashimoto K, Yang JJ. Risk of esketamine anesthesia on the emergence delirium in preschool children after minor surgery: a prospective observational clinical study. Eur Arch Psychiatry Clin Neurosci 2024; 274:767-775. [PMID: 37072569 DOI: 10.1007/s00406-023-01611-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
Emergence delirium (ED) is a common mental complication during recovery from anesthesia. However, studies on the effects of esketamine, an intravenous anesthetic for pediatrics, on ED are still lacking. This study aimed to investigate the effects of a single-dose of esketamine during anesthesia induction on ED after minor surgery in preschool children. A total of 230 children (aged 2-7 years) completed the study. The exposed group (0.46 mg kg-1: average dose of esketamine) was associated with an increased incidence of ED and a higher maximum Pediatric Anesthesia Emergence Delirium score than the non-exposed group. The length of post-anesthesia care unit stay was longer in the exposed group than the non-exposed group. In contrast, extubation time, face, legs, activity, cry, and consolability (FLACC) scores, and the proportions of rescue analgesics were comparable between the two groups. Furthermore, five factors, including preoperative anxiety scores, sevoflurane and propofol compared with sevoflurane alone for anesthesia maintenance, dezocine for postoperative analgesia, FLACC scores, and esketamine exposure, were associated with ED. In conclusion, a near-anesthetic single-dose of esketamine for anesthesia induction may increase the incidence of ED in preschool children after minor surgery. The use of esketamine in preschool children for minor surgery should be noticed during clinical practice.
Collapse
Affiliation(s)
- Sai Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Jin-Jin Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yue Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Lei Lei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Di Qiu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Hui-Min Lv
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Zhen-Tao Sun
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
10
|
Hashimoto K. Beneficial and adverse effects of ketamine and its enantiomers, and the underlying mechanisms of ECT and rTMS efficacy. Eur Arch Psychiatry Clin Neurosci 2024; 274:755-757. [PMID: 38607421 DOI: 10.1007/s00406-024-01810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan.
| |
Collapse
|
11
|
Yokoyama R, Ago Y, Igarashi H, Higuchi M, Tanuma M, Shimazaki Y, Kawai T, Seiriki K, Hayashida M, Yamaguchi S, Tanaka H, Nakazawa T, Okamura Y, Hashimoto K, Kasai A, Hashimoto H. (R)-ketamine restores anterior insular cortex activity and cognitive deficits in social isolation-reared mice. Mol Psychiatry 2024; 29:1406-1416. [PMID: 38388704 PMCID: PMC11189812 DOI: 10.1038/s41380-024-02419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Chronic social isolation increases the risk of mental health problems, including cognitive impairments and depression. While subanesthetic ketamine is considered effective for cognitive impairments in patients with depression, the neural mechanisms underlying its effects are not well understood. Here we identified unique activation of the anterior insular cortex (aIC) as a characteristic feature in brain-wide regions of mice reared in social isolation and treated with (R)-ketamine, a ketamine enantiomer. Using fiber photometry recording on freely moving mice, we found that social isolation attenuates aIC neuronal activation upon social contact and that (R)-ketamine, but not (S)-ketamine, is able to counteracts this reduction. (R)-ketamine facilitated social cognition in social isolation-reared mice during the social memory test. aIC inactivation offset the effect of (R)-ketamine on social memory. Our results suggest that (R)-ketamine has promising potential as an effective intervention for social cognitive deficits by restoring aIC function.
Collapse
Affiliation(s)
- Rei Yokoyama
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
| | - Hisato Igarashi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Momoko Higuchi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masato Tanuma
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuto Shimazaki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Misuzu Hayashida
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shun Yamaguchi
- Department of Morphological Neuroscience, Graduate School of Medicine, Gifu University, Gifu, Gifu, 501-1194, Japan
- Center for One Medicine Innovative Translational Research, Institute for Advanced Study, Gifu University, Gifu, Gifu, 501-1194, Japan
| | - Hirokazu Tanaka
- Faculty of Information Technology, Tokyo City University, Setagaya, Tokyo, 158-8557, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chuo, Chiba, 260-8670, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- Systems Brain Science Project, Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, 565-0871, Japan.
- Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan.
- Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Lou XJ, Qiu D, Ren ZY, Hashimoto K, Zhang GF, Yang JJ. Efficacy and safety of esketamine for perioperative depression in patients undergoing elective surgery: A meta-analysis of randomized controlled trials. Asian J Psychiatr 2024; 95:103997. [PMID: 38492442 DOI: 10.1016/j.ajp.2024.103997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Depression is a prevalent mood disorder during the perioperative period, with both preoperative concurrent depression and new-onset postoperative depression impacting postoperative recovery. Recent studies have indicated that the dissociative anesthetic esketamine may alleviate perioperative depressive symptoms. OBJECTIVE This meta-analysis aimed to assess the efficacy and safety of esketamine in treating perioperative depression. METHODS We selected randomized controlled trials comparing esketamine to placebo in terms of postoperative depressive symptoms. The primary outcome was postoperative depression scores, with secondary outcomes including the prevalence of postoperative depression, pain scores using the Visual Analogue Scale or Numeric Rating Scale, and incidences of adverse reactions such as nausea/vomiting, dizziness, dreams/nightmares, hallucinations. RESULTS We enrolled a total of 17 studies involving 2462 patients. The esketamine group demonstrated a significant reduction in postoperative depression scores within one week after surgery (SMD -0.47, 95% CI (-0.66, -0.27), P < 0.001) and over the long term (SMD -0.44, 95% CI (-0.79, -0.09), P = 0.01). Furthermore, esketamine significantly decreased the prevalence of postoperative depression both within one week (RR 0.46, 95% CI (0.33, 0.63), P < 0.001) and over the long term (RR 0.50, 95% CI (0.36, 0.70), P < 0.001). Additionally, esketamine effectively relieved pain on the first postoperative day compared to control. However, it also increased the risks of dizziness and hallucinations for a short time. CONCLUSION This meta-analysis suggests that the intraoperative or postoperative application of esketamine could be a potentially effective treatment for perioperative depression, although the increased risk of adverse reactions should be considered.
Collapse
Affiliation(s)
- Xue-Jie Lou
- Department of Anesthesiology, Pain and Perioperative Medicine, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Di Qiu
- Department of Anesthesiology, Pain and Perioperative Medicine, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Zhuo-Yu Ren
- Department of Anesthesiology, Pain and Perioperative Medicine, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Kenji Hashimoto
- Department of Anesthesiology, Pain and Perioperative Medicine, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Chiba 260-8670, Japan.
| | - Guang-Fen Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
13
|
Ma L, Eguchi A, Liu G, Qu Y, Wan X, Murayama R, Mori C, Hashimoto K. A role of gut-brain axis on prophylactic actions of arketamine in male mice exposed to chronic restrain stress. Pharmacol Biochem Behav 2024; 238:173736. [PMID: 38401573 DOI: 10.1016/j.pbb.2024.173736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
The gut-brain axis, which includes gut microbiota and microbiome-derived metabolites, might be implicated in depression. We reported the sustained prophylactic effects of a new antidepressant arketamine in chronic restrain stress (CRS) model of depression. In this study, we investigated the role of gut-brain axis on the prophylactic effects of arketamine in the CRS (7 days) model. Pretreatment with arketamine (10 mg/kg, 1 day prior to the CRS onset) significantly prevented CRS-induced body weight loss, increased immobility time of forced swimming test, decreased sucrose preference of sucrose preference test, and reduced expressions of synaptic proteins (GluA1 and PSD-95) in the prefrontal cortex (PFC) in the male mice. Gut microbiota analysis showed that pretreatment with arketamine might restore altered abundance of gut microbiota in CRS-exposed mice. An untargeted metabolomics analysis revealed four metabolites (e.g., L-leucine, N-acetyl-l-glutamine, 2-(2,4-dichlorophenyl)-3-[4-(dimethylamino)phenyl]acrylonitrile, L-threonine amide) that were altered between control and CRS group; however, there were found to be altered between the saline + CRS group and the arketamine + CRS group. Network analysis demonstrated correlations among synaptic proteins in the PFC and certain microbiota, and blood metabolites. These findings suggest that gut-brain axis, including its metabolites, might partially contribute to the persistent prophylactic effects of arketamine in the CRS model.
Collapse
Affiliation(s)
- Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Guilin Liu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Rumi Murayama
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8670, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
14
|
Zhang S, Pu Y, Liu J, Li L, An C, Wu Y, Zhang W, Zhang W, Qu S, Yan W. Exploring the multifaceted potential of (R)-ketamine beyond antidepressant applications. Front Pharmacol 2024; 15:1337749. [PMID: 38666026 PMCID: PMC11043571 DOI: 10.3389/fphar.2024.1337749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
(R, S)- and (S)-ketamine have made significant progress in the treatment of treatment-resistant depression (TRD) and have become a research focus in recent years. However, they both have risks of psychomimetic effects, dissociative effects, and abuse liability, which limit their clinical use. Recent preclinical and clinical studies have shown that (R)-ketamine has a more efficient and lasting antidepressant effect with fewer side effects compared to (R, S)- and (S)-ketamine. However, a recent small-sample randomized controlled trial found that although (R)-ketamine has a lower incidence of adverse reactions in adult TRD treatment, its antidepressant efficacy is not superior to the placebo group, indicating its antidepressant advantage still needs further verification and clarification. Moreover, an increasing body of research suggests that (R)-ketamine might also have significant applications in the prevention and treatment of medical fields or diseases such as cognitive disorders, perioperative anesthesia, ischemic stroke, Parkinson's disease, multiple sclerosis, osteoporosis, substance use disorders, inflammatory diseases, COVID-19, and organophosphate poisoning. This article briefly reviews the mechanism of action and research on antidepressants related to (R)-ketamine, fully revealing its application potential and development prospects, and providing some references and assistance for subsequent expanded research.
Collapse
Affiliation(s)
- Senbing Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Anesthesiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yanzhu Pu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jianning Liu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lewen Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chibing An
- Department of Anesthesiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yumin Wu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenjie Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenxia Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Song Qu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenjun Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Yang Y, Eguchi A, Mori C, Hashimoto K. Depression-like phenotypes in mice following common bile duct ligation: Insights into the gut-liver-brain axis via the vagus nerve. Neurobiol Dis 2024; 192:106433. [PMID: 38331354 DOI: 10.1016/j.nbd.2024.106433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Depression frequently occurs in patients with liver cirrhosis, yet the reasons for this correlation are not fully understood. Dysbiosis of gut microbiota has been implicated in depression through the gut-brain axis via the vagus nerve. This study explored the potential role of the gut-liver-brain axis via the vagus nerve in depression-like phenotypes in mice with liver cirrhosis. These mice underwent common bile duct ligation (CBDL), a method used to stimulate liver cirrhosis. To assess depression-like behaviors, behavioral tests were conducted 10 days following either sham or CBDL surgeries. The mice with CBDL displayed symptoms such as splenomegaly, elevated plasma levels of interleukin-6 and tumor necrosis factor-α, depression-like behaviors, decreased levels of synaptic proteins in the prefrontal cortex (PFC), disrupted gut microbiota balance, and changes in blood metabolites (or lipids). Additionally, there were positive or negative correlations between the relative abundance of microbiome and behavioral data or blood metabolites (or lipids). Significantly, these changes were reversed in CBDL mice by performing a subdiaphragmatic vagotomy. Intriguingly, depression-like phenotypes in mice with CBDL were improved after a single injection of arketamine, a new antidepressant. These results suggest that CBDL-induced depression-like phenotypes in mice are mediated through the gut-liver-brain axis via the subdiaphragmatic vagus nerve, and that arketamine might offer a new treatment approach for depression in liver cirrhosis patients.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
16
|
Hashimoto K. Are "mystical experiences" essential for antidepressant actions of ketamine and the classic psychedelics? Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01770-7. [PMID: 38411629 DOI: 10.1007/s00406-024-01770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
The growing interest in the rapid and sustained antidepressant effects of the dissociative anesthetic ketamine and classic psychedelics, such as psilocybin, is remarkable. However, both ketamine and psychedelics are known to induce acute mystical experiences; ketamine can cause dissociative symptoms such as out-of-body experience, while psychedelics typically bring about hallucinogenic experiences, like a profound sense of unity with the universe or nature. The role of these mystical experiences in enhancing the antidepressant outcomes for patients with depression is currently an area of ongoing investigation and debate. Clinical studies have shown that the dissociative symptoms following the administration of ketamine or (S)-ketamine (esketamine) are not directly linked to their antidepressant properties. In contrast, the antidepressant potential of (R)-ketamine (arketamine), thought to lack dissociative side effects, has yet to be conclusively proven in large-scale clinical trials. Moreover, although the activation of the serotonin 5-HT2A receptor is crucial for the hallucinogenic effects of psychedelics in humans, its precise role in their antidepressant action is still under discussion. This article explores the importance of mystical experiences in enhancing the antidepressant efficacy of both ketamine and classic psychedelics.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan.
| |
Collapse
|
17
|
Pothorszki D, Koncz S, Török D, Papp N, Bagdy G. Unique Effects of (R)-Ketamine Compared to (S)-Ketamine on EEG Theta Power in Rats. Pharmaceuticals (Basel) 2024; 17:194. [PMID: 38399409 PMCID: PMC10893209 DOI: 10.3390/ph17020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Differences in the pharmacological effects of (S)-ketamine and (R)-ketamine are at the focus of research. Clinical data and our rat studies confirmed the antidepressant effect of (S)- but not (R)-ketamine, with similar differences in quantitative electroencephalogram (EEG) and sleep effects. In contrast, studies mainly on mice showed some stronger, preferable effects of (R)-ketamine. EEG theta (5-9 Hz) rhythm originates from the hippocampus, and its power is associated with cognitive functions, attention, and decreased anxiety. To find a brain parameter that is not associated with the antidepressant effect of drugs and may confirm potent in vivo effects of (R)-ketamine in rats, theta EEG power-inducing effects of the two enantiomers were measured and compared for 23 h. EEG-equipped Wistar rats were treated with (R)-ketamine (7.5, 15, 30 mg/kg i.p.), (S)-ketamine (7.5 and 15 mg/kg i.p.), or vehicle at the beginning of the passive phase. Frontoparietal EEG, electromyogram, and motor activity were recorded. (R)-ketamine but not (S)-ketamine dose-dependently increased EEG theta power during wakefulness and rapid eye movement (REM) sleep for 23 h. These results suggest that (R)-ketamine has an effect on a hippocampal function that was not affected by (S)-ketamine and may be associated with neural plasticity and memory encoding.
Collapse
Affiliation(s)
- Dóra Pothorszki
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, 1089 Budapest, Hungary; (D.P.); (S.K.); (D.T.); (N.P.)
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, 1089 Budapest, Hungary
| | - Szabolcs Koncz
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, 1089 Budapest, Hungary; (D.P.); (S.K.); (D.T.); (N.P.)
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, 1089 Budapest, Hungary
| | - Dóra Török
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, 1089 Budapest, Hungary; (D.P.); (S.K.); (D.T.); (N.P.)
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, 1089 Budapest, Hungary
| | - Noémi Papp
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, 1089 Budapest, Hungary; (D.P.); (S.K.); (D.T.); (N.P.)
| | - György Bagdy
- Department of Pharmacodynamics, Faculty of Pharmaceutical Sciences, Semmelweis University, 1089 Budapest, Hungary; (D.P.); (S.K.); (D.T.); (N.P.)
- NAP3.0-SE Neuropsychopharmacology Research Group, Hungarian Brain Research Program, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
18
|
Yang Y, Eguchi A, Wan X, Mori C, Hashimoto K. Depression-like phenotypes in mice with hepatic ischemia/reperfusion injury: A role of gut-microbiota-liver-brain axis via vagus nerve. J Affect Disord 2024; 345:157-167. [PMID: 37879416 DOI: 10.1016/j.jad.2023.10.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Depression is a frequent symptom in patients with chronic liver disease; however, the mechanisms underlying this association remain unclear. Dysbiosis of gut microbiota plays a critical role in depression through the gut-brain axis via the vagus nerve. In this study, we investigated whether the gut-microbiota-liver-brain axis plays a role in depression-like phenotypes in mice with hepatic ischemia/reperfusion (HI/R) injury via the vagus nerve. Behavioral tests for depression-like behaviors were performed 7 days after sham or HI/R injury surgery. Mice with HI/R injury exhibited splenomegaly, systemic inflammation, depression-like behaviors, reduced expression of synaptic proteins in the prefrontal cortex (PFC), abnormal composition of gut microbiota, and altered blood metabolites and lipids. Furthermore, there were positive or negative correlations between the relative abundance of microbiome and behavioral data or blood metabolites (or lipids). Moreover, subdiaphragmatic vagotomy significantly blocked these changes in mice with HI/R injury. Notably, depression-like phenotypes in mice with HI/R injury were ameliorated after subsequent single injection of the new antidepressant arketamine. The current findings suggest that HI/R injury induces depression-like phenotypes in mice through the gut-microbiota-liver-brain axis via the subdiaphragmatic vagus nerve. Furthermore, arketamine may have therapeutic potential in the treatment of depression in patients with chronic liver disease.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
19
|
Jiang Y, Wang X, Chen J, Zhang Y, Hashimoto K, Yang JJ, Zhou Z. Repeated ( S)-ketamine administration ameliorates the spatial working memory impairment in mice with chronic pain: role of the gut microbiota-brain axis. Gut Microbes 2024; 16:2310603. [PMID: 38332676 PMCID: PMC10860353 DOI: 10.1080/19490976.2024.2310603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Chronic pain is commonly linked with diminished working memory. This study explores the impact of the anesthetic (S)-ketamine on spatial working memory in a chronic constriction injury (CCI) mouse model, focusing on gut microbiome. We found that multiple doses of (S)-ketamine, unlike a single dose, counteracted the reduced spontaneous alteration percentage (%SA) in the Y-maze spatial working memory test, without affecting mechanical or thermal pain sensitivity. Additionally, repeated (S)-ketamine treatments improved the abnormal composition of the gut microbiome (β-diversity), as indicated by fecal 16S rRNA analysis, and increased levels of butyrate, a key gut - brain axis mediator. Protein analysis showed that these treatments also corrected the upregulated histone deacetylase 2 (HDAC2) and downregulated brain-derived neurotrophic factor (BDNF) in the hippocampi of CCI mice. Remarkably, fecal microbiota transplantation from mice treated repeatedly with (S)-ketamine to CCI mice restored %SA and hippocampal BDNF levels in CCI mice. Butyrate supplementation alone also improved %SA, BDNF, and HDAC2 levels in CCI mice. Furthermore, the TrkB receptor antagonist ANA-12 negated the beneficial effects of repeated (S)-ketamine on spatial working memory impairment in CCI mice. These results indicate that repeated (S)-ketamine administration ameliorates spatial working memory impairment in CCI mice, mediated by a gut microbiota - brain axis, primarily through the enhancement of hippocampal BDNF - TrkB signaling by butyrate.
Collapse
Affiliation(s)
- Yubin Jiang
- Department of Anesthesiology, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xingming Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiawei Chen
- Department of Anesthesiology, Affiliated Jinling Hospital, Medicine School of Nanjing University, Nanjing, China
| | - Yibao Zhang
- Department of Anesthesiology, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Liu G, Ma L, Qu Y, Wan X, Xu D, Zhao M, Murayama R, Hashimoto K. Prophylactic effects of arketamine, but not hallucinogenic psychedelic DOI nor non-hallucinogenic psychedelic analog lisuride, in lipopolysaccharide-treated mice and mice exposed to chronic restrain stress. Pharmacol Biochem Behav 2023; 233:173659. [PMID: 37844631 DOI: 10.1016/j.pbb.2023.173659] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Anesthetic ketamine and classical psychedelics that act as 5-hydroxytryptamine-2A receptor (5-HT2AR) agonists demonstrated rapid and sustained antidepressant actions in patients with treatment-resistant depression. The new antidepressant arketamine is reported to cause long-lasting prophylactic effects in lipopolysaccharide (LPS)-treated mice and mice exposed to chronic restrain stress (CRS). However, no study has compared the prophylactic effects of DOI (2,5-dimethoxy-4-iodoamphetamine: a hallucinogenic psychedelic drug with potent 5-HT2AR agonism), lisuride (non-hallucinogenic psychedelic analog with 5-HT2AR and 5-HT1AR agonism), and arketamine on depression-like behaviors in mice. Saline (10 ml/kg), DOI (2.0 or 4.0 mg/kg), lisuride (1.0 or 2.0 mg/kg), or arketamine (10 mg/kg) was administered intraperitoneally (i.p.) to male mice 6 days before administration of LPS (1.0 mg/kg). Pretreatment with aketamine, but not DOI and lisuride, significantly ameliorated body weight loss, splenomegaly, the increased immobility time of forced swimming test (FST), and the decreased expression of PSD-95 in the prefrontal cortex (PFC) of LPS-treated mice. In another test, male mice received the same treatment one day before CRS (7 days). Pretreatment with aketamine, but not DOI and lisuride, significantly ameliorated the increased FST immobility time, the reduced sucrose preference in the sucrose preference test, and the decreased expression of PSD-95 in the PFC of CRS-exposed mice. These findings suggest that, unlike to arketamine, both DOI and lisuride did not exhibit long-lasting prophylactic effects in mouse models of depression.
Collapse
Affiliation(s)
- Guilin Liu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
| | - Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Dan Xu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Mingming Zhao
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Rumi Murayama
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
21
|
Hashimoto K, Schmitt A. New treatment strategies for mental health. Eur Arch Psychiatry Clin Neurosci 2023; 273:1399-1401. [PMID: 37603079 DOI: 10.1007/s00406-023-01682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan.
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilian University, Munich, Germany
- Laboratory of Neuroscience, Institute of Psychiatry, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
22
|
Hashimoto K. Emerging role of the host microbiome in neuropsychiatric disorders: overview and future directions. Mol Psychiatry 2023; 28:3625-3637. [PMID: 37845499 PMCID: PMC10730413 DOI: 10.1038/s41380-023-02287-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023]
Abstract
The human body harbors a diverse ecosystem of microorganisms, including bacteria, viruses, and fungi, collectively known as the microbiota. Current research is increasingly focusing on the potential association between the microbiota and various neuropsychiatric disorders. The microbiota resides in various parts of the body, such as the oral cavity, nasal passages, lungs, gut, skin, bladder, and vagina. The gut microbiota in the gastrointestinal tract has received particular attention due to its high abundance and its potential role in psychiatric and neurodegenerative disorders. However, the microbiota presents in other body tissues, though less abundant, also plays crucial role in immune system and human homeostasis, thus influencing the development and progression of neuropsychiatric disorders. For example, oral microbiota imbalance and associated periodontitis might increase the risk for neuropsychiatric disorders. Additionally, studies using the postmortem brain samples have detected the widespread presence of oral bacteria in the brains of patients with Alzheimer's disease. This article provides an overview of the emerging role of the host microbiota in neuropsychiatric disorders and discusses future directions, such as underlying biological mechanisms, reliable biomarkers associated with the host microbiota, and microbiota-targeted interventions, for research in this field.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
23
|
Ma L, Wang L, Qu Y, Wan X, Hashimoto K. A role of splenic heme biosynthesis pathway in the persistent prophylactic actions of arketamine in lipopolysaccharide-treated mice. Transl Psychiatry 2023; 13:269. [PMID: 37491335 PMCID: PMC10368680 DOI: 10.1038/s41398-023-02564-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
Relapse is common in remitted patients with major depressive disorder (MDD). Arketamine, an (R)-enantiomer of ketamine, has persistent prophylactic actions in an inflammatory model of depression. However, the precise mechanisms underlying these prophylactic actions remain unknown. Given the role of the brain-spleen axis in depression, we sought to identify splenic molecular targets that play a role in the prophylactic actions of arketamine. Lipopolysaccharide (LPS) (1.0 mg/kg) was administered 6 days after a single injection of arketamine (10 mg/kg) or saline. RNA-sequencing analysis found altered expression in the heme biosynthesis II pathway. Quantitative RT-PCR revealed that pretreatment with arketamine blocked increased expression of genes involved in the heme biosynthesis II pathway in LPS-treated mice, namely, 5-aminolevulinase synthase 2 (Alas2), ferrochelatase (Fech), hydroxymethylbilane synthase (Hmbs). Interestingly, there were positive correlations between the expression of these genes and spleen weight or plasma levels of pro-inflammatory cytokines. We also found higher expression of ALAS2 and FECH in the spleen from MDD patients. Pretreatment with a key intermediate precursor of heme, 5-aminolaevulinic acid (300 mg/kg/day for 3 days), caused splenomegaly, higher plasma levels of pro-inflammatory cytokines, and depression-like behavior in low-dose LPS (0.1 mg/kg)-treated mice. Interestingly, pretreatment with a heme biosynthesis inhibitor, succinyl acetone (120 mg/kg/day for 3 days), had prophylactic effects in LPS (1.0 mg/kg)-treated mice. These data suggest a novel role for the heme biosynthesis II pathway in the spleen for inflammation-related depression. Therefore, the heme biosynthesis pathway could be a new target for the prevention of relapse in MDD patients.
Collapse
Affiliation(s)
- Li Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei Province, China
| | - Youge Qu
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
24
|
Wan X, Eguchi A, Chang L, Mori C, Hashimoto K. Beneficial effects of arketamine on the reduced bone mineral density in susceptible mice after chronic social defeat stress: Role of the gut-microbiota-bone-brain axis. Neuropharmacology 2023; 228:109466. [PMID: 36804535 DOI: 10.1016/j.neuropharm.2023.109466] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Patients with depression exhibit reduced bone mineral density (BMD). We previously reported that the new antidepressant arketamine improved the reduced BMD seen in chronic social defeat stress (CSDS) susceptible mice and ovariectomized mice. Considering the role of the gut microbiota in maintaining bone health, the current study investigated whether the gut microbiota, along with metabolites derived from the microbiome, play a role in the beneficial actions of arketamine with respect to the anhedonia-like behavior and reduced BMD seen in CSDS susceptible mice. A single administration of arketamine (10 mg/kg) ameliorated anhedonia-like behavior and decreased femoral neck cortical (and total) BMD in CSDS susceptible mice. There was a negative correlation between anhedonia-like behavior and BMD. Furthermore, significant differences in the abundance of microbiota (and plasma metabolites) were found between the CSDS + saline and CSDS + arketamine groups. Correlations were observed between the abundance of certain microbiota (and plasma metabolites) and cortical (and total) BMD. These data suggest that, in addition to its anti-anhedonia effect, arketamine might ameliorate the reduced cortical (and total) BMD seen in CSDS susceptible mice through the gut-microbiota-bone-brain axis. Therefore, arketamine could serve as a drug therapy for depressed patients with low BMD. This article is part of the Special Issue on "Ketamine and its Metabolites".
Collapse
Affiliation(s)
- Xiayun Wan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba, 263-8522, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba, 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
25
|
Hashimoto K. Neuroinflammation through the vagus nerve-dependent gut–microbiota–brain axis in treatment-resistant depression. PROGRESS IN BRAIN RESEARCH 2023. [DOI: 10.1016/bs.pbr.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|