1
|
Wu M, Tong X, Wang D, Wang L, Fan H. Soluble intercellular cell adhesion molecule-1 in lung cancer: A meta-analysis. Pathol Res Pract 2020; 216:153029. [PMID: 32853940 DOI: 10.1016/j.prp.2020.153029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/03/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Many recent studies have investigated the prognostic, diagnostic, and progressive features of soluble intercellular cell adhesion molecule-1 (sICAM-1) in lung cancer patients, but the results remained inconsistent. This study aimed to explore the value of serum sICAM-1 in patients with lung cancer. METHODS A comprehensive systematic literature search in the Wanfang databases, china national knowledge infrastructure, Pubmed, and Embase was carried out update to June 15, 2019. The standard mean difference (SMD), hazard ratio (HR), and 95% confidence interval (95% CI) were applied to investigate the effect sizes. RESULTS 23 observational studies were included. According to our results, the serum sICAM-1 concentrations in patients with lung cancer were significantly higher than that in controls (healthy controls: SMD: 4.08, 95% CI: 3.14-5.02, P < 0.001; benign lung diseases controls : SMD: 1.48, 95% CI: 0.23-2.73,P = 0.02). Fortunately, a subgroup analysis was performed by language, treatment status, and lung cancer types, and the statistical results were similar. Serum sICAM-1 levels were markedly higher in stage III/IV than stage I/II (SMD: 1.96, 95% CI: 1.08-2.84, P < 0.001), Additionally, lung cancer patients with lymph node metastasis had a higher concentrations of serum sICAM-1(SMD: 1.83, 95% CI: 0.95-2.72, P < 0.001), as well as with distant metastasis (SMD: 0.86, 95% CI: 0.47-1.25, P < 0.001). Additionally, patients with higher sICAM-1 levels were related to a significantly poorer prognosis (progression free survival: HR: 1.16, 95% CI: 1.07-1.26, P < 0.001; overall survival: HR: 1.45, 95% CI: 1.17-1.79, P = 0.001). CONCLUSIONS Our study suggested that serum sICAM-1 levels may act as a potential marker for diagnosing lung cancer and predicting its staging, and were negatively correlated with prognosis of lung cancer.
Collapse
Affiliation(s)
- Man Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiang Tong
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Dongguang Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Lei Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Lei AH, Xiao Q, Liu GY, Shi K, Yang Q, Li X, Liu YF, Wang HK, Cai WP, Guan YJ, Gabrilovich DI, Zhou J. ICAM-1 controls development and function of ILC2. J Exp Med 2018; 215:2157-2174. [PMID: 30049704 PMCID: PMC6080904 DOI: 10.1084/jem.20172359] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/02/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
ILC2s are key players in allergic airway inflammation. Lei et al. show that ICAM-1 controls ILC2 development and function through regulating ERK signaling pathway, suggesting targeting ICAM-1 as a potential strategy for ILC2-induced asthma. Group 2 innate lymphoid cells (ILC2s) are emerging as key players in the pathogenesis of allergic airway inflammation. The mechanisms regulating ILC2, however, are not fully understood. Here, we found that ICAM-1 is required for the development and function of ILC2. ICAM-1–deficient (ICAM-1−/−) mice displayed significantly lower levels of ILC2s in the bone marrow and peripheral tissues than wild-type controls. CLP transfer and in vitro culture assays revealed that the regulation of ILC2 by ICAM-1 is cell intrinsic. Furthermore, ILC2s from ICAM-1−/− mice were functionally impaired, as indicated by the diminished production of type-2 cytokines in response to IL-33 challenge. The reduction in lung ILC2s caused a clear remission of airway inflammation in ICAM-1−/− mice after administration of papain or Alternaria alternata. We further demonstrate that ILC2 defects caused by ICAM-1 deficiency are due to ERK signaling-dependent down-regulation of GATA3 protein. Collectively, these observations identify ICAM-1 as a novel regulator of ILC2.
Collapse
Affiliation(s)
- Ai-Hua Lei
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiang Xiao
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Gao-Yu Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kun Shi
- Department of Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Qiong Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xing Li
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Disease, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu-Feng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | | | | | - Dmitry I Gabrilovich
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,The Wistar Institute, Philadelphia, PA.,Key Laboratory of Tropical Disease Control, Chinese Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jie Zhou
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China .,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Chinese Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Knipping K, Knippels LMJ, Dupont C, Garssen J. Serum biomarkers for allergy in children. Pediatr Allergy Immunol 2017; 28:114-123. [PMID: 27590735 DOI: 10.1111/pai.12649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 01/09/2023]
Abstract
A large number of studies investigating various biomarkers for allergy have been published over the past decades. The aim of this review was to evaluate these biomarkers on their diagnostic and/or predictive value. To this date, no single or specific biomarker for allergy has been identified. As allergy is not one disease, but a collection of a number of allergic conditions, it is more plausible a combination of clinical history, clinical readouts, and diagnostic markers will be needed.
Collapse
Affiliation(s)
- Karen Knipping
- Nutricia Research, Utrecht, the Netherlands.,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Léon M J Knippels
- Nutricia Research, Utrecht, the Netherlands.,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | | | - Johan Garssen
- Nutricia Research, Utrecht, the Netherlands.,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
4
|
Khatami M. Is cancer a severe delayed hypersensitivity reaction and histamine a blueprint? Clin Transl Med 2016; 5:35. [PMID: 27558401 PMCID: PMC4996813 DOI: 10.1186/s40169-016-0108-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/04/2016] [Indexed: 02/08/2023] Open
Abstract
Longevity and accumulation of multiple context-dependent signaling pathways of long-standing inflammation (antigen-load or oxidative stress) are the results of decreased/altered regulation of immunity and loss of control switch mechanisms that we defined as Yin and Yang of acute inflammation or immune surveillance. Chronic inflammation is initiated by immune disruptors-induced progressive changes in physiology and function of susceptible host tissues that lead to increased immune suppression and multistep disease processes including carcinogenesis. The interrelated multiple hypotheses that are presented for the first time in this article are extension of author's earlier series of 'accidental' discoveries on the role of inflammation in developmental stages of immune dysfunction toward tumorigenesis and angiogenesis. Detailed analyses of data on chronic diseases suggest that nearly all age-associated illnesses, generally categorized as 'mild' (e.g., increased allergies), 'moderate' (e.g., hypertension, colitis, gastritis, pancreatitis, emphysema) or 'severe' (e.g., accelerated neurodegenerative and autoimmune diseases or site-specific cancers and metastasis) are variations of hypersensitivity responses of tissues that are manifested as different diseases in immune-responsive or immune-privileged tissues. Continuous release/presence of low level histamine (subclinical) in circulation could contribute to sustained oxidative stress and induction of 'mild' or 'moderate' or 'severe' (immune tsunami) immune disorders in susceptible tissues. Site-specific cancers are proposed to be 'severe' (irreversible) forms of cumulative delayed hypersensitivity responses that would induce immunological chaos in favor of tissue growth in target tissues. Shared or special features of growth from fetus development into adulthood and aging processes and carcinogenesis are briefly compared with regard to energy requirements of highly complex function of Yin and Yang. Features of Yang (growth-promoting) arm of acute inflammation during fetus and cancer growth will be compared for consuming low energy from glycolysis (Warburg effect). Growth of fetus and cancer cells under hypoxic conditions and impaired mitochondrial energy requirements of tissues including metabolism of essential branched amino acids (e.g., val, leu, isoleu) will be compared for proposing a working model for future systematic research on cancer biology, prevention and therapy. Presentation of a working model provides insightful clues into bioenergetics that are required for fetus growth (absence of external threat and lack of high energy-demands of Yin events and parasite-like survival in host), normal growth in adulthood (balance in Yin and Yang processes) or disease processes and carcinogenesis (loss of balance in Yin-Yang). Future studies require focusing on dynamics and promotion of natural/inherent balance between Yin (tumoricidal) and Yang (tumorigenic) of effective immunity that develop after birth. Lawless growth of cancerous cells and loss of cell contact inhibition could partially be due to impaired mitochondria (mitophagy) that influence metabolism of branched chain amino acids for biosynthesis of structural proteins. The author invites interested scientists with diverse expertise to provide comments, confirm, dispute and question and/or expand and collaborate on many components of the proposed working model with the goal to better understand cancer biology for future designs of cost-effective research and clinical trials and prevention of cancer. Initial events during oxidative stress-induced damages to DNA/RNA repair mechanisms and inappropriate expression of inflammatory mediators are potentially correctable, preventable or druggable, if future studies were to focus on systematic understanding of early altered immune response dynamics toward multistep chronic diseases and carcinogenesis.
Collapse
Affiliation(s)
- Mahin Khatami
- National Cancer Institute (NCI), the National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
5
|
Naik SP, P A M, B S J, Madhunapantula SV, Jahromi SR, Yadav MK. Evaluation of inflammatory markers interleukin-6 (IL-6) and matrix metalloproteinase-9 (MMP-9) in asthma. J Asthma 2016; 54:584-593. [PMID: 27780376 DOI: 10.1080/02770903.2016.1244828] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Even though IL-6 and MMP-9 are associated with airway inflammation in asthma, there is paucity of data in Indian population. OBJECTIVE To determine the levels of IL-6 and MMP-9 in the serum of patients suffering from asthma, and correlate with (a) disease severity, as per GINA guidelines; (b) clinical phenotypes; and (c) response to treatment. METHODOLOGY The levels of IL-6 and MMP-9 were compared between moderate persistent asthma (n = 25), severe persistent asthma (n = 25) and normal controls (n = 30). IL-6 and MMP-9 were measured by ELISA (R&D Systems Inc., USA and Canada) and compared between controls and asthmatics and between groups of different asthma severity, clinical variables, spirometry, and allergen sensitization. Spirometry was repeated after 2 months of ICS+LABA to assess response to treatment in relation to baseline IL-6 and MMP-9 levels. RESULTS We observed a significant difference in both IL-6 and MMP-9 levels among asthmatics versus controls (p < 0.001), moderate versus severe persistent asthma (p < 0.001). A significant negative correlation was observed between MMP-9 and pre-bronchodilator FEV1 and FVC, but not with IL-6. There was no association between IL-6 and MMP-9 with asthma duration, total IgE, AEC, number of allergens sensitized and degree of sensitization. No significant correlation (p > 0.5) was observed with IL-6 and MMP-9 levels and FEV1 improvement after 2 months of ICS+LABA. CONCLUSION Higher levels of IL-6 and MMP-9 were observed in asthmatics as compared to controls and in severe persistent asthma as compared to moderate persistent asthma, higher levels of MMP-9 was associated with lower lung functions.
Collapse
Affiliation(s)
- Srilata Puru Naik
- a Department of Pulmonary Medicine , B.G.S Global Institute of Medical Sciences, BGS Health & Education City , Bengaluru , Karnataka , India
| | - Mahesh P A
- b Department of Pulmonary Medicine , JSS Medical College, JSS University , Mysuru , India
| | - Jayaraj B S
- b Department of Pulmonary Medicine , JSS Medical College, JSS University , Mysuru , India
| | - SubbaRao V Madhunapantula
- c Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, J.S.S Medical College, JSS University , Mysuru , Karnataka , India
| | - Sarah Raeiszadeh Jahromi
- d Genetics and Genomics Lab, Department of Studies in Genetics and Genomics, University of Mysore , Mysuru , Karnataka , India
| | - Manish Kumar Yadav
- c Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, J.S.S Medical College, JSS University , Mysuru , Karnataka , India.,e Department of Biochemistry , JSS Medical College, JSS University , Mysore , Karnataka , India
| |
Collapse
|
6
|
Iskandar AR, Gonzalez-Suarez I, Majeed S, Marescotti D, Sewer A, Xiang Y, Leroy P, Guedj E, Mathis C, Schaller JP, Vanscheeuwijck P, Frentzel S, Martin F, Ivanov NV, Peitsch MC, Hoeng J. A framework for in vitro systems toxicology assessment of e-liquids. Toxicol Mech Methods 2016; 26:389-413. [PMID: 27117495 PMCID: PMC5309872 DOI: 10.3109/15376516.2016.1170251] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 11/29/2022]
Abstract
Various electronic nicotine delivery systems (ENDS), of which electronic cigarettes (e-cigs) are the most recognized prototype, have been quickly gaining ground on conventional cigarettes because they are perceived as less harmful. Research assessing the potential effects of ENDS exposure in humans is currently limited and inconclusive. New products are emerging with numerous variations in designs and performance parameters within and across brands. Acknowledging these challenges, we present here a proposed framework for an in vitro systems toxicology assessment of e-liquids and their aerosols, intended to complement the battery of assays for standard toxicity assessments. The proposed framework utilizes high-throughput toxicity assessments of e-liquids and their aerosols, in which the device-to-device variability is minimized, and a systems-level investigation of the cellular mechanisms of toxicity is an integral part. An analytical chemistry investigation is also included as a part of the framework to provide accurate and reliable chemistry data solidifying the toxicological assessment. In its simplest form, the framework comprises of three main layers: (1) high-throughput toxicity screening of e-liquids using primary human cell culture systems; (2) toxicity-related mechanistic assessment of selected e-liquids, and (3) toxicity-related mechanistic assessment of their aerosols using organotypic air-liquid interface airway culture systems. A systems toxicology assessment approach is leveraged to enable in-depth analyses of the toxicity-related cellular mechanisms of e-liquids and their aerosols. We present example use cases to demonstrate the suitability of the framework for a robust in vitro assessment of e-liquids and their aerosols.
Collapse
Affiliation(s)
| | | | - Shoaib Majeed
- Philip Morris International R&D,
Neuchâtel,
Switzerland
| | | | - Alain Sewer
- Philip Morris International R&D,
Neuchâtel,
Switzerland
| | - Yang Xiang
- Philip Morris International R&D,
Neuchâtel,
Switzerland
| | - Patrice Leroy
- Philip Morris International R&D,
Neuchâtel,
Switzerland
| | | | - Carole Mathis
- Philip Morris International R&D,
Neuchâtel,
Switzerland
| | | | | | | | | | | | | | - Julia Hoeng
- Philip Morris International R&D,
Neuchâtel,
Switzerland
| |
Collapse
|
7
|
Liu JN, Suh DH, Yang EM, Lee SI, Park HS, Shin YS. Attenuation of airway inflammation by simvastatin and the implications for asthma treatment: is the jury still out? Exp Mol Med 2014; 46:e113. [PMID: 25213768 PMCID: PMC4183942 DOI: 10.1038/emm.2014.55] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/27/2014] [Accepted: 07/07/2014] [Indexed: 11/20/2022] Open
Abstract
Although some studies have explained the immunomodulatory effects of statins, the exact mechanisms and the therapeutic significance of these molecules remain to be elucidated. This study not only evaluated the therapeutic potential and inhibitory mechanism of simvastatin in an ovalbumin (OVA)-specific asthma model in mice but also sought to clarify the future directions indicated by previous studies through a thorough review of the literature. BALB/c mice were sensitized to OVA and then administered three OVA challenges. On each challenge day, 40 mg kg−1 simvastatin was injected before the challenge. The airway responsiveness, inflammatory cell composition, and cytokine levels in bronchoalveolar lavage (BAL) fluid were assessed after the final challenge, and the T cell composition and adhesion molecule expression in lung homogenates were determined. The administration of simvastatin decreased the airway responsiveness, the number of airway inflammatory cells, and the interleukin (IL)-4, IL-5 and IL-13 concentrations in BAL fluid compared with vehicle-treated mice (P<0.05). Histologically, the number of inflammatory cells and mucus-containing goblet cells in lung tissues also decreased in the simvastatin-treated mice. Flow cytometry showed that simvastatin treatment significantly reduced the percentage of pulmonary CD4+ cells and the CD4+/CD8+ T-cell ratio (P<0.05). Simvastatin treatment also decreased the expression of the vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 proteins, as measured in homogenized lung tissues (P<0.05) and human epithelial cells. The reduction in the T cell influx as a result of the decreased expression of cell adhesion molecules is one of the mechanisms by which simvastatin attenuates airway responsiveness and allergic inflammation. Rigorous review of the literature together with our findings suggested that simvastatin should be further developed as a potential therapeutic strategy for allergic asthma.
Collapse
Affiliation(s)
- Jing-Nan Liu
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Dong-Hyeon Suh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Mi Yang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Seung-Ihm Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
8
|
Relationship between Leukopenia and Intercellular Adhesion Molecules in Graves' Disease. W INDIAN MED J 2014; 63:601-4. [PMID: 25803374 DOI: 10.7727/wimj.2013.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 04/22/2013] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Changes in soluble intercellular adhesion molecule-1 (sICAM-1) and E-selectin levels as well as leukocyte count were examined in this study to explore the relationship between leukopenia and ICAMs in Graves' disease (GD). METHODS Fasting blood samples were obtained from 37 GD patients with normal leukocytes and 32 GD patients with leukopenia. Enzyme-linked immunosorbent assay (ELISA) was performed to determine serum sICAM-1 and E-selectin levels for comparison. The same analyses were repeated for the GD patients with leukopenia after glucocorticoid treatment (15 mg/day to 30 mg/day prednisone). RESULTS The ELISA results showed that E-selectin levels were higher in GD patients with leukopenia than those with normal leukocytes (p < 0.05), but these levels decreased after glucocorticoid (prednisone) treatment (p < 0.05). No significant change in sICAM-1 levels was observed (p = 0.12). Correlation analysis showed that leukocyte count and E-selectin were negatively correlated (r = -0.778; p < 0.05). CONCLUSION E-selectin may have an important function in GD with leukopenia, and glucocorticoids (prednisone) could decrease E-selectin level, which may be a new therapy target for GD with leukopenia.
Collapse
|
9
|
Mukhopadhyay S, Malik P, Arora SK, Mukherjee TK. Intercellular adhesion molecule-1 as a drug target in asthma and rhinitis. Respirology 2014; 19:508-13. [PMID: 24689994 DOI: 10.1111/resp.12285] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/28/2013] [Accepted: 11/26/2013] [Indexed: 01/21/2023]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein receptor of the immunoglobulin superfamily. Endothelial cells, epithelial cells, leukocytes and neutrophils are the major cells expressing ICAM-1. Ligands of ICAM-1 are macrophage adhesion ligand-1, leukocyte function-associated antigen-1 and fibrinogen (extracellular matrix protein). In normal physiological conditions, engagement of ICAM-1 receptor with immunological cells surface ligands assists in homing and trafficking of inflammatory cells to distant tissues. ICAM-1 has also long been known to mediate cell-to-cell interaction during antigen presentation and outside-in cell signalling pathways. ICAM-1-mediated elevated inflammation is implicated in asthma. On respiratory epithelial cells surface, ICAM-1 acts as natural binding site for human rhinovirus (HRV), a common cold virus that ultimately causes exacerbation of asthma. This review presents the findings on the role of ICAM-1 in the complication of asthma and in particular asthma exacerbation by HRV.
Collapse
Affiliation(s)
- Srirupa Mukhopadhyay
- Department of Immunopathology, Research Block A, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | | | | | | |
Collapse
|
10
|
Gross MD, Bielinski SJ, Suarez-Lopez JR, Reiner AP, Bailey K, Thyagarajan B, Carr JJ, Duprez DA, Jacobs DR. Circulating soluble intercellular adhesion molecule 1 and subclinical atherosclerosis: the Coronary Artery Risk Development in Young Adults Study. Clin Chem 2012; 58:411-20. [PMID: 22179741 PMCID: PMC3867124 DOI: 10.1373/clinchem.2011.168559] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Soluble intercellular adhesion molecule 1 (sICAM-1) is associated with endothelial dysfunction and clinical cardiovascular disease. We investigated the relationship of subclinical atherosclerosis with sICAM-1 concentration. METHODS sICAM-1 concentration was assayed at year 15 of the Coronary Artery Risk Development in Young Adults (CARDIA) Study (black and white men and women, average age 40 years). We assessed progression of coronary artery calcification (CAC) through year 20 (n = 2378), and both carotid artery stenosis (n = 2432) and intima-media thickness (IMT) at year 20 (n = 2240). RESULTS Median sICAM-1 was 145.9 μg/L. Among a subgroup with advanced atherosclerotic plaque (either CAC or stenosis), IMT was 0.010 (95% CI 0.003-0.017 mm) higher per SD of sICAM-1 (44 μg/L) in a model adjusted for age, race, sex, clinic, smoking, exercise, body size, education, blood pressure, antihypertensive medication, plasma lipids, and cholesterol-lowering medication. With the same adjustment, the odds ratio (OR) for the presence of year-20 carotid artery stenosis per SD of sICAM-1 was 1.12 (95% CI 1.01-1.25, P < 0.04), whereas for occurrence of CAC progression the OR was 1.16 (1.04-1.31, P < 0.01). The associations with CAC and carotid stenosis were strongest in the top 20th of the sICAM-1 distribution. CONCLUSIONS sICAM-1 concentration may be an early biomarker that indicates changes in the artery wall that accompany atherosclerosis, as well as the presence of advanced plaque in the coronary and carotid arteries. This finding holds in people with low total burden of atherosclerosis, decades before the development of clinical CVD.
Collapse
Affiliation(s)
- Myron D Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Selectins and Associated Adhesion Proteins in Inflammatory disorders. ANIMAL LECTINS: FORM, FUNCTION AND CLINICAL APPLICATIONS 2012. [PMCID: PMC7121831 DOI: 10.1007/978-3-7091-1065-2_44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation is defined as the normal response of living tissue to injury or infection. It is important to emphasize two components of this definition. First, that inflammation is a normal response and, as such, is expected to occur when tissue is damaged. Infact, if injured tissue does not exhibit signs of inflammation this would be considered abnormal and wounds and infections would never heal without inflammation. Secondly, inflammation occurs in living tissue, hence there is need for an adequate blood supply to the tissues in order to exhibit an inflammatory response. The inflammatory response may be triggered by mechanical injury, chemical toxins, and invasion by microorganisms, and hypersensitivity reactions. Three major events occur during the inflammatory response: the blood supply to the affected area is increased substantially, capillary permeability is increased, and leucocytes migrate from the capillary vessels into the surrounding interstitial spaces to the site of inflammation or injury. The inflammatory response represents a complex biological and biochemical process involving cells of the immune system and a plethora of biological mediators. Cell-to-cell communication molecules such as cytokines play an extremely important role in mediating the process of inflammation. Inflammation and platelet activation are critical phenomena in the setting of acute coronary syndromes. An extensive exposition of this complex phenomenon is beyond the scope of this article (Rankin 2004).
Collapse
|
12
|
Association of IL-4 and ADAM33 gene polymorphisms with asthma in an Indian population. Lung 2010; 188:415-22. [PMID: 20524005 DOI: 10.1007/s00408-010-9247-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 05/15/2010] [Indexed: 10/19/2022]
Abstract
There are more than 100 candidate genes of asthma located on 23 human chromosomes. Interleukin-4 (IL-4), located on chromosome 5q31, and ADAM33, located on chromosome 20p13, and some single nucleotide polymorphisms (SNPs) of these genes have been shown to be associated with asthma and its manifestations in different populations. The most prominent SNPs of IL-4 and ADAM33 are 589C>T and 400A>G, respectively. There are also controversial reports on the association of these SNPs with asthma. In the present study, we analyzed these two SNPs in 100 patients with asthma and 50 controls through PCR amplification and restriction digestion to evaluate association of these two SNPs with asthma. The nonsignificant differences were observed for the IL-4 promoter polymorphism C589T and the ADAM33 T1 polymorphism between asthmatic patients and controls (P = 0.638 and 0.943, respectively). Our data revealed that there is no association of these SNPs with asthma indicating that other SNPs of these genes or other genes might be involved in the manifestation of asthma.
Collapse
|