1
|
Bruggink S, Kentch K, Kronenfeld J, Renquist BJ. A Leak-Free Head-Out Plethysmography System to Accurately Assess Lung Function in Mice. J Appl Physiol (1985) 2022; 133:104-118. [DOI: 10.1152/japplphysiol.00835.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mice are a valuable model for elegant studies of complex, systems-dependent diseases, including pulmonary diseases. Current tools to assess lung function in mice are either terminal or lack accuracy. We set out to develop a low-cost, accurate, head-out variable-pressure plethysmography system to allow for repeated, non-terminal measurements of lung function in mice. Current head-out plethysmography systems are limited by air leaks that prevent accurate measures of volume and flow. We designed an inflatable cuff that encompasses the mouse's neck preventing air leak. We wrote corresponding software to collect and analyze the data, remove movement artifacts, and automatically calibrate each dataset. This software calculates inspiratory/expiratory volume, inspiratory/expiratory time, breaths per minute, mid-expiratory flow, and end-inspiratory pause. To validate the use, we established that our plethysmography system accurately measured tidal breathing, the bronchoconstrictive response to methacholine, sex and age associated changes in breathing, and breathing changes associated with house dust mite sensitization. Our estimates of volume, flow, and timing of breaths are in line with published estimates, we observed dose-dependent decreases in volume and flow in response to methacholine (P < 0.05), increased lung volume and decreased breathing rate with aging (P < 0.05), and that house dust mite sensitization decreased volume and flow (P <0.05) while exacerbating the methacholine induced increases in inspiratory and expiratory time (P < 0.05). We describe an accurate, sensitive, low-cost, head-out plethysmography system that allows for longitudinal studies of pulmonary disease in mice.
Collapse
Affiliation(s)
- Stephanie Bruggink
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
- Physiological Sciences GIDP, University of Arizona, Tucson, AZ, United States
| | - Kyle Kentch
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Jason Kronenfeld
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Benjamin Jennings Renquist
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
- Physiological Sciences GIDP, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
2
|
Ogino T, Mase K, Murakami S, Domen K. Work of breathing during arm bracing in normal male subjects. ACTA ACUST UNITED AC 2020; 56:65-69. [PMID: 33274260 PMCID: PMC7690311 DOI: 10.29390/cjrt-2020-012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Although chronic obstructive pulmonary disease patients get relief from their dyspnea by arm bracing, the mechanics of this effect are unknown. This study aimed to investigate the mechanisms by which arm bracing affects dyspnea by measuring the work of breathing (WOB) in the arm bracing posture. Methods Six normal male subjects were studied in two standing postures: erect and with their arms braced. For the arm bracing posture, the subjects leaned forward with their arms stretched and rested their hands on a platform. Respiratory frequency was set at 20 tidal breaths/min with the use of a metronome, and tidal volume was set at 1 L by observing the lung volume on a monitor. All the subjects randomly adopted the two postures, and a preset respiratory pattern was measured for 30 s in each posture. Lung volume and flow rate were measured using a hot-wire flowmeter. Esophageal pressure was measured using a 12-cm balloon catheter. The WOB was estimated using modified Campbell diagrams. Results Lung volume increased and inspiratory resistive WOB decreased, while inspiratory elastic WOB increased significantly with arm bracing compared with that of the erect posture (P < 0.05). Conclusion Arm bracing posture increases the chest wall expansion thereby increasing the end-expiratory lung volume and decreasing the inspiratory resistive WOB among healthy individuals.
Collapse
Affiliation(s)
- Tomoyuki Ogino
- Department of Rehabilitation, Hyogo College of Medicine Sasayama Medical Center, Sasayama, Hyogo, Japan
| | - Kyoshi Mase
- Department of Physical Therapy, Faculty of Nursing and Rehabilitation, Konan Women's University, Higashinada, Kobe, Hyogo, Japan
| | - Shigefumi Murakami
- Department of Rehabilitation, Hyogo College of Medicine Sasayama Medical Center, Sasayama, Hyogo, Japan
| | - Kazuhisa Domen
- Department of Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
3
|
Rubini A. Physical mechanisms and features of the inspiratory work of breathing and the development of respiratory failure on a mechanical basis. ACTA ACUST UNITED AC 2019. [DOI: 10.23736/s0026-4954.19.01853-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Rubini A. The Effects of Prone with Respect to Supine Position on Stress Relaxation, Respiratory Mechanics, and the Work of Breathing Measured by the End-Inflation Occlusion Method in the Rat. Lung 2015; 194:53-9. [PMID: 26585574 DOI: 10.1007/s00408-015-9827-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE The working hypothesis is that the prone position with respect to supine may change the geometric configuration of the lungs inside the chest wall, thus their reciprocal mechanical interactions, leading to possible effects on stress relaxation phenomena and respiratory mechanics. METHOD The effects of changing body posture from supine to prone on respiratory system mechanics, particularly on stress relaxation, were investigated in the rat by the end-inflation occlusion method. RESULTS In the prone with respect to supine position, an increment of the frictional resistance of the airway (from 0.13 ± 0.01 to 0.19 ± 0.02 cm H2O/l sec(-1), p < 0.05) and a decrement of the stress relaxation-linked pressure dissipation (from 0.51 ± 0.05 to 0.45 ± 0.05 cm H2O/l sec(-1), p < 0.01) were found. Respiratory system elastance and total resistive pressure dissipation did not change significantly. Accordingly, a significant increase of the frictional "ohmic" mechanical inspiratory work of breathing and a decrease of the visco-elastic work of inspiration were demonstrated, while no significant changes occurred for the total mechanical work of breathing and its total resistive and elastic components. CONCLUSION It is concluded that postural changes affect the visco-elastic characteristics of the respiratory system and the related stress relaxation phenomena by influencing the disposition and relation of the lungs inside the chest wall and their relative geometrical configuration, and the interaction phenomena of the constitutive parenchymal structures, i.e., elastin and collagen fibers. Since the prone position resulted in no serious or disadvantageous respiratory system mechanical derangement, it is suggested it may be usefully applied in nursing or for therapeutic goals.
Collapse
Affiliation(s)
- Alessandro Rubini
- Physiology Section, Department of Biomedical Sciences, University of Padova, Via Marzolo 3, 35100, Padua, Italy.
| |
Collapse
|
5
|
RUBINI ALESSANDRO, CATENA VINCENZO, MONTE DANIELEDEL, CARNIEL EMANUELELUIGI. A REVIEW OF THE EFFECTS OF BODY TEMPERATURE VARIATIONS ON RESPIRATORY MECHANICS: MEASUREMENTS BY THE END-INFLATION OCCLUSION METHOD IN THE RAT. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415300069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The temperature of body fluids is expected to affect tissues mechanical properties, including respiratory system tissues. This is because of the changes in airway smooth muscle tone and contractile properties, influencing airway frictional resistance to airflow, and because of the temperature effects on the stress–strain relationships of elastin and collagen, which determinates the elastic behavior of the lungs as reflected by their pressure–volume relationship. Alveolar surfactant biological and physical properties have also been shown to be affected by temperature changes, suggesting influences on the respiratory system hysteretic properties. Experimental works describing the effects of body temperature variations on respiratory mechanics are reviewed, including recent findings dealing with investigations on respiratory mechanics carried out by the end-inflation occlusion method in the rat. This method allows to determine, together with the elastance of the respiratory system, its resistive properties too. In particular, both the ohmic airway resistance due to frictional forces in the airway and the additional visco-elastic resistance exerted because of tissues stress-relaxation may be quantified. The effects of body temperature variations were assessed, and experimentally induced temperature increments and/or decrements allowed to conclude that respiratory system tissues stiffness, both the ohmic and the stress-relaxation linked resistances, and the hysteretic behavior of the respiratory system, decrease with temperature increments. The mechanisms responsible for these effects are analyzed.
Collapse
Affiliation(s)
- ALESSANDRO RUBINI
- Department of Biomedical Sciences, Section Physiology, University of Padova, Italy
| | - VINCENZO CATENA
- Department of Anesthesiology and Intensive Care, ULSS 2, Feltre (BL), Italy
| | - DANIELE DEL MONTE
- Department of Anesthesiology and Intensive Care, ULSS 2, Feltre (BL), Italy
| | | |
Collapse
|
6
|
Carniel EL, Mencattelli M, Bonsignori G, Fontanella CG, Frigo A, Rubini A, Stefanini C, Natali AN. Analysis of the structural behaviour of colonic segments by inflation tests: Experimental activity and physio-mechanical model. Proc Inst Mech Eng H 2015; 229:794-803. [PMID: 26396226 DOI: 10.1177/0954411915606484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022]
Abstract
A coupled experimental and computational approach is provided for the identification of the structural behaviour of gastrointestinal regions, accounting for both elastic and visco-elastic properties. The developed procedure is applied to characterize the mechanics of gastrointestinal samples from pig colons. Experimental data about the structural behaviour of colonic segments are provided by inflation tests. Different inflation processes are performed according to progressively increasing top pressure conditions. Each inflation test consists of an air in-flow, according to an almost constant increasing pressure rate, such as 3.5 mmHg/s, up to a prescribed top pressure, which is held constant for about 300 s to allow the development of creep phenomena. Different tests are interspersed by 600 s of rest to allow the recovery of the tissues' mechanical condition. Data from structural tests are post-processed by a physio-mechanical model in order to identify the mechanical parameters that interpret both the non-linear elastic behaviour of the sample, as the instantaneous pressure-stretch trend, and the time-dependent response, as the stretch increase during the creep processes. The parameters are identified by minimizing the discrepancy between experimental and model results. Different sets of parameters are evaluated for different specimens from different pigs. A statistical analysis is performed to evaluate the distribution of the parameters and to assess the reliability of the experimental and computational activities.
Collapse
Affiliation(s)
- Emanuele L Carniel
- Department of Industrial Engineering, Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | | | | | | | - Alessandro Frigo
- Department of Industrial Engineering, Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| | - Alessandro Rubini
- Department of Industrial Engineering, Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Cesare Stefanini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Arturo N Natali
- Department of Industrial Engineering, Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Oakes JM, Marsden AL, Grandmont C, Darquenne C, Vignon-Clementel IE. Distribution of aerosolized particles in healthy and emphysematous rat lungs: comparison between experimental and numerical studies. J Biomech 2015; 48:1147-57. [PMID: 25682537 DOI: 10.1016/j.jbiomech.2015.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/17/2014] [Accepted: 01/13/2015] [Indexed: 01/17/2023]
Abstract
In silico models of airflow and particle deposition in the lungs are increasingly used to determine the therapeutic or toxic effects of inhaled aerosols. While computational methods have advanced significantly, relatively few studies have directly compared model predictions to experimental data. Furthermore, few prior studies have examined the influence of emphysema on particle deposition. In this work we performed airflow and particle simulations to compare numerical predictions to data from our previous aerosol exposure experiments. Employing an image-based 3D rat airway geometry, we first compared steady flow simulations to coupled 3D-0D unsteady simulations in the healthy rat lung. Then, in 3D-0D simulations, the influence of emphysema was investigated by matching disease location to the experimental study. In both the healthy unsteady and steady simulations, good agreement was found between numerical predictions of aerosol delivery and experimental deposition data. However, deposition patterns in the 3D geometry differed between the unsteady and steady cases. On the contrary, satisfactory agreement was not found between the numerical predictions and experimental data for the emphysematous lungs. This indicates that the deposition rate downstream of the 3D geometry is likely proportional to airflow delivery in the healthy lungs, but not in the emphysematous lungs. Including small airway collapse, variations in downstream airway size and tissue properties, and tracking particles throughout expiration may result in a more favorable agreement in future studies.
Collapse
Affiliation(s)
- Jessica M Oakes
- INRIA Paris-Rocquencourt, 78153 Le Chesnay Cedex, France; Sorbonne Universités UPMC Univ. Paris 6, Laboratoire Jacques-Louis Lions, 75005 Paris, France
| | - Alison L Marsden
- Mechanical and Aerospace Engineering Department, University of California San Diego, La Jolla, CA 92093, USA
| | - Céline Grandmont
- INRIA Paris-Rocquencourt, 78153 Le Chesnay Cedex, France; Sorbonne Universités UPMC Univ. Paris 6, Laboratoire Jacques-Louis Lions, 75005 Paris, France
| | - Chantal Darquenne
- Department of Medicine, Division of Physiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Irene E Vignon-Clementel
- INRIA Paris-Rocquencourt, 78153 Le Chesnay Cedex, France; Sorbonne Universités UPMC Univ. Paris 6, Laboratoire Jacques-Louis Lions, 75005 Paris, France.
| |
Collapse
|
8
|
A Review of Recent Findings About Stress-Relaxation in the Respiratory System Tissues. Lung 2014; 192:833-9. [DOI: 10.1007/s00408-014-9630-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/23/2014] [Indexed: 11/26/2022]
|
9
|
Rubini A, Porzionato A, Sarasin G, Zara S, Macchi V, Camporesi E, Bosco G. Hyperbaric air exposure at 2.5 ATA does not affect respiratory mechanics and lung histology in the rat. Lung 2014; 192:609-14. [PMID: 24691890 DOI: 10.1007/s00408-014-9576-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND We previously demonstrated that the exposure to hyperbaric hyperoxia increased respiratory system elastance and both the "ohmic" and viscoelastic components of inspiratory resistances, probably because of increased oxygen tension toxic effects. We presently investigated the possible consequences of a single exposure to 2.5-atmospheres absolute air (hyperbarism) lasting 90 min. METHODS We used the end-inflation occlusion method on anesthetized rats after about 15 min from previous exposure to hyperbarism. The method allows the measurements of respiratory system elastance and of the ohmic and viscoelastic components of airway resistance, which respectively depend on the Newtonian pressure dissipation due to the ohmic airway resistance to airflow and on the viscoelastic pressure dissipation caused by respiratory system tissue stress relaxation. The expressions of inducible NO synthase (iNOS) and endothelial NO synthase (eNOS) in the lung's tissues were also investigated, together with the histological characteristics of lung tissue. Data were compared with those obtained in control animals and in previously studied animals exposed to hyperoxic hyperbarism. RESULTS Unlike with hyperoxic hyperbarism, hyperbarism per se did not change significantly the parameters of respiratory mechanics in the control animals (respiratory system elastance and ohmic and viscoelastic resistances were 2.01 ± 0.17 vs. 1.74 ± 0.08 cm H(2)O/ml, and 0.13 ± 0.02 vs. 0.13 ± 0.03 and 0.425 ± 0.04 vs. 0.33 ± 0.03 cm H(2)O/ml s(-1) in control vs. experimental animals, respectively, none significantly different), nor did it induce evident effects on lung histology. An increment of both iNOS and eNOS expressions was documented instead (0.50 ± 0.05 vs. 0.75 ± 0.07 and 1.04 ± 0.1 and 1.4 ± 0.15, respectively). CONCLUSION Our results indicate that, at variance with hyperoxic hyperbarism, the acute exposure to only hyperbarism does not affect either the elastic or the resistive respiratory system properties, or lung histology.
Collapse
Affiliation(s)
- Alessandro Rubini
- Department of Biomedical Sciences, Section Physiology, University of Padova, Via Marzolo, 3, 35100, Padua, Italy,
| | | | | | | | | | | | | |
Collapse
|
10
|
Oakes JM, Marsden AL, Grandmont C, Shadden SC, Darquenne C, Vignon-Clementel IE. Airflow and particle deposition simulations in health and emphysema: from in vivo to in silico animal experiments. Ann Biomed Eng 2014; 42:899-914. [PMID: 24318192 PMCID: PMC4092242 DOI: 10.1007/s10439-013-0954-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/23/2013] [Indexed: 10/25/2022]
Abstract
Image-based in silico modeling tools provide detailed velocity and particle deposition data. However, care must be taken when prescribing boundary conditions to model lung physiology in health or disease, such as in emphysema. In this study, the respiratory resistance and compliance were obtained by solving an inverse problem; a 0D global model based on healthy and emphysematous rat experimental data. Multi-scale CFD simulations were performed by solving the 3D Navier-Stokes equations in an MRI-derived rat geometry coupled to a 0D model. Particles with 0.95 μm diameter were tracked and their distribution in the lung was assessed. Seven 3D-0D simulations were performed: healthy, homogeneous, and five heterogeneous emphysema cases. Compliance (C) was significantly higher (p = 0.04) in the emphysematous rats (C = 0.37 ± 0.14 cm(3)/cmH2O) compared to the healthy rats (C = 0.25 ± 0.04 cm(3)/cmH2O), while the resistance remained unchanged (p = 0.83). There were increases in airflow, particle deposition in the 3D model, and particle delivery to the diseased regions for the heterogeneous cases compared to the homogeneous cases. The results highlight the importance of multi-scale numerical simulations to study airflow and particle distribution in healthy and diseased lungs. The effect of particle size and gravity were studied. Once available, these in silico predictions may be compared to experimental deposition data.
Collapse
Affiliation(s)
- Jessica M Oakes
- Mechanical and Aerospace Engineering Department, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | | | | | | |
Collapse
|
11
|
Rubini A, Carniel EL. The volume dependence of stress relaxation in the rat respiratory system. Exp Lung Res 2014; 40:137-43. [DOI: 10.3109/01902148.2014.891676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Carniel EL, Gramigna V, Fontanella CG, Frigo A, Stefanini C, Rubini A, Natali AN. Characterization of the anisotropic mechanical behaviour of colonic tissues: experimental activity and constitutive formulation. Exp Physiol 2014; 99:759-71. [PMID: 24486449 DOI: 10.1113/expphysiol.2013.076091] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aim was to investigate the biomechanical behaviour of colonic tissues by a coupled experimental and numerical approach. The wall of the colon is composed of different tissue layers. Within each layer, different fibre families are distributed according to specific spatial orientations, which lead to a strongly anisotropic configuration. Accounting for the complex histology of the tissues, mechanical tests must be planned and designed to evaluate the behaviour of the colonic wall in different directions. Uni-axial tensile tests were performed on tissue specimens from 15 fresh pig colons, accounting for six different loading directions (five specimens for each loading direction). The next step of the investigation was to define an appropriate constitutive framework and develop a procedure for identification of the constitutive parameters. A specific hyperelastic formulation was developed that accounted for the multilayered conformation of the colonic wall and the fibre-reinforced configuration of the tissues. The parameters were identified by inverse analyses of the mechanical tests. The comparison of model results with experimental data, together with the evaluation of satisfaction of material thermomechanics principles, confirmed the reliability of the analysis developed. This work forms the basis for more comprehensive activities that aim to provide computational tools for the interpretation of surgical procedures that involve the gastrointestinal tract, considering the specific biomedical devices adopted.
Collapse
Affiliation(s)
- E L Carniel
- Department of Industrial Engineering Centre of Mechanics of Biological Materials
| | - V Gramigna
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - A Frigo
- Department of Industrial Engineering Centre of Mechanics of Biological Materials
| | - C Stefanini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - A Rubini
- Centre of Mechanics of Biological Materials Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - A N Natali
- Department of Industrial Engineering Centre of Mechanics of Biological Materials
| |
Collapse
|
13
|
Carniel EL, Rubini A, Frigo A, Natali AN. Analysis of the biomechanical behaviour of gastrointestinal regions adopting an experimental and computational approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2013; 113:338-345. [PMID: 24252470 DOI: 10.1016/j.cmpb.2013.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/10/2013] [Accepted: 06/28/2013] [Indexed: 06/02/2023]
Abstract
An integrated experimental and computational procedure is provided for the evaluation of the biomechanical behaviour that characterizes the pressure-volume response of gastrointestinal regions. The experimental activity pertains to inflation tests performed on specific gastrointestinal conduct segments. Different inflation processes are performed according to progressively increasing volumes. Each inflation test is performed by a rapid liquid in-flaw, up to a prescribed volume, which is held constant for about 300s to allow the development of relaxation processes. The different tests are interspersed by 600s of rest to allow the recovery of the specimen mechanical condition. A physio-mechanical model is developed to interpret both the elastic behaviour of the sample, as the pressure-volume trend during the rapid liquid in-flaw, and the time-dependent response, as the pressure drop during the relaxation processes. The minimization of discrepancy between experimental data and model results entails the identification of the parameters that characterize the viscoelastic model adopted for the definition of the behaviour of the gastrointestinal regions. The reliability of the procedure is assessed by the characterization of the response of samples from rat small intestine.
Collapse
Affiliation(s)
- E L Carniel
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, I-35131 Padova, Italy; Centre of Mechanics of Biological Materials, University of Padova, Via F. Marzolo 9, I-35131 Padova, Italy.
| | | | | | | |
Collapse
|
14
|
The effect of body cooling on respiratory system mechanics and hysteresis in rats. Respir Physiol Neurobiol 2013; 189:52-8. [PMID: 23827852 DOI: 10.1016/j.resp.2013.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 11/20/2022]
Abstract
Literature reports and theoretical considerations suggest that body cooling may affect respiratory mechanics in vivo. To examine this hypothesis, healthy rats were studied using the end-inflation occlusion method under control conditions and after total body cooling. Respiratory mechanics parameters, hysteresis areas, the inspiratory work of breathing, and its elastic and resistive components, were calculated. After body cooling (mean rectal temperature from 36.6 ± 0.25 to 32.1 ± 0.26 °C), the ohmic and the additional visco-elastic respiratory system resistances, the hysteresis, the total inspiratory work of breathing, and its resistive components, were all increased. No significant changes were detected for the static and dynamic respiratory system elastance mean values, and the related elastic component of the work of breathing. These data indicate that body cooling increases the mechanical inspiratory work of breathing by increasing the resistive pressures dissipation. This effect is evident even for limited temperature variations, and it is suggested that it may occur in the event of accidental or therapeutic hypothermia.
Collapse
|
15
|
Rubini A, Bosco G. The effect of body temperature on the dynamic respiratory system compliance-breathing frequency relationship in the rat. J Biol Phys 2013; 39:411-8. [PMID: 23860917 DOI: 10.1007/s10867-013-9298-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 01/11/2013] [Indexed: 11/28/2022] Open
Abstract
The mechanical inhomogeneity of the respiratory system is frequently investigated by measuring the frequency dependence of dynamic compliance, but no data are currently available describing the effects of body temperature variations. The aim of the present report was to study those effects in vivo. Peak airway pressure was measured during positive pressure ventilation in eight anesthetized rats while breathing frequency (but not tidal volume) was altered. Dynamic compliance was calculated as the tidal volume/peak airway pressure, and measurements were taken in basal conditions (mean rectal temperature 37.3 °C) as well as after total body warming (mean rectal temperature 39.7 °C). Due to parenchymal mechanical inhomogeneity and stress relaxation-linked effects, the normal rat respiratory system exhibited frequency dependence of dynamic lung compliance. Even moderate body temperature increments significantly reduced the decrements in dynamic compliance linked to breathing rate increments. The results were analyzed using Student's and Wilcoxon's tests, which yielded the same results (p < 0.05). Body temperature variations are known to influence respiratory mechanics. The frequency dependence of dynamic compliance was found, in the experiments described, to be temperature-dependent as temperature variations affected parenchymal mechanical inhomogeneity and stress relaxation. These results suggest that body temperature variations should be taken into consideration when the dynamic compliance-breathing frequency relationship is being examined during clinical assessment of inhomogeneity of lung parenchyma in patients.
Collapse
Affiliation(s)
- Alessandro Rubini
- Department of Biomedical Sciences, Physiology Section, University of Padova, Via Marzolo, 3, 35100, Padova, Italy.
| | | |
Collapse
|