1
|
Emanuelli G, Zhu J, Li W, Morrell NW, Marciniak SJ. Functional validation of EIF2AK4 (GCN2) missense variants associated with pulmonary arterial hypertension. Hum Mol Genet 2024; 33:1495-1505. [PMID: 38776952 PMCID: PMC11336063 DOI: 10.1093/hmg/ddae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disorder with a large genetic component. Biallelic mutations of EIF2AK4, which encodes the kinase GCN2, are causal in two ultra-rare subtypes of PAH, pulmonary veno-occlusive disease and pulmonary capillary haemangiomatosis. EIF2AK4 variants of unknown significance have also been identified in patients with classical PAH, though their relationship to disease remains unclear. To provide patients with diagnostic information and enable family testing, the functional consequences of such rare variants must be determined, but existing computational methods are imperfect. We applied a suite of bioinformatic and experimental approaches to sixteen EIF2AK4 variants that had been identified in patients. By experimentally testing the functional integrity of the integrated stress response (ISR) downstream of GCN2, we determined that existing computational tools have insufficient sensitivity to reliably predict impaired kinase function. We determined experimentally that several EIF2AK4 variants identified in patients with classical PAH had preserved function and are therefore likely to be non-pathogenic. The dysfunctional variants of GCN2 that we identified could be subclassified into three groups: misfolded, kinase-dead, and hypomorphic. Intriguingly, members of the hypomorphic group were amenable to paradoxical activation by a type-1½ GCN2 kinase inhibitor. This experiment approach may aid in the clinical stratification of EIF2AK4 variants and potentially identify hypomorophic alleles receptive to pharmacological activation.
Collapse
Affiliation(s)
- Giulia Emanuelli
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Keith Peters Building, Biomedical Campus, Hills Rd, Cambridge CB2 0XY, United Kingdom
| | - JiaYi Zhu
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Keith Peters Building, Biomedical Campus, Hills Rd, Cambridge CB2 0XY, United Kingdom
| | - Wei Li
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Papworth Road, Trumpington, Cambridge CB2 0BB, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital (Box 157), Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Nicholas W Morrell
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Papworth Road, Trumpington, Cambridge CB2 0BB, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital (Box 157), Hills Road, Cambridge CB2 2QQ, United Kingdom
- Royal Papworth Hospital NHS Foundation Trust, Papworth Rd, Trumpington, Cambridge CB2 0AY, United Kingdom
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Keith Peters Building, Biomedical Campus, Hills Rd, Cambridge CB2 0XY, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital (Box 157), Hills Road, Cambridge CB2 2QQ, United Kingdom
- Royal Papworth Hospital NHS Foundation Trust, Papworth Rd, Trumpington, Cambridge CB2 0AY, United Kingdom
| |
Collapse
|
2
|
Wang MT, Weng KP, Chang SK, Huang WC, Chen LW. Hemodynamic and Clinical Profiles of Pulmonary Arterial Hypertension Patients with GDF2 and BMPR2 Variants. Int J Mol Sci 2024; 25:2734. [PMID: 38473983 DOI: 10.3390/ijms25052734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Asians have a higher carrier rate of pulmonary arterial hypertension (PAH)-related genetic variants than Caucasians do. This study aimed to identify PAH-related genetic variants using whole exome sequencing (WES) in Asian idiopathic and heritable PAH cohorts. A WES library was constructed, and candidate variants were further validated by polymerase chain reaction and Sanger sequencing in the PAH cohort. In a total of 69 patients, the highest incidence of variants was found in the BMPR2, ATP13A3, and GDF2 genes. Regarding the BMPR2 gene variants, there were two nonsense variants (c.994C>T, p. Arg332*; c.1750C>T, p. Arg584*), one missense variant (c.1478C>T, p. Thr493Ile), and one novel in-frame deletion variant (c.877_888del, p. Leu293_Ser296del). Regarding the GDF2 variants, there was one likely pathogenic nonsense variant (c.259C>T, p. Gln87*) and two missense variants (c.1207G>A, p. Val403Ile; c.38T>C, p. Leu13Pro). The BMPR2 and GDF2 variant subgroups had worse hemodynamics. Moreover, the GDF2 variant patients were younger and had a significantly lower GDF2 value (135.6 ± 36.2 pg/mL, p = 0.002) in comparison to the value in the non-BMPR2/non-GDF2 mutant group (267.8 ± 185.8 pg/mL). The BMPR2 variant carriers had worse hemodynamics compared to the patients with the non-BMPR2/non-GDF2 mutant group. Moreover, there was a significantly lower GDF2 value in the GDF2 variant carriers compared to the control group. GDF2 may be a protective or corrected modifier in certain genetic backgrounds.
Collapse
Affiliation(s)
- Mei-Tzu Wang
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Ken-Pen Weng
- Congenital Structural Heart Disease Center, Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | | | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Physical Therapy, Fooyin University, Kaohsiung 813, Taiwan
| | - Lee-Wei Chen
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 813, Taiwan
| |
Collapse
|
3
|
Pulmonary Hypertension Associated Genetic Variants in Sarcoidosis Associated Pulmonary Hypertension. Diagnostics (Basel) 2022; 12:diagnostics12102564. [PMID: 36292254 PMCID: PMC9601358 DOI: 10.3390/diagnostics12102564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a severe complication of sarcoidosis in a minority of patients. Several genetic defects are known to cause hereditary or sporadic PH, but whether variants in PH-associated genes are also involved in sarcoidosis-associated PH (SAPH) is unknown. METHODS 40 patients with SAPH were individually matched to 40 sarcoidosis patients without PH (SA). Whole exome sequencing was performed to identify rare genetic variants in a diagnostic PH gene panel of 13 genes. Additionally, an exploratory analysis was performed to search for other genes of interest. From 572 genes biologically involved in PH pathways, genes were selected in which at least 15% of the SAPH patients and no more than 5% of patients without PH carried a rare variant. RESULTS In the diagnostic PH gene panel, 20 different rare variants, of which 18 cause an amino-acid substitution, were detected in 23 patients: 14 SAPH patients carried a variant, as compared to 5 SA patients without PH (p = 0.018). Most variants were of yet unknown significance. The exploratory approach yielded five genes of interest. First, the NOTCH3 gene that was previously linked to PH, and furthermore PDE6B, GUCY2F, COL5A1, and MMP21. CONCLUSIONS The increased frequency of variants in PH genes in SAPH suggests a mechanism whereby the presence of such a genetic variant in a patient may increase risk for the development of PH in the context of pulmonary sarcoidosis. Replication and studies into the functionality of the variants are required for further understanding the pathogenesis of SAPH.
Collapse
|
4
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Emanuelli G, Nassehzadeh-Tabriz N, Morrell NW, Marciniak SJ. The integrated stress response in pulmonary disease. Eur Respir Rev 2020; 29:29/157/200184. [PMID: 33004527 PMCID: PMC7116220 DOI: 10.1183/16000617.0184-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
The respiratory tract and its resident immune cells face daily exposure
to stress, both from without and from within. Inhaled pathogens, including
severe acute respiratory syndrome coronavirus 2, and toxins from pollution
trigger a cellular defence system that reduces protein synthesis to minimise
viral replication or the accumulation of misfolded proteins. Simultaneously, a
gene expression programme enhances antioxidant and protein folding machineries
in the lung. Four kinases (PERK, PKR, GCN2 and HRI) sense a diverse range of
stresses to trigger this “integrated stress response”. Here we review recent
advances identifying the integrated stress response as a critical pathway in the
pathogenesis of pulmonary diseases, including pneumonias, thoracic malignancy,
pulmonary fibrosis and pulmonary hypertension. Understanding the integrated
stress response provides novel targets for the development of therapies.
Collapse
Affiliation(s)
- Giulia Emanuelli
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.,Division of Respiratory Medicine, Dept of Medicine, University of Cambridge, Cambridge, UK.,Equal first authors
| | - Nikou Nassehzadeh-Tabriz
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.,Equal first authors
| | - Nick W Morrell
- Division of Respiratory Medicine, Dept of Medicine, University of Cambridge, Cambridge, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK .,Division of Respiratory Medicine, Dept of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Savale L, Guignabert C, Weatherald J, Humbert M. Precision medicine and personalising therapy in pulmonary hypertension: seeing the light from the dawn of a new era. Eur Respir Rev 2018; 27:27/148/180004. [PMID: 29653948 PMCID: PMC9488842 DOI: 10.1183/16000617.0004-2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/21/2018] [Indexed: 01/08/2023] Open
Abstract
Pulmonary hypertension (PH) and pulmonary arterial hypertension (PAH) include different cardiopulmonary disorders in which the interaction of multiple genes with environmental and behavioural factors modulates the onset and the progression of these severe conditions. Although the development of therapeutic agents that modulate abnormalities in three major pathobiological pathways for PAH has revolutionised our approach to the treatment of PAH, the long-term survival rate remains unsatisfactory. Accumulating evidence has underlined that clinical outcomes and responses to therapy in PAH are modified by multiple factors, including genetic variations, which will be different for each individual. Since precision medicine, also known as stratified medicine or personalised medicine, aims to better target intervention to the individual while maximising benefit and minimising harm, it has significant potential advantages. This article aims to assemble and discuss the different initiatives that are currently underway in the PH/PAH fields together with the opportunities and prospects for their use in the near future. Development of precision medicine strategies will be the next frontier in the evolution of PAH treatmenthttp://ow.ly/8T8730j7e36
Collapse
|
7
|
Eichstaedt CA, Song J, Benjamin N, Harutyunova S, Fischer C, Grünig E, Hinderhofer K. EIF2AK4 mutation as "second hit" in hereditary pulmonary arterial hypertension. Respir Res 2016; 17:141. [PMID: 27809840 PMCID: PMC5095976 DOI: 10.1186/s12931-016-0457-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023] Open
Abstract
Background Mutations in the eukaryotic translation initiation factor 2α kinase 4 (EIF2AK4) gene have recently been identified in recessively inherited veno-occlusive disease. In this study we assessed if EIF2AK4 mutations occur also in a family with autosomal dominantly inherited pulmonary arterial hypertension (HPAH) and incomplete penetrance of bone morphogenic protein receptor 2 (BMPR2) mutations. Methods Clinical examinations in a family with 10 members included physical examination, electrocardiogram, (stress)-echocardiography and lung function. Manifest PAH was confirmed by right heart catheterisation in three affected subjects. Genetic analysis was performed using a new PAH-specific gene panel analysis with next generation sequencing of all known PAH and further candidate genes. Identified variants were confirmed by Sanger sequencing. Results All living family members with manifest HPAH carried two pathogenic heterozygous mutations: a frame shift mutation in the BMPR2 gene and a novel splice site mutation in the EIF2AK4 gene. Two family members who carried the BMPR2 mutation only did not develop manifest HPAH. Conclusions This is the first study suggesting that EIF2AK4 can also contribute to autosomal dominantly inherited HPAH. Up to now it has only been identified in a recessive form of HPAH. Only those family members with a co-occurrence of two mutations developed manifest HPAH. Thus, the EIF2AK4 and BMRPR2 mutations support the “second hit” hypothesis explaining the variable penetrance of HPAH in this family. Hence, the assessment of all known PAH genes in families with a known mutation might assist in predictions about the clinical manifestation in so far non-affected mutation carriers.
Collapse
Affiliation(s)
- Christina A Eichstaedt
- Center for Pulmonary Hypertension at the Thoraxclinic, University Hospital Heidelberg, Heidelberg, 69126, Germany.,Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Jie Song
- Center for Pulmonary Hypertension at the Thoraxclinic, University Hospital Heidelberg, Heidelberg, 69126, Germany.,Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Nicola Benjamin
- Center for Pulmonary Hypertension at the Thoraxclinic, University Hospital Heidelberg, Heidelberg, 69126, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Satenik Harutyunova
- Center for Pulmonary Hypertension at the Thoraxclinic, University Hospital Heidelberg, Heidelberg, 69126, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christine Fischer
- Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension at the Thoraxclinic, University Hospital Heidelberg, Heidelberg, 69126, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Katrin Hinderhofer
- Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Identification of genetic defects in pulmonary arterial hypertension by a new gene panel diagnostic tool. Clin Sci (Lond) 2016; 130:2043-2052. [DOI: 10.1042/cs20160531] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/09/2016] [Indexed: 11/17/2022]
Abstract
We developed a new candidate gene approach for pulmonary arterial hypertension based on a customized kit and new sequencing technologies. In this manner we identified mutations in routinely assessed genes and one additional gene in PAH patients.
Collapse
|
9
|
Next generation sequencing of the NOTCH3 gene in a cohort of pulmonary hypertension patients. Int J Cardiol 2016; 209:149-50. [DOI: 10.1016/j.ijcard.2016.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/05/2016] [Accepted: 02/01/2016] [Indexed: 11/17/2022]
|