1
|
Zhu W, Liu C, Tan C, Zhang J. Predictive biomarkers of disease progression in idiopathic pulmonary fibrosis. Heliyon 2024; 10:e23543. [PMID: 38173501 PMCID: PMC10761784 DOI: 10.1016/j.heliyon.2023.e23543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial disease that cannot be cured, and treatment options for IPF are very limited. Early diagnosis, close monitoring of disease progression, and timely treatment are therefore the best options for patients due to the irreversibility of IPF. Effective markers help doctors judge the development and prognosis of disease. Recent research on traditional biomarkers (KL-6, SP-D, MMP-7, TIMPs, CCL18) has provided novel ideas for predicting disease progression and prognosis. Some emerging biomarkers (HE4, GDF15, PRDX4, inflammatory cells, G-CSF) also provide more possibilities for disease prediction. In addition to markers in serum and bronchoalveolar lavage fluid (BALF), some improvements related to the GAP model and chest HRCT also show good predictive ability for disease prognosis.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, China
| | - Chunquan Liu
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, China
| | - Chunting Tan
- Department of Pulmonary and Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, China
| | - Jie Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, China
| |
Collapse
|
2
|
Wang Q, Xie Z, Wan N, Yang L, Jin Z, Jin F, Huang Z, Chen M, Wang H, Feng J. Potential biomarkers for diagnosis and disease evaluation of idiopathic pulmonary fibrosis. Chin Med J (Engl) 2023; 136:1278-1290. [PMID: 37130223 PMCID: PMC10309524 DOI: 10.1097/cm9.0000000000002171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Indexed: 05/04/2023] Open
Abstract
ABSTRACT Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by progressive lung fibrogenesis and histological features of usual interstitial pneumonia. IPF has a poor prognosis and presents a spectrum of disease courses ranging from slow evolving disease to rapid deterioration; thus, a differential diagnosis remains challenging. Several biomarkers have been identified to achieve a differential diagnosis; however, comprehensive reviews are lacking. This review summarizes over 100 biomarkers which can be divided into six categories according to their functions: differentially expressed biomarkers in the IPF compared to healthy controls; biomarkers distinguishing IPF from other types of interstitial lung disease; biomarkers differentiating acute exacerbation of IPF from stable disease; biomarkers predicting disease progression; biomarkers related to disease severity; and biomarkers related to treatment. Specimen used for the diagnosis of IPF included serum, bronchoalveolar lavage fluid, lung tissue, and sputum. IPF-specific biomarkers are of great clinical value for the differential diagnosis of IPF. Currently, the physiological measurements used to evaluate the occurrence of acute exacerbation, disease progression, and disease severity have limitations. Combining physiological measurements with biomarkers may increase the accuracy and sensitivity of diagnosis and disease evaluation of IPF. Most biomarkers described in this review are not routinely used in clinical practice. Future large-scale multicenter studies are required to design and validate suitable biomarker panels that have diagnostic utility for IPF.
Collapse
Affiliation(s)
- Qing Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
- Department of Respiratory and Critical Care Medicine of Kunming Municipal First People's Hospital, Kunming, Yunnan 650000, China
| | - Zhaoliang Xie
- Respiratory Department of Sanming Yong’an General Hospital, Sanming, Fujian 366000, China
| | - Nansheng Wan
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lei Yang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhixian Jin
- Department of Respiratory and Critical Care Medicine of Kunming Municipal First People's Hospital, Kunming, Yunnan 650000, China
| | - Fang Jin
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoming Huang
- Department of Respiratory and Critical Care Medicine of Kunming Municipal First People's Hospital, Kunming, Yunnan 650000, China
| | - Min Chen
- Department of Respiratory and Critical Care Medicine of Kunming Municipal First People's Hospital, Kunming, Yunnan 650000, China
| | - Huiming Wang
- Department of Respiratory and Critical Care Medicine of Kunming Municipal First People's Hospital, Kunming, Yunnan 650000, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
3
|
Ruaro B, Tavano S, Confalonieri P, Pozzan R, Hughes M, Braga L, Volpe MC, Ligresti G, Andrisano AG, Lerda S, Geri P, Biolo M, Baratella E, Confalonieri M, Salton F. Transbronchial lung cryobiopsy and pulmonary fibrosis: A never-ending story? Heliyon 2023; 9:e14768. [PMID: 37025914 PMCID: PMC10070648 DOI: 10.1016/j.heliyon.2023.e14768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Background The diagnostic process of pulmonary fibrosis (PF) is often challenging, requires a collaborative effort of several experts, and often requires bioptic material, which can be difficult to obtain, both in terms of quality and technique. The main procedures available to obtain such samples are transbronchial lung cryobiopsy (TBLC) and surgical lung biopsy (SLB). Objective The purpose of this paper is to review the evidence for the role of TBLC in the diagnostic-therapeutic process of PF. Methods A comprehensive review was performed to identify articles to date that addressed the role of TBLC in the diagnostic-therapeutic process of PF using the PubMed® database. Results The reasoned search identified 206 papers, including 21 manuscripts (three reviews, one systematic review, two guidelines, two prospective studies, three retrospective studies, one cross-sectional study, one original article, three editorials, three clinical trials, and two unclassifiable studies), which were included in the final review. Conclusions TBLC is gaining increasing efficacy and improving safety profile; however, there are currently no clear data demonstrating its superiority over SLB. Therefore, the two techniques should be considered with careful rationalization on a case-by-case basis. Further research is needed to further optimize and standardize the procedure and to thoroughly study the histological and molecular characteristics of PF.
Collapse
|
4
|
Park CM, Jeon S, Kim YH, Kim J, Choi SJ, Shim I, Eom IC, Han SC, Kim MS. Sodium dichloroisocyanurate toxicity in rats during a 90-day inhalation toxicity study. Toxicol Appl Pharmacol 2022; 456:116279. [DOI: 10.1016/j.taap.2022.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
5
|
Gan D, Cheng W, Ke L, Sun AR, Jia Q, Chen J, Xu Z, Xu J, Zhang P. Biphasic Effect of Pirfenidone on Angiogenesis. Front Pharmacol 2022; 12:804327. [PMID: 35069215 PMCID: PMC8766764 DOI: 10.3389/fphar.2021.804327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Pirfenidone (PFD), a synthetic arsenic compound, has been found to inhibit angiogenesis at high concentrations. However, the biphasic effects of different PFD concentrations on angiogenesis have not yet been elucidated, and the present study used an in vitro model to explore the mechanisms underlying this biphasic response. The effect of PFD on the initial angiogenesis of vascular endothelial cells was investigated through a Matrigel tube formation assay, and the impact of PFD on endothelial cell migration was evaluated through scratch and transwell migration experiments. Moreover, the expression of key migration cytokines, matrix metalloproteinase (MMP)-2 and MMP-9, was examined. Finally, the biphasic mechanism of PFD on angiogenesis was explored through cell signaling and apoptosis analyses. The results showed that 10–100 μM PFD has a significant and dose-dependent inhibitory effect on tube formation and migration, while 10 nM–1 μM PFD significantly promoted tube formation and migration, with 100 nM PFD having the strongest effect. Additionally, we found that a high concentration of PFD could significantly inhibit MMP-2 and MMP-9 expression, while low concentrations of PFD significantly promoted their expression. Finally, we found that high concentrations of PFD inhibited EA.hy926 cell tube formation by promoting apoptosis, while low concentrations of PFD promoted tube formation by increasing MMP-2 and MMP-9 protein expression predominantly via the EGFR/p-p38 pathway. Overall, PFD elicits a biphasic effect on angiogenesis through different mechanisms, could be used as a new potential drug for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Donghao Gan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Medicine, The Southern University of Science and Technology, Shenzhen, China
| | - Wenxiang Cheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liqing Ke
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Antonia RuJia Sun
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qingyun Jia
- Second Ward of Trauma Surgery Department, Linyi People's Hospital, Linyi, China
| | - Jianhai Chen
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Juan Xu
- Department of Stomatology, SijingHospital, Shanghai, China
| | - Peng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Shenzhen Engineering Research Center for Medical Bioactive Materials, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Li JX, Li Y, Xia T, Rong FY. miR-21 Exerts Anti-proliferative and Pro-apoptotic Effects in LPS-induced WI-38 Cells via Directly Targeting TIMP3. Cell Biochem Biophys 2021; 79:781-790. [PMID: 33942238 DOI: 10.1007/s12013-021-00987-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 01/13/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease, which was caused by a complex interplay of inflammatory responses and chronic damage. miR-21 is increased in patients with IPF, but its function in the embryonic lung-derived diploid fibroblasts cells subjected to LPS is elusive. miRNA expression profile was obtained from GEO database and target genes of miRNAs were forecasted by TargetScan. To mimic the LPS-induced injury, different concentrations of LPS were applied to treat WI-38 cells. Functional in vitro experiments were conducted to examine the role of miR-21 and TIMP3. Luciferase report assay was performed to verify the relationship between miR-21 and TIMP3. qRT-PCR, western blotting, and ELISA were conducted to detect the levels of the related miRNAs, proteins, and inflammatory factors. miR-21 presented higher levels in interstitial pneumonia patients and LPS-induced WI-38 cells. Overexpression of miR-21 was negatively correlated with the proliferative capability of LPS-treated WI-38 cells. miR-21 directly targets TIMP3. TIMP3 restored the suppressive impact of miR-21 mimic on the proliferation, while TIMP3 alleviated the promoting impact of miR-21 mimic on the apoptosis of WI-38 cells treated by LPS. miR-21 inhibited Bcl-2 but increased Bax, cleaved caspase-3, and cleaved caspase-9. Besides, miR-21 elevated the levels of IL-6 and IL-β but reduced the IL-10, which were weakened by TIMP3. Totally, miR-21 aggravated the LPS-induced lung injury and modulated inflammatory responses by targeting TIMP3.
Collapse
Affiliation(s)
- Jin-Xiu Li
- Department of ICU, The Second People's Hospital of Liaocheng, Linqing, Shandong, China.
- Department of ICU, Shandong First Medical University Affiliated Liaocheng Second Hospital, Linqing, Shandong, China.
| | - You Li
- Department of ICU, Linqing People's Hospital, Linqing, Shandong, China
| | - Tian Xia
- Department of Pharmacy, The Second People's Hospital of Liaocheng, Linqing, Shandong, China
- Department of Pharmacy, Shandong First Medical University Affiliated Liaocheng Second Hospital, Linqing, Shandong, China
| | - Feng-Yan Rong
- Department of ICU, The Second People's Hospital of Liaocheng, Linqing, Shandong, China
- Department of ICU, Shandong First Medical University Affiliated Liaocheng Second Hospital, Linqing, Shandong, China
| |
Collapse
|
7
|
O'Mahony AM, Burke L, Cavazza A, Maher MM, Kennedy MP, Henry MT. Transbronchial lung cryobiopsy (TBLC) in the diagnosis of interstitial lung disease: experience of first 100 cases performed under conscious sedation with flexible bronchoscope. Ir J Med Sci 2021; 190:1509-1517. [PMID: 33471301 DOI: 10.1007/s11845-020-02453-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diagnosing the aetiology of interstitial lung disease (ILD) may require histology via a surgical lung biopsy (SLB). SLB is associated with significant complications. Transbronchial lung cryobiopsy (TBLC) can provide large, adequate biopsies with fewer complications offering a potential alternative to SLB. AIMS This study evaluated the safety, diagnostic yield and impact of TBLC on diagnostic certainty in the multidisciplinary diagnosis (MDD) of ILD within routine clinical practice. METHODS A retrospective study of all TBLC performed in a tertiary institute from March 2014 to December 2016 was performed. Procedures were performed using a flexible bronchoscope and cryoprobe without fluoroscopic guidance. RESULTS One hundred procedures were performed on 85 patients. A total of 272 cryobiopsies were obtained with a mean biopsy diameter of 5.9 ± 3.2 mm. Ninety-seven percent contained alveolated lung tissue. Diagnosis based against MDD gold standard was confirmed using TBLC in 67.1% of patients and in 72/100 procedures. Three patients proceeded to SLB. The addition of histological information changed the clinic-radiological diagnosis in twelve patients. The most common diagnosis based on clinical-radiologic-pathologic correlation at MDD was idiopathic pulmonary fibrosis (IPF) (51.2%) and hypersensitivity pneumonitis (15.9%). Moderate bleeding occurred in 18% of cases and five patients (5%) developed pneumothorax requiring intervention. Eleven patients required admission, with a mean length of stay of 1.3 ± 0.9 days. CONCLUSION TBLC aids the diagnosis of ILD in the appropriate patient and may be an acceptable alternative to SLB with fewer complications. Further work on standardizing the procedure is required.
Collapse
Affiliation(s)
- Anne M O'Mahony
- Department of Respiratory Medicine, Cork University Hospital, Wilton, Cork, Ireland.
| | - Louise Burke
- Department of Histopathology, Cork University Hospital, Cork, Ireland
| | - Alberto Cavazza
- Department of Pathology, Arcispedale S Maria Nuova, Istituti di Ricovero e Cura a Carattere Scientifico, Reggio Emilia, Italy
| | - Michael M Maher
- Department of Radiology, Cork University Hospital, Cork, Ireland
| | - Marcus P Kennedy
- Department of Respiratory Medicine, Cork University Hospital, Wilton, Cork, Ireland
| | - Michael T Henry
- Department of Respiratory Medicine, Cork University Hospital, Wilton, Cork, Ireland
| |
Collapse
|
8
|
Sivakumar P, Ammar R, Thompson JR, Luo Y, Streltsov D, Porteous M, McCoubrey C, Cantu E, Beers MF, Jarai G, Christie JD. Integrated plasma proteomics and lung transcriptomics reveal novel biomarkers in idiopathic pulmonary fibrosis. Respir Res 2021; 22:273. [PMID: 34689792 PMCID: PMC8543878 DOI: 10.1186/s12931-021-01860-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with a significant unmet medical need. Development of transformational therapies for IPF is challenging in part to due to lack of robust predictive biomarkers of prognosis and treatment response. Importantly, circulating biomarkers of IPF are limited and none are in clinical use. METHODS We previously reported dysregulated pathways and new disease biomarkers in advanced IPF through RNA sequencing of lung tissues from a cohort of transplant-stage IPF patients (n = 36) in comparison to normal healthy donors (n = 19) and patients with acute lung injury (n = 11). Here we performed proteomic profiling of matching plasma samples from these cohorts through the Somascan-1300 SomaLogics platform. RESULTS Comparative analyses of lung transcriptomic and plasma proteomic signatures identified a set of 34 differentially expressed analytes (fold change (FC) ≥ ± 1.5, false discovery ratio (FDR) ≤ 0.1) in IPF samples compared to healthy controls. IPF samples showed strong enrichment of chemotaxis, tumor infiltration and mast cell migration pathways and downregulated extracellular matrix (ECM) degradation. Mucosal (CCL25 and CCL28) and Th2 (CCL17 and CCL22) chemokines were markedly upregulated in IPF and highly correlated within the subjects. The mast cell maturation chemokine, CXCL12, was also upregulated in IPF plasma (fold change 1.92, FDR 0.006) and significantly correlated (Pearson r = - 0.38, p = 0.022) to lung function (%predicted FVC), with a concomitant increase in the mast cell Tryptase, TPSB2. Markers of collagen III and VI degradation (C3M and C6M) were significantly downregulated (C3M p < 0.001 and C6M p < 0.0001 IPF vs control) and correlated, Pearson r = 0.77) in advanced IPF consistent with altered ECM homeostasis. CONCLUSIONS Our study identifies a panel of tissue and circulating biomarkers with clinical utility in IPF that can be validated in future studies across larger cohorts.
Collapse
Affiliation(s)
- Pitchumani Sivakumar
- grid.419971.30000 0004 0374 8313Translational Early Development, Bristol-Myers Squibb Research and Development, 3551 Lawrenceville Road, Princeton, NJ 08540 USA
| | - Ron Ammar
- grid.419971.30000 0004 0374 8313Informatics and Predictive Sciences, Bristol-Myers Squibb Research and Development, Princeton, NJ USA
| | - John Ryan Thompson
- grid.419971.30000 0004 0374 8313Informatics and Predictive Sciences, Bristol-Myers Squibb Research and Development, Princeton, NJ USA
| | - Yi Luo
- grid.419971.30000 0004 0374 8313Translational Medicine, Bristol-Myers Squibb Research and Development, Princeton, NJ USA
| | - Denis Streltsov
- grid.419971.30000 0004 0374 8313Fibrosis Discovery Biology, Bristol-Myers Squibb Research and Development, Princeton, NJ USA
| | - Mary Porteous
- grid.25879.310000 0004 1936 8972Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Carly McCoubrey
- grid.25879.310000 0004 1936 8972Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Edward Cantu
- grid.25879.310000 0004 1936 8972Department of Surgery, Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, PA USA
| | - Michael F. Beers
- grid.25879.310000 0004 1936 8972Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972PENN Lung Biology Institute, University of Pennsylvania, Philadelphia, PA USA
| | - Gabor Jarai
- grid.419971.30000 0004 0374 8313Fibrosis Discovery Biology, Bristol-Myers Squibb Research and Development, Princeton, NJ USA
| | - Jason D. Christie
- grid.25879.310000 0004 1936 8972Pulmonary and Critical Care Medicine, University of Pennsylvania, Philadelphia, PA USA ,grid.25879.310000 0004 1936 8972PENN Lung Biology Institute, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
9
|
Ikeda K, Chiba H, Nishikiori H, Azuma A, Kondoh Y, Ogura T, Taguchi Y, Ebina M, Sakaguchi H, Miyazawa S, Suga M, Sugiyama Y, Nukiwa T, Kudoh S, Takahashi H. Serum surfactant protein D as a predictive biomarker for the efficacy of pirfenidone in patients with idiopathic pulmonary fibrosis: a post-hoc analysis of the phase 3 trial in Japan. Respir Res 2020; 21:316. [PMID: 33256760 PMCID: PMC7706186 DOI: 10.1186/s12931-020-01582-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal disorder with a variable disease course. The recent advancement of antifibrotic therapy has increased the need for reliable and specific biomarkers. This study aimed to assess alveolar epithelial biomarkers as predictors for the efficacy of the antifibrotic drug pirfenidone. Methods We conducted a post-hoc analysis of the prospective, multicenter, randomized, placebo-controlled, phase 3 trial of pirfenidone in Japan (total, n = 267; pirfenidone, n = 163; placebo, n = 104). Logistic regression analysis was performed to extract parameters that predicted disease progression, defined by a ≥ 10% relative decline in vital capacity (VC) from baseline and/or death, at week 52. For assessment of serum surfactant protein (SP)-D, SP-A and Krebs von den Lungen (KL)-6, all patients were dichotomized by the median concentration of each biomarker at baseline to the high and low biomarker subgroups. Associations of these concentrations were examined with changes in VC at each time point from baseline up to week 52, along with progression-free survival (PFS). Additionally, the effect of pirfenidone treatment on serial longitudinal concentrations of these biomarkers were evaluated. Results In the multivariate logistic regression analysis, body mass index (BMI), %VC and SP-D in the pirfenidone group, and BMI and %VC in the placebo group were indicated as predictors of disease progression. Pirfenidone treatment reduced the decline in VC with statistical significance in the low SP-D and low SP-A subgroups over most of the treatment period, and also prolonged PFS in the low SP-D and low KL-6 subgroups. Furthermore, SP-D levels over time course were reduced in the pirfenidone group from as early as week 8 until the 52-week treatment period compared with the placebo group. Conclusions Serum SP-D was the most consistent biomarker for the efficacy of pirfenidone in the cohort trial of IPF. Serial measurements of SP-D might have a potential for application as a pharmacodynamic biomarker. Trial registration The clinical trial was registered with the Japan Pharmaceutical Information Center (JAPIC) on September 13, 2005 (registration No. JapicCTI-050121; http://Clinicaltrials.jp)
Collapse
Affiliation(s)
- Kimiyuki Ikeda
- Department of Respiratory Medicine and Allergology, School of Medicine, Sapporo Medical University, South 1, West 16, Sapporo, 060-8543, Japan
| | - Hirofumi Chiba
- Department of Respiratory Medicine and Allergology, School of Medicine, Sapporo Medical University, South 1, West 16, Sapporo, 060-8543, Japan.
| | - Hirotaka Nishikiori
- Department of Respiratory Medicine and Allergology, School of Medicine, Sapporo Medical University, South 1, West 16, Sapporo, 060-8543, Japan
| | | | | | - Takashi Ogura
- Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | | | - Masahito Ebina
- Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | | | | | | | | | | | - Shoji Kudoh
- Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, School of Medicine, Sapporo Medical University, South 1, West 16, Sapporo, 060-8543, Japan
| | | |
Collapse
|
10
|
Exhaled Biomarkers in Idiopathic Pulmonary Fibrosis-A Six-Month Follow-Up Study in Patients Treated with Pirfenidone. J Clin Med 2020; 9:jcm9082523. [PMID: 32764328 PMCID: PMC7465603 DOI: 10.3390/jcm9082523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/11/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
The mechanism of action of pirfenidone in idiopathic pulmonary fibrosis (IPF) has not been fully elucidated. To offer additional insight, we evaluated the change in the cytokine profile in exhaled breath condensate (EBC) following a six-month treatment with pirfenidone in patients with IPF. EBC concentrations of interleukin (IL)-6, IL-8, IL-15, TNF-α and VEGF-A were assessed with ELISA and compared at baseline and after six months of pirfenidone treatment. Twenty-nine patients with IPF and 13 controls were evaluated at baseline. With the exception of IL-8 concentration, which was lower in patients with IPF when compared to controls (p = 0.005), the cytokine levels did not differ between the groups. Despite the use of a high sensitivity assay, IL-8 reached detectable values only in 24% of IPF patients. EBC analysis after six months of treatment with pirfenidone did not reveal any differences in the cytokine levels. The change in EBC vascular endothelial growth factor A (VEGF-A) correlated with the change in the 6 min walk distance (r = 0.54, p = 0.045). We conclude that a six-month treatment with pirfenidone did not significantly change the EBC cytokine profile. Our findings support the potential usefulness of VEGF-A as a marker in IPF. The low EBC IL-8 level in patients with IPF is a novel finding which needs confirmation in larger studies.
Collapse
|
11
|
Krauss E, Froehler M, Degen M, Mahavadi P, Dartsch RC, Korfei M, Ruppert C, Seeger W, Guenther A. Exhalative Breath Markers Do Not Offer for Diagnosis of Interstitial Lung Diseases: Data from the European IPF Registry (eurIPFreg) and Biobank. J Clin Med 2019; 8:jcm8050643. [PMID: 31075945 PMCID: PMC6572439 DOI: 10.3390/jcm8050643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/26/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background: New biomarkers are urgently needed to facilitate diagnosis in Interstitial Lung Diseases (ILD), thus reducing the need for invasive procedures, and to enable tailoring and monitoring of medical treatment. Methods: In this study we investigated if patients with idiopathic pulmonary fibrosis (IPF; n = 21), non-IPF ILDs (n = 57) and other lung diseases (chronic obstructive pulmonary disease (COPD) n = 24, lung cancer (LC) n = 16) as well as healthy subjects (n = 20) show relevant differences in exhaled NO (FeNO; Niox MINO), or in eicosanoid (PGE2, 8-isoprostane; enzyme-linked immunosorbent assay (ELISA)) levels as measured in exhaled breath condensates (EBC) and bronchoalveolar lavage fluids (BALF). Results: There was no significant difference in FeNO values between IPF, non-IPF ILDs and healthy subjects, although some individual patients showed highly elevated FeNO. On the basis of the FeNO signal, it was neither possible to differentiate between the kind of disease nor to detect exacerbations. In addition, there was no correlation between FeNO values and lung function. The investigation of the eicosanoids in EBCs was challenging (PGE2) or unreliable (8-isoprostane), but worked out well in BALF. A significant increase of free 8-isoprostane was observed in BALF, but not in EBCs, of patients with IPF, hypersensitivity pneumonitis (HP) and sarcoidosis, possibly indicating severity of oxidative stress. Conclusions: FeNO-measurements are not of diagnostic benefit in different ILDs including IPF. The same holds true for PGE2 and 8-isoprostane in EBC by ELISA.
Collapse
Affiliation(s)
- Ekaterina Krauss
- European IPF Registry & Biobank (eurIPFreg/bank), 35394 Giessen, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35394 Giessen, Germany.
| | - Maike Froehler
- European IPF Registry & Biobank (eurIPFreg/bank), 35394 Giessen, Germany.
| | - Maria Degen
- Agaplesion Lung Clinic, 35753 Greifenstein, Germany.
| | - Poornima Mahavadi
- European IPF Registry & Biobank (eurIPFreg/bank), 35394 Giessen, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35394 Giessen, Germany.
| | - Ruth C Dartsch
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35394 Giessen, Germany.
- Agaplesion Lung Clinic, 35753 Greifenstein, Germany.
| | - Martina Korfei
- European IPF Registry & Biobank (eurIPFreg/bank), 35394 Giessen, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35394 Giessen, Germany.
| | - Clemens Ruppert
- European IPF Registry & Biobank (eurIPFreg/bank), 35394 Giessen, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35394 Giessen, Germany.
| | - Werner Seeger
- European IPF Registry & Biobank (eurIPFreg/bank), 35394 Giessen, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35394 Giessen, Germany.
- Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Justus-Liebig University Giessen, 35394 Giessen, Germany.
| | - Andreas Guenther
- European IPF Registry & Biobank (eurIPFreg/bank), 35394 Giessen, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35394 Giessen, Germany.
- Agaplesion Lung Clinic, 35753 Greifenstein, Germany.
- Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Justus-Liebig University Giessen, 35394 Giessen, Germany.
| |
Collapse
|
12
|
Wang H, Xie Q, Ou-Yang W, Zhang M. Integrative analyses of genes associated with idiopathic pulmonary fibrosis. J Cell Biochem 2019; 120:8648-8660. [PMID: 30506760 DOI: 10.1002/jcb.28153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/09/2018] [Indexed: 01/24/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF), characterized by irreversible scarring and progressive destruction of the lung tissue, is one of the most common types of idiopathic interstitial pneumonia worldwide. However, there are no reliable candidates for curative therapies. Hence, elucidation of the mechanisms of IPF genesis and exploration of potential biomarkers and prognostic indicators are essential for accurate diagnosis and treatment of IPF. Recently, efficient microarray and bioinformatics analyses have promoted an understanding of the molecular mechanisms of disease occurrence and development, which is necessary to explore genetic alternations and identify potential diagnostic biomarkers. However, high false-positive rates results have been observed based on single microarray datasets. In the current study, we performed a comprehensive analysis of the differential expression, biological functions, and interactions of IPF-related genes. Three publicly available microarray datasets including 54 IPF samples and 34 normal samples were integrated by performing gene set enrichment analysis and analyzing differentially expressed genes (DEGs). Our results identified 350 DEGs genetically associated with IPF. Gene ontology analyses revealed that the changes in the modules were mostly enriched in the positive regulation of smooth muscle cell proliferation, positive regulation of inflammatory responses, and the extracellular space. Kyoto encyclopedia of genes and genomes enrichment analysis of DEGs revealed that IPF involves the TNF signaling pathway, NOD-like receptor signaling pathway, and PPAR signaling pathway. To identify key genes related to IPF in the protein-protein interaction network, 20 hub genes were screened out with highest scores. Our results provided a framework for developing new pathological molecular networks related to specific diseases in silico.
Collapse
Affiliation(s)
- Huimei Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institute of Brain Science, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Qiqi Xie
- Department of Orthopaedics, Second Hospital of Lanzhou University, Lanzhou, Gansu, PR China
| | - Wen Ou-Yang
- The Second Clinical Medical College, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Mingwei Zhang
- Department of Radiotherapy, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, PR China
| |
Collapse
|
13
|
Bondue B, Castiaux A, Van Simaeys G, Mathey C, Sherer F, Egrise D, Lacroix S, Huaux F, Doumont G, Goldman S. Absence of early metabolic response assessed by 18F-FDG PET/CT after initiation of antifibrotic drugs in IPF patients. Respir Res 2019; 20:10. [PMID: 30646908 PMCID: PMC6334423 DOI: 10.1186/s12931-019-0974-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/02/2019] [Indexed: 02/08/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is characterized by a progressive and irreversible respiratory failure. Non-invasive markers of disease activity are essential for prognosis and evaluation of early response to anti-fibrotic treatments. Objectives The aims of this study were to determine whether fluorodeoxyglucose ([18F]-FDG) lung uptake is reduced after initiation of pirfenidone or nintedanib and to assess its possible use as a prognostic factor. Methods [18F]-FDG PET/CT was performed in IPF patients and in a murine model of pulmonary fibrosis. PET/CTs were performed at day 8 and day 15 post-instillation of bleomycin in pirfenidone- or vehicule-treated mice. In IPF patients, PET-CT was performed before and 3 months after the initiation of pirfenidone or nintedanib. Results In bleomycin-treated mice, pirfenidone significantly reduced the [18F]-FDG uptake compared to vehicule-treated mice at day 15 (p < 0.001), whereas no difference was observed at day 8 after bleomycin administration. In IPF patients, [18F]-FDG lung uptake before and after 3 months of treatment by nintedanib (n = 11) or pirfenidone (n = 14) showed no significant difference regardless the antifibrotic treatment. Moreover, no difference was noticed between patients with progressive or non-progressive disease at one year of follow up. Conclusions Pirfenidone significantly reduces the lung [18F]-FDG uptake during the fibrotic phase in a mouse model of IPF. However, these preclinical data were not confirmed in IPF patients 3 months after the initiation of antifibrotic therapy. [18F]-FDG seems therefore not useful in clinical practice to assess the early response of IPF patients to nintedanib or pirfenidone. Electronic supplementary material The online version of this article (10.1186/s12931-019-0974-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin Bondue
- Department of Respiratory Medicine, Erasme University Hospital, Université libre de Bruxelles (ULB), route de Lennik 808, 1070, Brussels, Belgium.
| | - Amélie Castiaux
- Department of Nuclear Medicine, Erasme University Hospital, Université libre de Bruxelles (ULB), route de Lennik 808, 1070, Brussels, Belgium
| | - Gaetan Van Simaeys
- Department of Nuclear Medicine, Erasme University Hospital, Université libre de Bruxelles (ULB), route de Lennik 808, 1070, Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université libre de Bruxelles (ULB), rue Adrienne Bolland 8, 6041, Charleroi, Belgium
| | - Céline Mathey
- Department of Nuclear Medicine, Erasme University Hospital, Université libre de Bruxelles (ULB), route de Lennik 808, 1070, Brussels, Belgium
| | - Félicie Sherer
- Department of Nuclear Medicine, Erasme University Hospital, Université libre de Bruxelles (ULB), route de Lennik 808, 1070, Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université libre de Bruxelles (ULB), rue Adrienne Bolland 8, 6041, Charleroi, Belgium
| | - Dominique Egrise
- Department of Nuclear Medicine, Erasme University Hospital, Université libre de Bruxelles (ULB), route de Lennik 808, 1070, Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université libre de Bruxelles (ULB), rue Adrienne Bolland 8, 6041, Charleroi, Belgium
| | - Simon Lacroix
- Department of Nuclear Medicine, Erasme University Hospital, Université libre de Bruxelles (ULB), route de Lennik 808, 1070, Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université libre de Bruxelles (ULB), rue Adrienne Bolland 8, 6041, Charleroi, Belgium
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate, 57 bte B1.57.06, 1200, Woluwe-Saint-Lambert, Belgium
| | - Gilles Doumont
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles (ULB), rue Adrienne Bolland 8, 6041, Charleroi, Belgium
| | - Serge Goldman
- Department of Nuclear Medicine, Erasme University Hospital, Université libre de Bruxelles (ULB), route de Lennik 808, 1070, Brussels, Belgium.,Center for Microscopy and Molecular Imaging, Université libre de Bruxelles (ULB), rue Adrienne Bolland 8, 6041, Charleroi, Belgium
| |
Collapse
|