1
|
Zheng Z, Zhu H, Fang L. Tislelizumab plus chemotherapy versus chemotherapy as first-line treatment for extensive-stage small cell lung cancer: A cost-effectiveness analysis. PLoS One 2025; 20:e0320189. [PMID: 40131983 PMCID: PMC11936185 DOI: 10.1371/journal.pone.0320189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/15/2025] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVE This study aims to conduct a cost-effectiveness analysis of tislelizumab in combination with platinum and etoposide compared to the standard treatment of etoposide and platinum as first-line therapy for extensive-stage small cell lung cancer(ES-SCLC) from the Chinese medical system perspective. METHODS A partitioned survival model was developed utilizing data from the RATIONALE-312 trial to accurately simulate the clinical and economic outcomes of both treatment arms. This model incorporates three distinct health states, namely progression-free survival, disease progression, and death. These states are exclusive of each other, and patients can transition between them as their disease progresses.The model accounted for various cost components such as drug therapy, management of adverse events, disease progression, and overall survival. To evaluate the cost-effectiveness of the interventions, quality-adjusted life-year (QALY) and incremental cost-effectiveness ratio (ICER) were chosen as the metrics. The analysis employed a willingness to pay (WTP) threshold of $39,855.79 per QALY. Additionally, sensitivity analyses were conducted to assess the robustness and reliability of the model. RESULTS The tislelizumab group had a total cost of $52,749.69, whereas the chemotherapy group's total expenses amounted to $8,811.62. Additionally, the tislelizumab group experienced a gain of 2.21 QALY compared to the chemotherapy group, albeit incurring an additional cost of $43,938.07. Consequently, this led to an ICER of $19,881.48, which falls below the Chinese WTP threshold of $39,855.79. Sensitivity analyses confirmed the robustness of the findings across a range of scenarios. CONCLUSION This cost-effectiveness analysis based on the RATIONALE-312 trial demonstrates that tislelizumab plus platinum and etoposide is a cost-effective treatment option for ES-SCLC compared to the standard chemotherapy from the Chinese medical system perspective.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Huide Zhu
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Ling Fang
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
2
|
Pérez-Cabello JA, Artero-Castro A, Molina-Pinelo S. Small cell lung cancer unveiled: Exploring the untapped resource of circulating tumor cells-derived organoids. Crit Rev Oncol Hematol 2025; 207:104622. [PMID: 39832682 DOI: 10.1016/j.critrevonc.2025.104622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Small cell lung cancer (SCLC) remains a challenge in oncology due to its aggressive behavior and dismal prognosis. Despite advances in treatments, novel strategies are urgently needed. Enter liquid biopsy-a game-changer in SCLC management. This revolutionary non-invasive approach allows for the analysis of circulating tumor cells (CTCs), offering insights into tumor behavior and treatment responses. Our review focuses on a groundbreaking frontier: harnessing CTCs to create three-dimensional (3D) organoid models. These models, derived from CTCs that break away from the primary tumor or metastatic locations, hold immense potential for revolutionizing cancer research, especially in SCLC. We explore the essential conditions for successfully establishing CTC-derived organoids-a transformative approach with profound implications for personalized medicine. Our evaluation spans diverse isolation techniques, shedding light on their advantages and limitations. Furthermore, we uncover the critical factors governing the cultivation of 3D organoids from CTCs, meticulously mimicking the tumor microenvironment. This review comprehensively elucidates the molecular characterization of these organoids, showcasing their potential in identifying treatment targets and predicting responses. In essence, our review amalgamates cutting-edge methodologies for isolating CTCs, establishing transformative CTC-derived organoids, and characterizing their molecular landscape. This represents a promising frontier for advancing personalized medicine in the complex realm of SCLC management and holds significant implications for translational research.
Collapse
Affiliation(s)
- Jesús A Pérez-Cabello
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville 41013, Spain
| | - Ana Artero-Castro
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville 41013, Spain
| | - Sonia Molina-Pinelo
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville 41013, Spain; Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid 28029, Spain.
| |
Collapse
|
3
|
Deng X, Wang Y, Yang X, Yu Q, Huang R, Chen H, Li W, He Y. Synthesis, Structural Modification, and Antismall Cell Lung Cancer Activity of 3-Arylisoquinolines with Dual Inhibitory Activity on Topoisomerase I and II. J Med Chem 2025; 68:3518-3546. [PMID: 39844445 DOI: 10.1021/acs.jmedchem.4c02689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
To overcome the compensatory effect between Topo I and II, one of the reasons accounting for the resistance of SCLC patients, we are pioneering the use of 3-arylisoquinolines to develop dual inhibitors of Topo I/II for the management of SCLC. A total of 46 new compounds were synthesized. Compounds 3g (IC50 = 1.30 μM for NCI-H446 cells and 1.42 μM for NCI-H1048 cells) and 3x (IC50 = 1.32 μM for NCI-H446 cells and 2.45 μM for NCI-H1048 cells) were selected for detailed pharmacological investigation, due to their outstanding cytotoxicity and dual Topo I and II inhibitory activity. 3g and 3x effectively prevent SCLC cell proliferation, invasion, and migration in vitro, byinducing mitochondrial apoptosis and inhibiting the PI3K/Akt/mTOR pathway. Their in vivo tumor inhibition rate is comparable to etoposide with lower toxicity. These results indicated their potential therapeutic values as dual Topo I and II inhibitors for treating SCLC.
Collapse
Affiliation(s)
- Xuemei Deng
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yuying Wang
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiongqi Yang
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ridong Huang
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Molecularly Targeted Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Molecularly Targeted Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
4
|
Athanasiou E, Papageorgiou S, Dafni MF, Kelesis I, Vasileiou M, Tatsiou T, Kouveloglou V, Kanatas P, Stouras I, Gatsis A, Agiassoti VT, Nasimpian P, Dafnoudis D, Degaita K, Verras GI, Alexiou A, Papadakis M, Kamal MA. The use of Isoflavones as Lung Cancer Chemoprevention Agents and their Implications in Treatment through Radio Sensitization. Curr Med Chem 2025; 32:214-237. [PMID: 38369709 DOI: 10.2174/0109298673278897231229121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 02/20/2024]
Abstract
Epidemiological trends in cancer research show that lung cancer can affect up to 1 in 15 men and 1 in 17 women. With incidence rates as high as these and significant associated mortality and morbidity, it is no wonder that lung cancer is one of the main areas of research focused on cancer. Advances in targeted treatments and specialized irradiation protocols have allowed the treatment of more advanced cases. However, as the patient numbers grow, so does the need for cancer-preventive strategies. The present narrative review focuses on soy isoflavones' role in the chemoprevention of lung cancer and their possible role in therapeutic adjuncts. Laboratory studies on lung cancer cell lines have shown that isoflavones can induce apoptosis, tamper with the expression of proliferative molecular pathways, and even reduce tumor angiogenesis. Additionally, population-level studies have emerged that correlate the consumption of isoflavonoids with reduced risk for the development of lung cancer. Interestingly enough, the literature also contains small-scale studies with evidence of isoflavones being effective chemotherapeutic adjuncts that are currently understudied. Our literature review underlines such findings and provides a call for the enhancement of research regarding naturally occurring dietary products with possible anticarcinogenic effects.
Collapse
Affiliation(s)
- Efstratios Athanasiou
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Savvas Papageorgiou
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Marianna-Foteini Dafni
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Kelesis
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- School of Medicine, Poznań University of Medical Sciences, Poznań, Poland
| | - Maria Vasileiou
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodora Tatsiou
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Vasiliki Kouveloglou
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panagiotis Kanatas
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Ioannis Stouras
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Athanasios Gatsis
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki-Taxiarchoula Agiassoti
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Petros Nasimpian
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
| | - Dimitrios Dafnoudis
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Applied Bioinformatics Master Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriaki Degaita
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios-Ioannis Verras
- Cancer Prevention Research Group in Greece, Kifisias Avenue 44, Marousi, Greece
- Department of Surgery, General University Hospital of Patras, Patra, Greece
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, 42283, Germany
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
5
|
Dómine Gómez M, Subbiah V, Peters S, Sala MA, Trigo J, Paz-Ares L, Nieto Archilla A, Gomez Garcia J, Alvarez García C, López-Vilariño de Ramos JA, Kahatt Lopez C, Fernandez CM. Lurbinectedin is an effective alternative to platinum rechallenge and may restore platinum sensitivity in patients with sensitive relapsed small cell lung cancer. Expert Rev Anticancer Ther 2025; 25:27-40. [PMID: 39660812 DOI: 10.1080/14737140.2024.2438067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
INTRODUCTION Platinum rechallenge is recommended for patients with small cell lung cancer (SCLC) who relapse ≥90 days after completing first-line chemotherapy, although it may not always be the most suitable option. AREAS COVERED Articles for review were identified via PubMed and ClinicalTrials.gov searches, supplemented with non-indexed publications (e.g. conference abstracts) known to the manufacturer. We examined evidence for platinum re-exposure in patients with sensitive relapsed SCLC, and present lurbinectedin as a potential alternative. The complementary mechanisms of action of lurbinectedin and platinum, owing to opposite sensitivity of SCLC cells, may resensitize tumor cells to platinum. As efficacy outcomes with lurbinectedin are equivalent or better than those with platinum rechallenge and its hematological safety profile is more favorable, achieving maximum dose intensity is more likely. The simpler dosing schedule of lurbinectedin (1 vs 3 days) and lack of need for granulocyte colony-stimulating factor primary prophylaxis lessens treatment burden. EXPERT OPINION Incorporation of lurbinectedin into therapeutic algorithms for relapsed SCLC has challenged long-established treatment paradigms. Initial evidence indicates that using lurbinectedin after failure of first-line platinum may prolong the platinum-free interval and reserve platinum for later use. Current evidence supports lurbinectedin as a second-line option in patients with sensitive relapsed SCLC.
Collapse
Affiliation(s)
- Manuel Dómine Gómez
- Hospital Universitario Fundación Jiménez Díaz, IIS-FJD, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vivek Subbiah
- Early-Phase Drug Development, Sarah Cannon Research Institute, Nashville, TN, USA
| | - Solange Peters
- Oncology Department - CHUV, Lausanne University, Lausanne, Switzerland
| | - María Angeles Sala
- Medical Oncology Department, Hospital Universitario Basurto, Bilbao, Spain
| | - José Trigo
- Medical Oncology Department, Hospital HC Marbella, Málaga, Spain
| | - Luis Paz-Ares
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
6
|
Ding J, Yeong C. Advances in DLL3-targeted therapies for small cell lung cancer: challenges, opportunities, and future directions. Front Oncol 2024; 14:1504139. [PMID: 39703856 PMCID: PMC11655346 DOI: 10.3389/fonc.2024.1504139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Small cell lung cancer (SCLC) remains one of the most aggressive and challenging malignancies to treat, with limited therapeutic options and poor outcomes. Recent advances in understanding SCLC biology have identified Delta-like ligand 3 (DLL3) as a promising target for novel therapies. This review explores the evolving landscape of DLL3-targeted therapies in SCLC, examining their mechanistic basis, preclinical promise, and clinical development. We discuss various therapeutic modalities, including antibody-drug conjugates (ADCs), bispecific T-cell engagers (BiTEs), chimeric antigen receptor T-cell (CAR-T) therapies, and emerging approaches such as near-infrared photoimmunotherapy (NIR-PIT) and radiopharmaceutical therapy (RPT). The review highlights the challenges encountered in translating these promising approaches into clinical practice, including the setbacks faced by early DLL3-targeted therapies like Rovalpituzumab Tesirine (Rova-T). We also explore potential strategies to overcome these obstacles, emphasizing the need for a more nuanced understanding of DLL3 biology and its role in SCLC pathogenesis. The integration of cutting-edge technologies and interdisciplinary collaboration is proposed as a path forward to optimize DLL3-targeted therapies and improve outcomes for SCLC patients. This comprehensive overview provides insights into the current state and future directions of DLL3-targeted therapies, underscoring their potential to revolutionize SCLC treatment paradigms.
Collapse
Affiliation(s)
- Jianhua Ding
- Taylor’s University, Subang Jaya, Selangor, Malaysia
| | | |
Collapse
|
7
|
You M, Luo L, Lu T, Chen S, He Y. Cost-effectiveness analysis of benmelstobart, anlotinib, and chemotherapy in extensive-stage small-cell lung cancer. Front Immunol 2024; 15:1477146. [PMID: 39654891 PMCID: PMC11625741 DOI: 10.3389/fimmu.2024.1477146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024] Open
Abstract
Background The ETER701 trial assessed the efficacy and safety of benmelstobart combined with anlotinib plus etoposide/cisplatin (BEN-AL-EC) as a first-line therapy for extensive-stage small-cell lung cancer (ES-SCLC). Results indicated that BEN-AL-EC, when compared with placebo in combination with etoposide/cisplatin (PLB-EC), significantly enhanced both progression-free and overall survival rates, while demonstrating an acceptable safety profile among patients with ES-SCLC. However, BEN-AL-EC is expensive, necessitating its cost-effectiveness analysis. Methods A Markov model with three health states was developed to evaluate the cost-effectiveness of BEN-AL-EC, AL-EC and PLB-EC for the treatment of ES-SCLC from the perspective of the Chinese healthcare system. Drug costs were derived from national tender prices, whereas other costs and utility values were derived from published literature. The key outcomes assessed included total costs, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios (ICERs). Sensitivity analyses, including one-way and probabilistic analyses, were performed to assess the robustness of the model. Results The total cost of BEN-AL-EC was $55,117.42, yielding 1.09 QALYs, whereas that of PLB-EC was $15,238.15, yielding 0.71 QALYs. The ICER of BEN-AL-EC compared with PLB-EC was $106,249.42 per QALY gained. At a willingness-to-pay threshold of $38,133 per QALY, BEN-AL-EC had a 0% probability of being cost-effective relative to PLB-EC. The key parameters influencing these outcomes included utility values for PFS, the cost of benmelstobart, and the discount rate. Conclusion From the perspective of the Chinese healthcare system, BEN-AL-EC as a first-line treatment for ES-SCLC is unlikely to be cost-effective when compared with PLB-EC.
Collapse
Affiliation(s)
- Maojin You
- Department of Pharmacy, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| | - Lingling Luo
- Department of Pharmacy, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| | - Tingting Lu
- Department of Pharmacy, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| | - Shaofang Chen
- Department of Pharmacy, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| | - Ying He
- Department of Emergency Medicine, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| |
Collapse
|
8
|
Lamy D, Mouillot P, Mariet A, Barnestein R, Quilot F, Fraisse C, Ghiringhelli F, Bonniaud P, Zouak A, Foucher P. Real-world comparison of chemo-immunotherapy and chemotherapy alone in the treatment of extensive-stage small-cell lung cancer. Respir Med Res 2024; 86:101125. [PMID: 39033607 DOI: 10.1016/j.resmer.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Small cell lung cancer (SCLC) is a high-grade neuroendocrine carcinoma responsible for 200,000 deaths per year worldwide. Platinum-etoposide-based chemotherapy has been the standard of treatment for the past 40 years, with an overall survival of 10 months. Since 2019, the addition of immunotherapy (atezolizumab or durvalumab) to chemotherapy has become the standard of care for first-line treatment of extensive-stage SCLC following the demonstration of an improvement in overall survival in phase 3 studies. We aimed to evaluate the efficacy and safety of chemo-immunotherapy compared with chemotherapy alone in a "real-world" setting. METHODS Retrospective observational study including patients undergoing first-line treatment for extensive-stage SCLC between 2014 and 2022. We separated the study population into two arms (chemo-immunotherapy/chemotherapy). For each arm, progression-free survival (PFS), overall survival (OS) and serious side effects were collected. Associations between treatments and survival outcomes were adjusted for potential confounders. Consolidative palliative thoracic radiotherapy was introduced in the models as a time-dependent variable. RESULTS A total of 118 patients with a median age of 63 years were included. 65.2 % of patients were performance status 0 or 1. In univariate analysis, PFS and OS were not significantly different between the chemo-immunotherapy and chemotherapy alone groups (p = 0.70 and 0.24 respectively). In multivariate analysis, the addition of immunotherapy to chemotherapy was not significantly associated with better PFS (HR 0.76, IC (0.49 - 1.19), p = 0.23), but it was significantly associated with better OS (HR 0.61, IC (0.38 - 0.98), p = 0.04). Consolidative palliative thoracic radiotherapy (time-dependent variable), when applied (almost only in the chemotherapy alone group), was significantly associated with better PFS and OS. DISCUSSION In this real-world study, chemo-immunotherapy was associated with slightly better OS compared to chemotherapy alone as a first-line treatment in ES-SCLC patients in multivariate analysis, which is not explained by a benefit in PFS. However, consolidative palliative thoracic radiotherapy seems to be significantly associated with better OS and PFS, suggesting that we should also consider using it in patients receiving chemo-immunotherapy.
Collapse
Affiliation(s)
- D Lamy
- Service d'Oncologie Thoracique et Service de Pneumologie et Soins Intensifs Respiratoire, Hôpital Dijon-Bourgogne, Dijon, France
| | - P Mouillot
- Service d'Oncologie Thoracique et Service de Pneumologie et Soins Intensifs Respiratoire, Hôpital Dijon-Bourgogne, Dijon, France; University of Burgundy, Faculty of Medicine and Pharmacy, Dijon, France; INSERM U1231 CTM, Labex LIPSTIC and label of excellence from la Ligue National contre le cancer, France
| | - A Mariet
- University of Burgundy, Faculty of Medicine and Pharmacy, Dijon, France; CHU Dijon Bourgogne, Service de Biostatistiques et d'information médicale, Dijon, France; INSERM, Université de Bourgogne, CHU Dijon Bourgogne, CIC 1432, Module Épidémiologie Clinique, Dijon, France; CHU Dijon-Bourgogne, ResAM, Dijon, France
| | - R Barnestein
- Service d'Oncologie Thoracique et Service de Pneumologie et Soins Intensifs Respiratoire, Hôpital Dijon-Bourgogne, Dijon, France
| | - F Quilot
- Service d'Oncologie Thoracique et Service de Pneumologie et Soins Intensifs Respiratoire, Hôpital Dijon-Bourgogne, Dijon, France
| | - C Fraisse
- CHU Dijon-Bourgogne, ResAM, Dijon, France
| | - F Ghiringhelli
- University of Burgundy, Faculty of Medicine and Pharmacy, Dijon, France; CHU Dijon-Bourgogne, ResAM, Dijon, France; INSERM U1231 CTM, Labex LIPSTIC and label of excellence from la Ligue National contre le cancer, France
| | - P Bonniaud
- Service d'Oncologie Thoracique et Service de Pneumologie et Soins Intensifs Respiratoire, Hôpital Dijon-Bourgogne, Dijon, France; University of Burgundy, Faculty of Medicine and Pharmacy, Dijon, France; INSERM U1231 CTM, Labex LIPSTIC and label of excellence from la Ligue National contre le cancer, France.
| | - A Zouak
- Service d'Oncologie Thoracique et Service de Pneumologie et Soins Intensifs Respiratoire, Hôpital Dijon-Bourgogne, Dijon, France
| | - P Foucher
- Service d'Oncologie Thoracique et Service de Pneumologie et Soins Intensifs Respiratoire, Hôpital Dijon-Bourgogne, Dijon, France
| |
Collapse
|
9
|
Xie T, Qiu BM, Luo J, Diao YF, Hu LW, Liu XL, Shen Y. Distant metastasis patterns among lung cancer subtypes and impact of primary tumor resection on survival in metastatic lung cancer using SEER database. Sci Rep 2024; 14:22445. [PMID: 39341901 PMCID: PMC11438988 DOI: 10.1038/s41598-024-73389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
This research aimed to systematically uncover the metastatic characteristics and survival rates of lung cancer subtypes and to evaluate the impact of surgery at the primary tumor site on cancer-specific survival in DM lung cancer. We used the Surveillance, Epidemiology, and End Results (SEER) database (2010-2019) to identify primary lung cancers with DM at presentation (M1). Kaplan-Meier (KM) survival curves were generated and compared utilizing log-rank tests. Cox regression methods were employed to determine hazard ratios (HR) and 95% confidence intervals related to CSS factors. Inverse probability of treatment weighting (IPTW) was applied to reduce bias. We analyzed 77,827 M1 lung cancer cases, with 41.22% having DM at presentation. Bone metastasis was most common in ADC, ASC, SCC, LCC; brain in LCNEC; liver in SCLC. Lung was common in TC + AC and SCC. Long-term survival was best in TC + AC and worst in SCLC (p < 0.001). Male gender, age < 50, primary tumor site (main bronchus, lower lobe), large tumor diameter, ADC/SCLC/SCC pathology, and regional lymph node involvement were significant risk factors for multiorgan metastasis. Age ≥ 50, male, large tumor diameter, positive lymph nodes, and multiorgan metastases were associated with lower CSS. In contrast, radiotherapy, chemotherapy, systemic therapy, and surgery were associated with higher CSS rates. Primary tumor resection improved survival in lung cancer patients (excluding small cell lung cancer, SCLC) with single organ metastases (KM log rank p < 0.001, HR = 0.6165; 95% CI (0.5468-0.6951)), especially in brain (p < 0.001, HR = 0.6467; 95% CI (0.5505-0.7596)) and bone (p = 0.182, HR = 0.6289; p < 0.01), but not in liver or intrapulmonary metastases after IPTW. Significant differences in DM patterns and corresponding survival rates exist among lung cancer subtypes. Primary tumor resection improves survival in lung cancer patients (excluding small cell lung cancer, SCLC) with single organ metastases, with better outcomes in patients with brain and bone metastases, while no significant benefit was seen in patients with liver and intrapulmonary metastases.
Collapse
Affiliation(s)
- Tian Xie
- Department of Cardiothoracic Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Bing-Mei Qiu
- Department of Cardiothoracic Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi-Fei Diao
- Department of Cardiothoracic Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Li-Wen Hu
- Department of Cardiothoracic Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiao-Long Liu
- Department of Cardiothoracic Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Shen
- Department of Cardiothoracic Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
10
|
Rahnea-Nita RA, Rebegea LF, Dumitru M, Mitrica RI, Nechifor A, Firescu D, Maier AC, Constantin GB, Grigorean VT, Rahnea-Nita G. Anxiety and Depression in Advanced and Metastatic Lung Cancer Patients-Correlations with Performance Status and Type of Treatment. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1472. [PMID: 39336513 PMCID: PMC11434171 DOI: 10.3390/medicina60091472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: The treatment of advanced and metastatic lung cancer is multimodal, and it is coordinated by a multidisciplinary team. Anxiety and depression occur frequently in patients with lung cancer, creating considerable discomfort in therapeutic management. At the same time, these psychoemotional symptoms affect the patients' quality of life. Objective: This research seeks to identify correlations both between anxiety and depression and the patients' performance statuses, as well as between anxiety and depression and the type of treatment: radiotherapy, chemotherapy, tyrosine kinase inhibitors (TKI), immunotherapy and palliative care. Materials and Methods: The study evaluated 105 patients with lung cancer from two oncologic centers. Patients were assessed for anxiety and depression using the questionnaire Hospital Anxiety and Depression Scale (HADS). The HADS is a self-report rating scale of 14 items. It measures anxiety and depression, and has two subscales. There are seven items for each subscale. There are 4-point Likert scale ranging from 0 to 3. For each subscale, the score is the sum of the seven items, ranging from 0 to 21. Results: The most powerful correlation with statistical significance was observed between the IT type of treatment (immunotherapy) and the normal level of anxiety, PC = 0.82 (p < 0.001) as well as the normal level of depression. Palliative treatment was correlated with anxiety and depression, both borderline and abnormal. For ECOG 3-4 performance status and abnormal anxiety, respectively, abnormal depression was significantly associated. Also, continuous hospitalization was associated with abnormal anxiety and depression. Conclusions: Early assessments of anxiety and depression are necessary in patients with advanced and metastatic lung cancer, with unfavorable performance status, who have been admitted to continuous hospitalization, and who require palliative care.
Collapse
Affiliation(s)
- Roxana-Andreea Rahnea-Nita
- Clinical Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
- Oncology-Palliative Care Department, "Sf. Luca" Chronic Diseases Hospital, 041915 Bucharest, Romania
| | - Laura-Florentina Rebegea
- Clinical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, 800008 Galati, Romania
- Radiotherapy Department, "Sf. Ap. Andrei" County Emergency Clinical Hospital, 800579 Galati, Romania
| | - Mihaela Dumitru
- Radiotherapy Department, "Sf. Ap. Andrei" County Emergency Clinical Hospital, 800579 Galati, Romania
| | - Radu-Iulian Mitrica
- Clinical Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
- Radiotherapy Department, The Oncological Institute "Prof. Dr. Alexandru Trestioreanu", 022328 Bucharest, Romania
| | - Alexandru Nechifor
- Clinical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, 800008 Galati, Romania
| | - Dorel Firescu
- Clinical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, 800008 Galati, Romania
| | - Adrian-Cornel Maier
- Clinical Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, 800008 Galati, Romania
| | - Georgiana Bianca Constantin
- Morphological and Functional Sciences Department, Faculty of Medicine and Pharmacy, "Dunarea de Jos" University, 800008 Galati, Romania
| | - Valentin-Titus Grigorean
- Clinical Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
- Department of General Surgery, "Bagdasar-Arseni" Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Gabriela Rahnea-Nita
- Oncology-Palliative Care Department, "Sf. Luca" Chronic Diseases Hospital, 041915 Bucharest, Romania
- Clinical Department, Faculty of Midwifery and Nursing, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
| |
Collapse
|
11
|
Dönmez S, Lapinskaite R, Atalay HN, Tokay E, Kockar F, Rycek L, Özbil M, Tumer TB. Selagibenzophenone B and Its Derivatives: SelB-1, a Dual Topoisomerase I/II Inhibitor Identified through In Vitro and In Silico Analyses. ACS BIO & MED CHEM AU 2024; 4:178-189. [PMID: 39184056 PMCID: PMC11342340 DOI: 10.1021/acsbiomedchemau.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 08/27/2024]
Abstract
The development of multitargeted drugs represents an innovative approach to cancer treatment, aiming to enhance drug effectiveness while minimizing side effects. Herein, we sought to elucidate the inhibitory effect of selagibenzophenone B derivatives on the survival of cancer cells and dual topoisomerase I/II enzyme activity. Results demonstrated that among the compounds, SelB-1 selectively inhibited the proliferation and migration of prostate cancer cells while exhibiting minimal effects on healthy cells. Furthermore, SelB-1 showed a dual inhibitory effect on topoisomerases. Computational analyses mirrored the results from enzyme inhibition assays, demonstrating the compound's strong binding affinity to the catalytic sites of the topoisomerases. To our surprise, SelB-1 did not induce apoptosis in prostate cancer cells; instead, it induced autophagic gene expression and lipid peroxidation while reducing GSH levels, which might be associated with ferroptotic death mechanisms. To summarize, the findings suggest that SelB-1 possesses the potential to serve as a dual topoisomerase inhibitor and can be further developed as a promising candidate for prostate cancer treatment.
Collapse
Affiliation(s)
- Serhat Dönmez
- Graduate
Program of Molecular Biology and Genetics, School of Graduate Studies, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Ringaile Lapinskaite
- Department
of Organic Chemistry, Center for Physical
Sciences and Technology (FTMC), Akademijos g. 7, Vilnius LT-08412, Lithuania
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Praha 2, Czechia
| | - Hazal Nazlican Atalay
- Graduate
Program of Molecular Biology and Genetics, School of Graduate Studies, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| | - Esra Tokay
- Department
of Molecular Biology and Genetics, Faculty of Sciences and Arts, Balikesir University, Balikesir 10145, Turkey
| | - Feray Kockar
- Department
of Molecular Biology and Genetics, Faculty of Sciences and Arts, Balikesir University, Balikesir 10145, Turkey
| | - Lukas Rycek
- Department
of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Praha 2, Czechia
| | - Mehmet Özbil
- Institute
of Biotechnology, Gebze Technical University, Kocaeli 41400, Turkey
| | - Tugba Boyunegmez Tumer
- Department
of Molecular Biology and Genetics, Faculty of Science, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey
| |
Collapse
|
12
|
Chen R, Liu Y, Tou F, Xie J. A practical nomogram for predicting early death in elderly small cell lung cancer patients: A SEER-based study. Medicine (Baltimore) 2024; 103:e37759. [PMID: 38669410 PMCID: PMC11049691 DOI: 10.1097/md.0000000000037759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/08/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to identify risk factors for early death in elderly small cell lung cancer (SCLC) patients and develop nomogram prediction models for all-cause and cancer-specific early death to improve patient management. Data of elderly patients diagnosed with SCLC were extracted from the SEER database, then randomly divided into training and validation cohorts. Univariate and stepwise multivariable Logistic regression analyses were performed on the training cohort to identify independent risk factors for early death in these patients. Nomograms were developed based on these factors to predict the overall risk of early death. The efficacy of the nomograms was validated using various methods, including ROC analysis, calibration curves, DCA, NRI, and IDI. Among 2077 elderly SCLC patients, 773 died within 3 months, 713 due to cancer-specific causes. Older age, higher AJCC staging, brain metastases, and lack of surgery, chemotherapy, or radiotherapy increase the risk of all-cause early death, while higher AJCC staging, brain metastases, lung metastases, and lack of surgery, chemotherapy, or radiotherapy increase the risk of cancer-specific death (P < .05). These identified factors were used to construct 2 nomograms to predict the risk of early death. The ROC indicated that the nomograms performed well in predicting both all-cause early death (AUC = 0.823 in the training cohort and AUC = 0.843 in the validation cohort) and cancer-specific early death (AUC = 0.814 in the training cohort and AUC = 0.841 in the validation cohort). The results of calibration curves, DCAs, NRI and IDI also showed that the 2 sets of nomograms had good predictive power and clinical utility and were superior to the commonly used TNM staging system. The nomogram prediction models constructed in this study can effectively assist clinicians in predicting the risk of early death in elderly SCLC patients, and can also help physicians screen patients at higher risk and develop personalized treatment plans for them.
Collapse
Affiliation(s)
- Rui Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuzhen Liu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fangfang Tou
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Junping Xie
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Kim D, Kim HJ, Wu HG, Lee JH, Kim S, Kim TM, Kim JS, Kim BH. Intrathoracic Progression Is Still the Most Dominant Failure Pattern after First-Line Chemo-immunotherapy in Extensive-Stage Small-Cell Lung Cancer: Implications for Thoracic Radiotherapy. Cancer Res Treat 2024; 56:430-441. [PMID: 37933113 PMCID: PMC11016648 DOI: 10.4143/crt.2023.931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
PURPOSE This study aimed to compare the failure patterns before and after the introduction of immunotherapy and to determine the role of thoracic radiotherapy (TRT) in extensive-stage small-cell lung cancer (ES-SCLC) treatment. MATERIALS AND METHODS We retrospectively reviewed 294 patients with ES-SCLC, of which 62.2% underwent chemotherapy alone, 13.3% underwent chemotherapy followed by consolidative TRT (TRT group), and 24.5% underwent chemotherapy with immune checkpoint inhibitor (ICI group). We performed propensity-score matching (PSM) to compare each treatment group. RESULTS The median follow-up duration was 10.4 months. At the first relapse, in the cohort showing objective response, the proportion of cases showing intrathoracic progression was significantly lower in the TRT group (37.8%) than in the chemotherapy-alone (77.2%, p < 0.001) and the ICI (60.3%, p=0.03) groups. Furthermore, in the subgroup analysis, TRT showed benefits related to intrathoracic progression-free survival (PFS) in comparison with ICI in patients with less than two involved extrathoracic sites (p=0.008) or without liver metastasis (p=0.02) or pleural metastasis (p=0.005) at diagnosis. After PSM, the TRT group showed significantly better intrathoracic PFS than both chemotherapy-alone and ICI groups (p < 0.001 and p=0.04, respectively), but showed no significant benefit in terms of PFS and overall survival in comparison with the ICI group (p=0.17 and p=0.31, respectively). CONCLUSION In ES-SCLC, intrathoracic progression was the most dominant failure pattern after immunotherapy. In the era of chemoimmunotherapy, consolidative TRT can still be considered a useful treatment strategy for locoregional control.
Collapse
Affiliation(s)
- Dowook Kim
- Department of Radiation Oncology, Chungnam National University Hospital, Daejeon, Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | - Hong-Gyun Wu
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | - Joo Ho Lee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea
| | - Suzy Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
- Department of Radiation Oncology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jin-Soo Kim
- Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Byoung Hyuck Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea
- Department of Radiation Oncology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| |
Collapse
|
14
|
Wu Y, Zhang J, Zhou W, Yuan Z, Wang H. Prognostic factors in extensive-stage small cell lung cancer patients with organ-specific metastasis: unveiling commonalities and disparities. J Cancer Res Clin Oncol 2024; 150:74. [PMID: 38305793 PMCID: PMC10837219 DOI: 10.1007/s00432-024-05621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND This study aimed to identify shared and distinct prognostic factors related to organ-specific metastases (liver, lung, bone, and brain) in extensive-stage small cell lung cancer (ES-SCLC) patients, then construct nomograms for survival prediction. METHODS Patient data for ES-SCLC were from the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2019. Kaplan-Meier analysis was applied to estimate overall survival (OS), and Cox regression was used to identify prognostic factors. A Venn diagram was utilized to distinguish common and unique prognostic factors among the variables assessed. These identified prognostic factors were used to formulate a nomogram, and its predictive accuracy and reliability were evaluated using C-indexes, calibration curves, and receiver operating characteristic (ROC) curves. RESULTS A total of 24,507 patients diagnosed with ES-SCLC exhibiting metastases to the liver, lung, bone, and brain were included. The 6-month, 1-year, and 2-year OS rates were 46.1%, 19.7%, and 5.0%, respectively. Patients with liver metastasis demonstrated the most unfavorable prognosis, with a 1-year OS rate of 14.5%, while those with brain metastasis had a significantly better prognosis with a 1-year OS rate of 21.6%. The study identified seven common factors associated with a poor prognosis in ES-SCLC patients with organ-specific metastases: older age, male sex, unmarried status, higher T stage, presence of other metastases, and combination radiotherapy and chemotherapy. Furthermore, specific prognostic factors were identified for patients with metastasis to the liver, bone, and brain, including paired tumors, lack of surgical treatment at the primary site, and household income, respectively. To facilitate prognostic predictions, four nomograms were developed and subsequently validated. The performance of these nomograms was assessed using calibration curves, C-indexes, and the area under the curve (AUC), all of which consistently indicated good predictive accuracy and reliability. CONCLUSIONS Patients diagnosed with ES-SCLC with organ-specific metastases revealed shared and distinct prognostic factors. The nomograms developed from these factors demonstrated good performance and can serve valuable clinical tools to predict the prognosis of ES-SCLC patients with organ-specific metastases.
Collapse
Affiliation(s)
- Yuanli Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jing Zhang
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zhongzhen Yuan
- Department of Pharmacy, Chongqing University Cancer Hospital, No. 181, Hanyu Road, Shapingba District, Chongqing, China.
| | - Hongmei Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China.
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi RoadYuzhong District, YuanjiagangChongqing, 400016, China.
| |
Collapse
|
15
|
Zhang Y, Yang Z, Chen R, Zhu Y, Liu L, Dong J, Zhang Z, Sun X, Ying J, Lin D, Yang L, Zhou M. Histopathology images-based deep learning prediction of prognosis and therapeutic response in small cell lung cancer. NPJ Digit Med 2024; 7:15. [PMID: 38238410 PMCID: PMC10796367 DOI: 10.1038/s41746-024-01003-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer characterized by rapid tumor growth and early metastasis. Accurate prediction of prognosis and therapeutic response is crucial for optimizing treatment strategies and improving patient outcomes. In this study, we conducted a deep-learning analysis of Hematoxylin and Eosin (H&E) stained histopathological images using contrastive clustering and identified 50 intricate histomorphological phenotype clusters (HPCs) as pathomic features. We identified two of 50 HPCs with significant prognostic value and then integrated them into a pathomics signature (PathoSig) using the Cox regression model. PathoSig showed significant risk stratification for overall survival and disease-free survival and successfully identified patients who may benefit from postoperative or preoperative chemoradiotherapy. The predictive power of PathoSig was validated in independent multicenter cohorts. Furthermore, PathoSig can provide comprehensive prognostic information beyond the current TNM staging system and molecular subtyping. Overall, our study highlights the significant potential of utilizing histopathology images-based deep learning in improving prognostic predictions and evaluating therapeutic response in SCLC. PathoSig represents an effective tool that aids clinicians in making informed decisions and selecting personalized treatment strategies for SCLC patients.
Collapse
Affiliation(s)
- Yibo Zhang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Zijian Yang
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Ruanqi Chen
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Yanli Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, P. R. China
| | - Li Liu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Jiyan Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Zicheng Zhang
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Xujie Sun
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Dongmei Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, P. R. China.
| | - Lin Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
| | - Meng Zhou
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325027, P. R. China.
| |
Collapse
|
16
|
Zheng Z, Chen H, Cai H. Cost-effectiveness analysis of serplulimab combination therapy versus chemotherapy alone for patients with extensive-stage small cell lung cancer. Front Oncol 2024; 13:1259574. [PMID: 38282674 PMCID: PMC10812113 DOI: 10.3389/fonc.2023.1259574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Background Serplulimab has shown promising results in the treatment of extensive-stage small cell lung cancer (ES-SCLC). This study aimed to evaluate the cost-effectiveness of serplulimab combination therapy compared to chemotherapy alone in patients with ES-SCLC from the Chinese healthcare system perspective. Methods A partitioned survival model was developed to simulate the costs and outcomes of patients receiving serplulimab combination therapy or chemotherapy alone over a time horizon of 10 years. Data on overall survival, progression-free survival, and adverse events were obtained from the ASTRUM-005 randomized clinical trial. Costs were estimated from a healthcare system perspective and included drug acquisition, administration, monitoring, and management of adverse events. One-way and probabilistic sensitivity analyses were conducted to assess the impact of uncertainty on the results. Results The base-case analysis showed that the combination of serplulimab and chemotherapy has demonstrated a significant increase in QALYs of 0.626 compared to chemotherapy alone. This improved outcome is accompanied by an additional cost of $10893.995. The ICER for incorporating serplulimab into the treatment regimen is $17402.548 per QALY gained. One-way sensitivity analysis confirmed the robustness of the findings. Probabilistic sensitivity analysis demonstrated that serplulimab combination therapy had a 97.40% high probability of being cost-effective compared to chemotherapy alone at the WTP thresholds. Conclusion In contrast to chemotherapy as a standalone treatment, the addition of serplulimab to chemotherapy is believed to offer potential cost-effectiveness as a preferred initial therapeutic approach for patients with ES-SCLC in China.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Department of Pharmacy, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Hongcai Chen
- Department of Oncology Medicine, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Hongfu Cai
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
17
|
Qin S, Yang Y, Zhang J, Yin Y, Liu W, Zhang H, Fan X, Yang M, Yu F. Effective Treatment of SSTR2-Positive Small Cell Lung Cancer Using 211At-Containing Targeted α-Particle Therapy Agent Which Promotes Endogenous Antitumor Immune Response. Mol Pharm 2023; 20:5543-5553. [PMID: 37788300 PMCID: PMC10630944 DOI: 10.1021/acs.molpharmaceut.3c00427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Small cell lung cancer (SCLC) is a neuroendocrine tumor with a high degree of malignancy. Due to limited treatment options, patients with SCLC have a poor prognosis. We have found, however, that intravenously administered octreotide (Oct) armed with astatine-211 ([211At]SAB-Oct) is effective against a somatostatin receptor 2 (SSTR2)-positive SCLC tumor in SCLC tumor-bearing BALB/c nude mice. In biodistribution analysis, [211At]SAB-Oct achieved the highest concentration in the SCLC tumors up to 3 h after injection as time proceeded. A single intravenous injection of [211At]SAB-Oct (370 kBq) was sufficient to suppress SSTR2-positive SCLC tumor growth in treated mice by inducing DNA double-strand breaks. Additionally, a multitreatment course (370 kBq followed by twice doses of 370 kBq for a total of 1110 kBq) inhibited the growth of the tumor compared to the untreated control group without significant off-target toxicity. Surprisingly, we found that [211At]SAB-Oct could up-regulate the expressions of calreticulin and major histocompatibility complex I (MHC-I) on the tumor cell membrane surface, suggesting that α-particle internal irradiation may activate an endogenous antitumor immune response through the regulation of immune cells in the tumor microenvironment, which could synergically enhance the efficacy of immunotherapy. We conclude that [211At]SAB-Oct is a potential new therapeutic option for SSTR2-positive SCLC.
Collapse
Affiliation(s)
- Shanshan Qin
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Yuanyou Yang
- Key
Laboratory of Radiation Physics and Technology, Ministry of Education,
Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People’s
Republic of China
| | - Jiajia Zhang
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Yuzhen Yin
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Weihao Liu
- Key
Laboratory of Radiation Physics and Technology, Ministry of Education,
Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, People’s
Republic of China
| | - Han Zhang
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Xin Fan
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Mengdie Yang
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| | - Fei Yu
- Department
of Nuclear Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, People’s Republic of China
- Institute
of Nuclear Medicine, Tongji University School
of Medicine, No. 301
Yan-chang-zhong Road, Shanghai 200072, People’s Republic
of China
| |
Collapse
|
18
|
Yang W, Wang W, Li Z, Wu J, Huang X, Li J, Zhang X, Ye X. Delta-like ligand 3 in small cell lung cancer: Potential mechanism and treatment progress. Crit Rev Oncol Hematol 2023; 191:104136. [PMID: 37716517 DOI: 10.1016/j.critrevonc.2023.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Small cell lung cancer (SCLC) is one of a pathological type of lung cancer, and it is characterized by invasiveness, high malignancy and refractoriness. The mortality rate of SCLC is significantly higher than other types of lung cancer, and the treatment options for SCLC patients are limited. Delta-like ligand 3 (DLL3) is a Notch signaling ligand that plays a role in regulating the proliferation, development and metastasis of SCLC cells. Mnay studies have shown that DLL3 is overexpressed on the surface of SCLC cells, suggesting that DLL3 is a potential target for SCLC patients. A series of drug trials targeting DLL3 are underway. The Phase III clinical trials of Rova-T, a drug targeting DLL3, have not yielded the expected results. However, other drugs that target DLL3, such as AMG119, AMG757 and DLL3-targeted NIR-PIT, bring new ideas for SCLC treatment. Overall, DLL3 remains a valuable target for SCLC.
Collapse
Affiliation(s)
- Weichang Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhouhua Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Juan Wu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaotian Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jinbo Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinyi Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoqun Ye
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
19
|
Masumoto N, Kato S, Aichi M, Hasegawa S, Sahara K, Suyama K, Sano A, Miyazaki T, Okudela K, Kaneko T, Takahashi T. AMPAR receptor inhibitors suppress proliferation of human small cell lung cancer cell lines. Thorac Cancer 2023; 14:2897-2908. [PMID: 37605807 PMCID: PMC10569908 DOI: 10.1111/1759-7714.15075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is a neuroendocrine tumor with poor prognosis. Neuroendocrine tumors possess characteristics of both nerve cells and hormone-secreting cells; therefore, targeting the neuronal properties of these tumors may lead to the development of new therapeutic options. Among the endogenous signaling pathways in the nervous system, targeting the glutamate pathway may be a useful strategy for glioblastoma treatment. Perampanel, an antagonist of the synaptic glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR), has been reported to be effective in patients with glioblastoma. In this study, we aimed to investigate the antitumor effects of AMPAR antagonists in human SCLC cell lines. METHODS We performed to examine the expression of AMPAR using Western blot and immunohistochemical analysis. The antitumor effects of AMPAR antagonists on human SCLC cell lines were investigated in vitro and in vivo. We also analyzed the signaling pathway of AMPAR antagonists in SCLC cell lines. Statistical analysis was performed by the GraphPad Prism 6 software. RESULTS We first examined the expression of endogenous AMPAR in six human SCLC cell lines, detecting AMPAR proteins in all of them. Next, we tested the anti-proliferative effect of two AMPAR antagonists, talampanel and cyanquixaline, using SCLC cells in vitro and in vivo. Both AMPAR antagonists inhibited cell proliferation and mitogen-activated protein kinase (MAPK) phosphorylation in SCLC cells in vitro. Further, we observed reduced proliferation of implanted cell lines in an in vivo setting, assessed by Ki-67 immunohistochemistry. Additionally, using immunohistochemical analysis we confirmed AMPAR protein expression in human SCLC samples. CONCLUSION AMPAR may be a potential therapeutic target for SCLC.
Collapse
Affiliation(s)
- Nami Masumoto
- Department of PulmonologyYokohama City University Graduate School of MedicineYokohamaJapan
- Department of PhysiologyYokohama City University Graduate School of MedicineYokohamaJapan
- Department of RespirologyNational Hospital Organization Yokohama Medical CenterYokohamaJapan
| | - Shingo Kato
- Department of Clinical Cancer GenomicsYokohama City University HospitalYokohamaJapan
- Department of Gastroenterology and HepatologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Masahiro Aichi
- Department of PhysiologyYokohama City University Graduate School of MedicineYokohamaJapan
- Department of Obstetrics, Gynecology and Molecular Reproductive ScienceYokohama City University Graduate School of MedicineYokohamaJapan
| | - Sho Hasegawa
- Department of Gastroenterology and HepatologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kota Sahara
- Department of PhysiologyYokohama City University Graduate School of MedicineYokohamaJapan
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kumiko Suyama
- Department of PhysiologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Akane Sano
- Department of PhysiologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Tomoyuki Miyazaki
- Department of PhysiologyYokohama City University Graduate School of MedicineYokohamaJapan
- Center for Promotion of Research and Industry‐Academic Collaboration, Department of Core Project PromotionYokohama City UniversityYokohamaJapan
| | - Koji Okudela
- Department of PathologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Takeshi Kaneko
- Department of PulmonologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Takuya Takahashi
- Department of PhysiologyYokohama City University Graduate School of MedicineYokohamaJapan
| |
Collapse
|
20
|
Zheng X, Wu G, Fu Y, Fan R. Synchronous occurrence of small cell lung cancer and primary rectal dedifferentiated liposarcoma with osteosarcomatous differentiation: A rare case report. Medicine (Baltimore) 2023; 102:e35465. [PMID: 37773783 PMCID: PMC10545380 DOI: 10.1097/md.0000000000035465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/01/2023] Open
Abstract
RATIONALE Rectal dedifferentiated liposarcoma (DDL) and DDL with osteosarcomatous differentiation both are extremely unwonted. In addition, there are no reports of simultaneous DDL with osteosarcoma differentiation with small cell lung cancer (SCLC) to date. Therefore, it is imperative to alert clinicians and pathologists to this extremely rare and instructive synchronous tumor. PATIENT CONCERNS The patient was a 63-year-old male who presented with intermittent hematochezia and a swelling in the anus. Irregular masses were found on computed tomography (CT) examinations of the chest and abdomen respectively. DIAGNOSIS The final diagnosis of synchronous occurrence of SCLC and primary rectal DDL with osteosarcomatous differentiation was established by radiological, histological, immunohistochemical and molecular findings. INTERVENTIONS The patient underwent a puncture biopsy of the right lung mass and a complete resection of the rectal mass. OUTCOMES The patient abandoned treatment, and multiple SCLC metastases appeared multiple metastasis 8 months after the operation. In the end, he expired suddenly due to severe cerebral hemorrhage caused by brain SCLC metastasis. LESSONS DDL with osteosarcoma differentiation is infrequent, and its accurate diagnosis is based on morphology, immunohistochemistry and the necessary molecular tests. In rare cases, DDL occurs concurrently with other malignancies and and will be a challenge for pathologists and clinicians at this time. Accordingly, a comprehensive examination to identify possible synchronous tumors is very important in clinical practice.
Collapse
Affiliation(s)
- Xiangyu Zheng
- Department of Pathology, Henan University attached Nanyang first people Hospital, Nanyang, Henan Province, China
| | - Guangfeng Wu
- Department of Pathology, Henan University attached Nanyang first people Hospital, Nanyang, Henan Province, China
| | - Yongxian Fu
- Department of Pathology, Henan University attached Nanyang first people Hospital, Nanyang, Henan Province, China
| | - Rui Fan
- Department of Pathology, Henan University attached Nanyang first people Hospital, Nanyang, Henan Province, China
| |
Collapse
|
21
|
Kim WC, Won YK, Lee SM, Heo NH, Yeo SG, Chang AR, Bae SH, Kim JS, Yoo ID, Hong SP, Min CK, Jo IY, Kim ES. Evaluating the Necessity of Adaptive RT and the Role of Deformable Image Registration in Lung Cancer with Different Pathologic Classifications. Diagnostics (Basel) 2023; 13:2956. [PMID: 37761323 PMCID: PMC10527903 DOI: 10.3390/diagnostics13182956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND This study aimed to analyze differential radiotherapy (RT) responses according to the pathological type of lung cancer to see the possibility of applying adaptive radiotherapy (ART). METHODS ART planning with resampled-computed tomography was conducted for a total of 30 patients (20 non-small-cell lung cancer patients and 10 small-cell lung cancer patients) using a deformable image registration technique to reveal gross tumor volume (GTV) changes according to the duration of RT. RESULTS The small-cell lung cancer group demonstrated an average GTV reduction of 20.95% after the first week of initial treatment (p = 0.001), whereas the adenocarcinoma and squamous cell carcinoma groups showed an average volume reduction of 20.47% (p = 0.015) and 12.68% in the second week. The application of ART according to the timing of GTV reduction has been shown to affect changes in radiation dose irradiated to normal tissues. This suggests that ART applications may have to be different depending on pathological differences in lung cancer. CONCLUSION Through these results, the present study proposes the possibility of personalized treatment options for individual patients by individualizing ART based on specific radiation responses by pathologic types of lung cancer.
Collapse
Affiliation(s)
- Woo Chul Kim
- Department of Radiation Oncology, Division of Medical Physics, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan 31151, Republic of Korea; (W.C.K.); (C.K.M.)
- Department of Radiation Oncology, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan 31151, Republic of Korea;
| | - Yong Kyun Won
- Department of Radiation Oncology, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan 31151, Republic of Korea;
| | - Sang Mi Lee
- Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan 31151, Republic of Korea; (S.M.L.); (I.D.Y.); (S.-p.H.)
| | - Nam Hun Heo
- Clinical Trial Center, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan 31151, Republic of Korea;
| | - Seung-Gu Yeo
- Department of Radiation Oncology, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Bucheon 14584, Republic of Korea; (S.-G.Y.); (S.H.B.)
| | - Ah Ram Chang
- Department of Radiation Oncology, Soonchunhyang University Seoul Hospital, 59, Daesagwan-ro, Yongsan-gu, Seoul 04401, Republic of Korea; (A.R.C.); (J.S.K.)
| | - Sun Hyun Bae
- Department of Radiation Oncology, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Bucheon 14584, Republic of Korea; (S.-G.Y.); (S.H.B.)
| | - Jae Sik Kim
- Department of Radiation Oncology, Soonchunhyang University Seoul Hospital, 59, Daesagwan-ro, Yongsan-gu, Seoul 04401, Republic of Korea; (A.R.C.); (J.S.K.)
| | - Ik Dong Yoo
- Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan 31151, Republic of Korea; (S.M.L.); (I.D.Y.); (S.-p.H.)
| | - Sun-pyo Hong
- Department of Nuclear Medicine, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan 31151, Republic of Korea; (S.M.L.); (I.D.Y.); (S.-p.H.)
| | - Chul Kee Min
- Department of Radiation Oncology, Division of Medical Physics, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan 31151, Republic of Korea; (W.C.K.); (C.K.M.)
- Department of Radiation Oncology, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan 31151, Republic of Korea;
| | - In Young Jo
- Department of Radiation Oncology, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan 31151, Republic of Korea;
| | - Eun Seog Kim
- Department of Radiation Oncology, Soonchunhyang University Cheonan Hospital, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan 31151, Republic of Korea;
| |
Collapse
|
22
|
Wang Y, Jin Y, Shen X, Zheng Q, Xue Q, Chen L, Lin Y, Li Y. POU2F3: A Sensitive and Specific Diagnostic Marker for Neuroendocrine-low/negative Small Cell Lung Cancer. Am J Surg Pathol 2023; 47:1059-1066. [PMID: 37357936 DOI: 10.1097/pas.0000000000002081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
POU2F3 (POU class 2 homeobox 3) is a novel transcription factor used to define the special molecular subtype of small cell lung cancer (SCLC) known as SCLC-P. Nevertheless, the sensitivity and specificity of POU2F3 immunohistochemical (IHC) staining have not been fully investigated. In this study, we explored the expression of POU2F3 by IHC in a large cohort of SCLC clinical samples (n=246), other common lung cancer types (n=2207), and various other cancer types (n=194). The results showed that POU2F3 was strongly nuclear stained in 13.41% (33/246) of SCLC cases, with negative or minimal labeling for thyroid transcription factor-1 and neuroendocrine (NE) markers. Compared with POU2F3-negative SCLC, SCLC-P harbored fewer TP53 and RB1 mutations. POU2F3 was also expressed in 3.13% (8/256) of squamous cell carcinomas (SCCs) and 20% (2/10) of large cell NE carcinomas (LCNECs), whereas other lung cancer types were negative. In addition to lung cancer, POU2F3 was positive in 22.2% (4/18) of thymic tumors. All other tumors were POU2F3-negative except for thymic carcinoma, although sparsely distributed weak nuclear staining was observed in lung adenocarcinoma, cervical SCC, and colorectal carcinoma. The sensitivity and specificity of POU2F3 in NE-low/negative SCLC were 82.1% and 99.4%, respectively. Notably, some rare unique patterns of POU2F3 expression were observed. One case of thymic SCC was characterized by diffuse and uniform cytomembrane staining. One case of esophageal NE tumor was nuclear-positive, while the normal proliferating squamous epithelium was strongly membrane-stained. This is the largest cohort of clinical samples to confirm that POU2F3 is a highly sensitive and specific diagnostic marker for NE-low/negative SCLC.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Jin
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuxia Shen
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Zheng
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qianqian Xue
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lijun Chen
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yicong Lin
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Bebb DG, Murray C, Giannopoulou A, Felip E. Symptoms and Experiences with Small Cell Lung Cancer: A Mixed Methods Study of Patients and Caregivers. Pulm Ther 2023; 9:435-450. [PMID: 37310567 PMCID: PMC10262931 DOI: 10.1007/s41030-023-00229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/15/2023] [Indexed: 06/14/2023] Open
Abstract
INTRODUCTION Understanding of the patient-perceived symptom burden of small cell lung cancer (SCLC) is limited. The objective of this study was to explore patients' experiences with SCLC, identify which treatment-/disease-related symptoms have the greatest impact on their well-being, and gain caregiver perspectives. METHODS A noninterventional, cross-sectional, multimodal, mixed methods study was conducted from April-June 2021. Adult patients with SCLC and unpaid caregivers were eligible to participate. Patients' experiences, captured via 5-day video diaries and follow-up interviews, were scored 1-10 on how bothersome the patients perceived each symptom/symptomatic adverse event. Patients indicated if they believed a symptom was disease or treatment related. Caregivers participated in an online community board. RESULTS The study included nine patients (five with extensive-stage [ES] disease, four with limited-stage [LS] disease) and nine caregivers. Except for one patient/caregiver pairing, patients and caregivers were unmatched. The most common impactful symptoms in patients with ES-SCLC were shortness of breath, fatigue, coughing, chest pain, and nausea/vomiting; in LS-SCLC, these were fatigue and shortness of breath. Among patients with ES disease, SCLC had a high impact on physical (leisure/hobbies, work, sleep, ability to do household chores and errands/responsibilities outside home), social (family dynamics, extrafamilial social interaction), and emotional (mental health) aspects. Patients with LS-SCLC faced the long-term physical effects of treatment, financial implications, and emotional toll of an uncertain prognosis. SCLC had a high personal and psychologic burden among caregivers, whose duties consumed much of their time. Caregivers observed similar symptoms and impacts of SCLC as those reported by patients. CONCLUSIONS This study provides valuable insight into patient- and caregiver-perceived burden of SCLC and can inform the design of prospective studies. Clinicians should seek to understand patients' opinions and priorities before making treatment decisions.
Collapse
Affiliation(s)
- D Gwyn Bebb
- Global Development, Amgen, One Amgen Centre Drive, Thousand Oaks, CA, 91320, USA.
- Cumming School of Medicine, University of Calgary, 3285 Hospital Drive, NW, Calgary, AB, T2N 4N1, Canada.
| | | | | | - Enriqueta Felip
- Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| |
Collapse
|
24
|
Zhang XC, Lv FJ, Fu BJ, Liang ZR, Chu ZG. Significance of marginal vessels in differentiating peripheral small-cell lung cancer and benign lung tumor. Acta Radiol 2023; 64:2526-2534. [PMID: 37464809 DOI: 10.1177/02841851231188060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
BACKGROUND Some peripheral small cell lung cancers (pSCLCs) and benign lung tumors (pBLTs) have similar morphological features but different treatment and prognosis. PURPOSE To determine the significance of marginal vessels in differentiating pSCLCs and pBLTs. MATERIAL AND METHODS A total of 57 and 95 patients with pathological confirmed nodular (≤3 cm) pSCLC and pBLT with similar morphological features were enrolled in this study retrospectively. The patients' clinical characteristics and computed tomography (CT) features of tumors and marginal vessels (vessels connecting with tumors) were analyzed and compared. RESULTS Compared with pBLTs, pSCLCs had a larger diameter (P = 0.001) but lower enhancement (P = 0.015) and fewer had calcification (P = 0.013). Compared with pBLTs, more lesions had proximal (70.2% vs. 22.1%) and distal (59.6% vs. 4.2%) marginal vessels in pSCLCs (each P < 0.0001). In addition, in pSCLCs, the numbers of proximal (1.3 ± 1.4 vs. 0.3 ± 0.6), distal (2.4 ± 3.1 vs. 0.1 ± 0.5), and total (3.6 ± 3.5 vs. 0.4 ± 1.0) marginal vessels were all more than those in pBLTs (each P < 0.001). Receiver operating characteristic curve analysis revealed the positive distal marginal vessel sign had the highest specificity (95.8%), and the number of total marginal vessels had the best performance in discriminating pSCLC from pBLT (cutoff value = 1.5, AUC = 0.80, 95% CI = 0.72-0.89, sensitivity = 70.2%, and specificity = 91.6%). CONCLUSION For peripheral solid nodules similar to pBLTs but without any calcification, the possibility of pSCLC should be considered if they have multiple marginal vessels (≥2), especially the distal ones.
Collapse
Affiliation(s)
- Xiao-Chuan Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Radiology, Chonggang General Hospital, Chongqing, PR China
| | - Fa-Jin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Bin-Jie Fu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Zhang-Rui Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Zhi-Gang Chu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
25
|
Wang Y, Zhang L, Tan J, Zhang Z, Liu Y, Hu X, Lu B, Gao Y, Tong L, Liu Z, Zhang H, Lin PP, Li B, Gires O, Zhang T. Longitudinal detection of subcategorized CD44v6 + CTCs and circulating tumor endothelial cells (CTECs) enables novel clinical stratification and improves prognostic prediction of small cell lung cancer: A prospective, multi-center study. Cancer Lett 2023; 571:216337. [PMID: 37553013 DOI: 10.1016/j.canlet.2023.216337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Current management of small cell lung cancer (SCLC) remains challenging. Effective biomarkers are needed to subdivide patients presenting distinct treatment response and clinical outcomes. An understanding of heterogeneous phenotypes of aneuploid CD31- circulating tumor cells (CTCs) and CD31+ circulating tumor endothelial cells (CTECs) may provide novel insights in the clinical management of SCLC. In the present translational and prospective study, increased cancer metastasis-related cell proliferation and motility, accompanied with up-regulated mesenchymal marker vimentin but down-regulated epithelial marker E-cadherin, were observed in both lentivirus infected SCLC and NSCLC cells overexpressing the stemness marker CD44v6. Aneuploid CTCs and CTECs expressing CD44v6 were longitudinally detected by SE-iFISH in 120 SCLC patients. Positive detection of baseline CD44v6+ CTCs and CD44v6+ CTECs was significantly associated with enhanced hepatic metastasis. Karyotype analysis revealed that chromosome 8 (Chr8) in CD44v6+ CTCs shifted from trisomy 8 towards multiploidy in post-therapeutic patients compared to pre-treatment subjects. Furthermore, the burden of baseline CD44v6+ CTCs (t0) or amid the therapy (t1-2), the ratio of baseline CD31+ CTEC/CD31- CTC (t0), and CTC-WBC clusters (t0) were correlated with treatment response and distant metastases, particularly brain metastasis, in subjects with limited disease (LD-SCLC) but not in those with extensive disease (ED-SCLC). Multivariate survival analysis validated that longitudinally detected CD44v6+/CD31- CTCs was an independent prognostic factor for inferior survival in SCLC patients. Our study provides evidence for the first time that comprehensive analyses of CTCs, CTECs, and their respective CD44v6+ subtypes enable clinical stratification and improve prognostic prediction of SCLC, particularly for potentially curable LD-SCLC.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Lina Zhang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinjing Tan
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhiyun Zhang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yanxia Liu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Baohua Lu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Yuan Gao
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Li Tong
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Zan Liu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Hongxia Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | | | - Baolan Li
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU, Munich, Germany.
| | - Tongmei Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China.
| |
Collapse
|
26
|
Hernández-Suárez B, Gillespie DA, Dejnaka E, Kupczyk P, Obmińska-Mrukowicz B, Pawlak A. Studying the DNA damage response pathway in hematopoietic canine cancer cell lines, a necessary step for finding targets to generate new therapies to treat cancer in dogs. Front Vet Sci 2023; 10:1227683. [PMID: 37655260 PMCID: PMC10467447 DOI: 10.3389/fvets.2023.1227683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Background Dogs present a significant opportunity for studies in comparative oncology. However, the study of cancer biology phenomena in canine cells is currently limited by restricted availability of validated antibody reagents and techniques. Here, we provide an initial characterization of the expression and activity of key components of the DNA Damage Response (DDR) in a panel of hematopoietic canine cancer cell lines, with the use of commercially available antibody reagents. Materials and methods The techniques used for this validation analysis were western blot, qPCR, and DNA combing assay. Results Substantial variations in both the basal expression (ATR, Claspin, Chk1, and Rad51) and agonist-induced activation (p-Chk1) of DDR components were observed in canine cancer cell lines. The expression was stronger in the CLBL-1 (B-cell lymphoma) and CLB70 (B-cell chronic lymphocytic leukemia) cell lines than in the GL-1 (B-cell leukemia) cell line, but the biological significance of these differences requires further investigation. We also validated methodologies for quantifying DNA replication dynamics in hematopoietic canine cancer cell lines, and found that the GL-1 cell line presented a higher replication fork speed than the CLBL-1 cell line, but that both showed a tendency to replication fork asymmetry. Conclusion These findings will inform future studies on cancer biology, which will facilitate progress in developing novel anticancer therapies for canine patients. They can also provide new knowledge in human oncology.
Collapse
Affiliation(s)
- Beatriz Hernández-Suárez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - David A. Gillespie
- Facultad de Medicina, Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain
| | - Ewa Dejnaka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Piotr Kupczyk
- Division of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
27
|
Ohtakara K, Arakawa S, Nakao M, Muramatsu H, Suzuki K. Twenty-Month Regression Following Concurrent Conventional Whole-Brain Irradiation and Chemoimmunotherapy for ≥3.8 cm Cerebellar Metastasis From Small Cell Lung Cancer. Cureus 2023; 15:e43759. [PMID: 37727186 PMCID: PMC10506730 DOI: 10.7759/cureus.43759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 09/21/2023] Open
Abstract
Standard whole-brain radiotherapy (WBRT) alone for large brain metastases (BMs) from small cell lung cancer (SCLC) has limited efficacy and durability, and stereotactic radiosurgery (SRS) alone for symptomatic posterior fossa BMs >3 cm with satellite lesions is challenging. Herein, we describe the case of a 73-year-old female presenting with treatment-naïve SCLC and 15 symptomatic multiple BMs, including a ≥3.8-cm cerebellar mass (≥17.7 cm3) and two adjacent lesions; otherwise, the SCLC was confined to the thorax. The patient was initially treated concurrently with conventional WBRT (30 Gy in 10 fractions) without boost and chemoimmunotherapy (CIT) consisting of carboplatin, etoposide, and atezolizumab. Atezolizumab was excluded during irradiation. Five months after WBRT, the large cerebellar lesion had remarkably regressed, and the smaller lesions (≤17 mm) showed complete responses (CRs) without local progression at 20 months. However, six and 16 months after WBRT, the thoracic lesions had progressed, and although amrubicin was administered, four new BMs, including pons involvement, had developed, respectively. Despite the CRs of the four BMs following SRS (49.6 Gy in eight fractions) and the sustained regression of the thoracic lesions, meningeal dissemination and multiple new BMs were evident 3.5 months post-SRS. The small remnant of the large BM and/or newly developed BMs abutting the cerebrospinal fluid (CSF) space could have led to CSF dissemination, the presumed cause of the patient's death. Taken together, concurrent chemo-WBRT and subsequent CIT can provide excellent and durable tumor responses for SCLC BMs, but may not be fully sufficient for BMs ≥3.8 cm. Therefore, in cases with large lesions, focal dose escalation of the large lesions, consolidative thoracic radiotherapy, and dose de-escalation in the macroscopically unaffected brain region may prevent or attenuate CSF dissemination, new BM development, and adverse effects and thus should be considered.
Collapse
Affiliation(s)
- Kazuhiro Ohtakara
- Department of Radiation Oncology, Kainan Hospital Aichi Prefectural Welfare Federation of Agricultural Cooperatives, Yatomi, JPN
- Department of Radiology, Aichi Medical University, Nagakute, JPN
| | - Sosuke Arakawa
- Department of Respiratory Medicine, Nagoya City University East Medical Center, Nagoya, JPN
- Department of Respiratory Medicine, Kainan Hospital Aichi Prefectural Welfare Federation of Agricultural Cooperatives, Yatomi, JPN
| | - Makoto Nakao
- Department of Respiratory Medicine, Kainan Hospital Aichi Prefectural Welfare Federation of Agricultural Cooperatives, Yatomi, JPN
| | - Hideki Muramatsu
- Department of Respiratory Medicine, Kainan Hospital Aichi Prefectural Welfare Federation of Agricultural Cooperatives, Yatomi, JPN
| | - Kojiro Suzuki
- Department of Radiology, Aichi Medical University, Nagakute, JPN
| |
Collapse
|
28
|
Parisi A, Rossi F, De Filippis C, Paoloni F, Felicetti C, Mammarella A, Pecci F, Lupi A, Berardi R. Current Evidence and Future Perspectives about the Role of PARP Inhibitors in the Treatment of Thoracic Cancers. Onco Targets Ther 2023; 16:585-613. [PMID: 37485307 PMCID: PMC10362869 DOI: 10.2147/ott.s272563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, poly (ADP-ribose) polymerase (PARP) inhibition has become a promising therapeutic option for several tumors, especially for those harboring a BRCA 1-2 mutation or a deficit in the homologous recombination repair (HRR) pathway. Nevertheless, to date, PARP inhibitors are still not largely used for thoracic malignancies neither as a single agent nor in combination with other treatments. Recently, a deeper understanding of HRR mechanisms, alongside the development of new targeted and immunotherapy agents, particularly against HRR-deficient tumors, traced the path to new treatment strategies for many tumor types including lung cancer and malignant pleural mesothelioma. The aim of this review is to sum up the current knowledge about cancer-DNA damage response pathways inhibition and to update the status of recent clinical trials investigating the use of PARP inhibitors, either as monotherapy or in combination with other agents for the treatment of thoracic malignancies. We will also briefly discuss available evidence on Poly(ADP-Ribose) Glycohydrolase (PARG) inhibitors, a novel promising therapeutic option in oncology.
Collapse
Affiliation(s)
- Alessandro Parisi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Francesca Rossi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Chiara De Filippis
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Francesco Paoloni
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Cristiano Felicetti
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Alex Mammarella
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Federica Pecci
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Alessio Lupi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| | - Rossana Berardi
- Department of Clinical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero Universitaria delle Marche, Ancona, 60126, Italy
| |
Collapse
|
29
|
Khan MA, Khan P, Ahmad A, Fatima M, Nasser MW. FOXM1: A small fox that makes more tracks for cancer progression and metastasis. Semin Cancer Biol 2023; 92:1-15. [PMID: 36958703 PMCID: PMC10199453 DOI: 10.1016/j.semcancer.2023.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Transcription factors (TFs) are indispensable for the modulation of various signaling pathways associated with normal cell homeostasis and disease conditions. Among cancer-related TFs, FOXM1 is a critical molecule that regulates multiple aspects of cancer cells, including growth, metastasis, recurrence, and stem cell features. FOXM1 also impact the outcomes of targeted therapies, chemotherapies, and immune checkpoint inhibitors (ICIs) in various cancer types. Recent advances in cancer research strengthen the cancer-specific role of FOXM1, providing a rationale to target FOXM1 for developing targeted therapies. This review compiles the recent studies describing the pivotal role of FOXM1 in promoting metastasis of various cancer types. It also implicates the contribution of FOXM1 in the modulation of chemotherapeutic resistance, antitumor immune response/immunotherapies, and the potential of small molecule inhibitors of FOXM1.
Collapse
Affiliation(s)
- Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aatiya Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
30
|
Yu X, Xu T, Su B, Zhou J, Xu B, Zhang Y, Zhu Y, Jiang N, He Z. The novel role of etoposide in inhibiting the migration and proliferation of small cell lung cancer and breast cancer via targeting Daam1. Biochem Pharmacol 2023; 210:115468. [PMID: 36858182 DOI: 10.1016/j.bcp.2023.115468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVES Daam1 (Dishevelled-associated activator of morphogenesis 1) is a Wnt/PCP signaling protein that engages in cytoskeleton reorganization and is abnormally activated in certain tumors. Daam1 is closely related to cancer metastasis, which is expected to become a target for cancer treatment. However, the natural small molecules targeting Daam1 have not been identified. MATERIALS AND METHODS We screened several natural small molecules that may bind to Daam1 by Sybyl molecular simulation docking technique. As a first-line drug for the treatment of small cell lung cancer, etoposide was chosen for further investigation. Next, we used Micro Scale Thermophoresis (MST) to verify the interaction of etoposide and Daam1. Small cell lung cancer H446 cells and breast cancer MCF-7 cells were treated with etoposide and subjected to Western blotting to measure the Daam1 expression. The effect of etoposide on cell proliferation was determined by CCK-8 assay in vitro and by a tumor-bearing mouse model in vivo. Wound healing assay and Boyden chamber assay were used to evaluate the role of etoposide in the migration and invasion ability of tumor cells. The effect of etoposide on the microfilament assembly was visualized by immunofluorescence staining with phalloidine. Finally, the possible mechanism of down-regulation of Daam1 expression after etoposide-induced small cell lung cancer cells was detected by a half-life experiment and immunofluorescence staining with lysosomal marker LAMP1. RESULTS Sybyl molecular modeling docking technique was performed to screen a natural chemical library for molecules that bound to the FH2 domain of Daam1 and found etoposide was virtually interacted with Daam1. MST validated etoposide directly bound to the FH2 domain of Daam1. Etoposide significantly down-regulated the expression of Daam1 in small cell lung cancer H446 cells and breast cancer MCF-7 cells. Moreover, 270 μmol/L etoposide largely inhibited the proliferation, migration, and invasion of H446 cells and MCF-7 cells. Immunofluorescence staining experiments revealed that etoposide induced the disassembly of microfilaments in H446 cells and MCF-7 cells, which were rescued by Daam1 overexpression. In nude mice transplanted with H446 cells, 5, 10, 20 mg/kg etoposide (drug/weight) injected via tail vein largely retarded the proliferation of subcutaneous tumors. Etoposide induced Daam1 to shorten its half-life and enter the lysosome degradation pathway, and eventually leading to the downregulation of Daam1 expression. CONCLUSIONS Etoposide is a novel natural small molecule targeting Daam1. Etoposide inhibits the proliferation, migration and invasion of small cell lung cancer cells and breast cancer cells, and also suppresses tumor proliferation of small cell lung cancer in vivo.
Collapse
Affiliation(s)
- Xinqian Yu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Tong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Bei Su
- Department of Breast Surgery, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, China.
| | - Jiaofeng Zhou
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Bujie Xu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Yitao Zhang
- The Faculty of Engineering, McMaster University, Hamilton L8S4L8, Canada.
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| | - Nan Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Zhicheng He
- Department of Thoracic Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
31
|
Longo V, Rizzo A, Catino A, Montrone M, Galetta D. Safety evaluation of immune checkpoint inhibitors combined with chemotherapy for the treatment of small cell lung cancer: A meta-analysis of randomized controlled trials. Thorac Cancer 2023; 14:1029-1035. [PMID: 36869579 PMCID: PMC10101844 DOI: 10.1111/1759-7714.14842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND The addition of immune checkpoint inhibitors (ICIs) to chemotherapy is the new standard of care in the first-line treatment of small cell lung cancer (SCLC). However, although the concomitant use of immunotherapy and chemotherapy can increase the antitumor efficacy, it can also increase toxicity. The present study evaluated the tolerability of immune-based combinations in the first-line treatment of SCLC. METHODS Relevant trials were identified by searching electronic databases and conference meetings. Seven phase II and III randomized controlled trials and 3766 SCLC patients were included in the meta-analysis (immune-based combinations = 2133; chemotherapy = 1633). Outcomes of interest included treatment-related adverse events (TRAEs) and the rate of discontinuation due to TRAEs. RESULTS Immune-based combination treatment was associated with a higher risk of grade 3-5 TRAEs (odds ratio [OR], 1.16; 95% confidence interval [CI]: 1.01-1.35). Immune-based combinations were associated with a higher risk of TRAEs leading to discontinuation (OR, 2.30; 95% CI: 1.17-4.54). No differences were observed in grade 5 TRAEs (OR, 1.56; 95% CI: 0.93-2.63). CONCLUSION This meta-analysis indicates that the addition of immunotherapy to chemotherapy in SCLC patients is associated with a higher risk of toxicity and probably of treatment discontinuation. Tools for identifying SCLC patients that would not benefit from immune-based therapy are urgently needed.
Collapse
Affiliation(s)
- Vito Longo
- Medical Thoracic Oncology UnitIRCCS Istituto Tumori “Giovanni Paolo II”BariItaly
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale Di Oncologia Medica per La Presa in Carico Globale Del Paziente Oncologico “Don Tonino Bello”, I.R.C.C.S. Istituto Tumori “Giovanni Paolo II”BariItaly
| | - Annamaria Catino
- Medical Thoracic Oncology UnitIRCCS Istituto Tumori “Giovanni Paolo II”BariItaly
| | - Michele Montrone
- Medical Thoracic Oncology UnitIRCCS Istituto Tumori “Giovanni Paolo II”BariItaly
| | - Domenico Galetta
- Medical Thoracic Oncology UnitIRCCS Istituto Tumori “Giovanni Paolo II”BariItaly
| |
Collapse
|
32
|
Su Y, Lu C, Zheng S, Zou H, Shen L, Yu J, Weng Q, Wang Z, Chen M, Zhang R, Ji J, Wang M. Precise prediction of the sensitivity of platinum chemotherapy in SCLC: Establishing and verifying the feasibility of a CT-based radiomics nomogram. Front Oncol 2023; 13:1006172. [PMID: 37007144 PMCID: PMC10061075 DOI: 10.3389/fonc.2023.1006172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
ObjectivesTo develop and validate a CT-based radiomics nomogram that can provide individualized pretreatment prediction of the response to platinum treatment in small cell lung cancer (SCLC).MaterialsA total of 134 SCLC patients who were treated with platinum as a first-line therapy were eligible for this study, including 51 patients with platinum resistance (PR) and 83 patients with platinum sensitivity (PS). The variance threshold, SelectKBest, and least absolute shrinkage and selection operator (LASSO) were applied for feature selection and model construction. The selected texture features were calculated to obtain the radiomics score (Rad-score), and the predictive nomogram model was composed of the Rad-score and the clinical features selected by multivariate analysis. Receiver operating characteristic (ROC) curves, calibration curves, and decision curves were used to assess the performance of the nomogram.ResultsThe Rad-score was calculated using 10 radiomic features, and the resulting radiomics signature demonstrated good discrimination in both the training set (area under the curve [AUC], 0.727; 95% confidence interval [CI], 0.627–0.809) and the validation set (AUC, 0.723; 95% CI, 0.562–0.799). To improve diagnostic effectiveness, the Rad-score created a novel prediction nomogram by combining CA125 and CA72-4. The radiomics nomogram showed good calibration and discrimination in the training set (AUC, 0.900; 95% CI, 0.844-0.947) and the validation set (AUC, 0.838; 95% CI, 0.534-0.735). The radiomics nomogram proved to be clinically beneficial based on decision curve analysis.ConclusionWe developed and validated a radiomics nomogram model for predicting the response to platinum in SCLC patients. The outcomes of this model can provide useful suggestions for the development of tailored and customized second-line chemotherapy regimens.
Collapse
Affiliation(s)
- Yanping Su
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
- Department of Radiology, Key Laboratory of Intelligent Medical Imaging of Wenzhou, Institute of Aging, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Alzheimer’s Disease of Zhejiang, Wenzhou, Zhejiang, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Shenfei Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Hao Zou
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Junchao Yu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Zufei Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Ran Zhang
- AI Research Department, Huiying Medical Technology Co., Ltd, Beijing, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, Zhejiang, China
- *Correspondence: Meihao Wang, ; Jiansong Ji,
| | - Meihao Wang
- Department of Radiology, Key Laboratory of Intelligent Medical Imaging of Wenzhou, Institute of Aging, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Alzheimer’s Disease of Zhejiang, Wenzhou, Zhejiang, China
- *Correspondence: Meihao Wang, ; Jiansong Ji,
| |
Collapse
|
33
|
Li L, Shen X, Mo X, Chen Z, Yu F, Mo X, Song J, Huang G, Liang K, Luo Z, Mao N, Yang J. CEMIP-mediated hyaluronan metabolism facilitates SCLC metastasis by activating TLR2/c-Src/ERK1/2 axis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119451. [PMID: 36931608 DOI: 10.1016/j.bbamcr.2023.119451] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023]
Abstract
Small-cell lung cancer (SCLC) is a highly metastatic and recalcitrant malignancy. Metastasis is the major cause of death in patients with SCLC but its mechanism remains poorly understood. An imbalance of hyaluronan catabolism in the extracellular matrix accelerates malignant progression in solid cancers due to the accumulation of low-molecular-weight HA. We previously found that CEMIP, a novel hyaluronidase, may act as a metastatic trigger in SCLC. In the present study, we found that both CEMIP and HA levels were higher in SCLC tissues than in paracancerous tissues from patient specimens and in vivo orthotopic models. Additionally, high expression of CEMIP was associated with lymphatic metastasis in patients with SCLC, and in vitro results showed that CEMIP expression was elevated in SCLC cells relative to human bronchial epithelial cells. Mechanistically, CEMIP facilitates the breakdown of HA and accumulation of LMW-HA. LMW-HA activates its receptor TLR2, and subsequently recruits c-Src to activate ERK1/2 signalling, thereby promoting F-actin rearrangement as well as migration and invasion of SCLC cells. In addition, the in vivo results verified that depletion of CEMIP attenuated HA levels and the expressions of TLR2, c-Src, and phosphorylation of ERK1/2, as well as liver and brain metastasis in SCLC xenografts. Furthermore, the application of the actin filament inhibitor latrunculin A significantly inhibited the liver and brain metastasis of SCLC in vivo. Collectively, our findings reveal the critical role of CEMIP-mediated HA degradation in SCLC metastasis and suggest its translational potential as an attractive target and a novel strategy for SCLC therapy.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China; Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530001, Guangxi, PR China; Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530001, Guangxi, PR China
| | - Xiaoju Shen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Xiaoxiang Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China; Department of Pharmacology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, PR China
| | - Zhiquan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| | - Fei Yu
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Xiaocheng Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Jinjing Song
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China; Department of Pharmacy, The First People's Hospital of Nanning, Nanning 530022, Guangxi, PR China
| | - Guolin Huang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China; Department of Pharmacy, The First People's Hospital of Nanning, Nanning 530022, Guangxi, PR China
| | - Kai Liang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China; Department of Thoracic Tumor Surgery, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning 530021, Guangxi, PR China
| | - Zhuo Luo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China
| | - Naiquan Mao
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China; Department of Thoracic Tumor Surgery, Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Nanning 530021, Guangxi, PR China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, PR China.
| |
Collapse
|
34
|
Walder JR, Faiz SA, Sandoval M. Lung cancer in the emergency department. EMERGENCY CANCER CARE 2023; 2:3. [PMID: 38799792 PMCID: PMC11116267 DOI: 10.1186/s44201-023-00018-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 05/29/2024]
Abstract
Background Though decreasing in incidence and mortality in the USA, lung cancer remains the deadliest of all cancers. For a significant number of patients, the emergency department (ED) provides the first pivotal step in lung cancer prevention, diagnosis, and management. As screening recommendations and treatments advance, ED providers must stay up-to-date with the latest lung cancer recommendations. The purpose of this review is to identify the many ways that emergency providers may intersect with the disease spectrum of lung cancer and provide an updated array of knowledge regarding detection, management, complications, and interdisciplinary care. Findings Lung cancer, encompassing 10-12% of cancer-related emergency department visits and a 66% admission rate, is the most fatal malignancy in both men and women. Most patients presenting to the ED have not seen a primary care provider or undergone screening. Ultimately, half of those with a new lung cancer diagnosis in the ED die within 1 year. Incidental findings on computed tomography are mostly benign, but emergency staff must be aware of the factors that make them high risk. Radiologic presentations range from asymptomatic nodules to diffuse metastatic lesions with predominately pulmonary symptoms, and some may present with extra-thoracic manifestations including neurologic. The short-term prognosis for ED lung cancer patients is worse than that of other malignancies. Screening offers new hope through earlier diagnosis but is underutilized which may be due to racial and socioeconomic disparities. New treatments provide optimism but lead to new complications, some long-term. Multidisciplinary care is essential, and emergency medicine is responsible for the disposition of patients to the appropriate specialists at inpatient and outpatient centers. Conclusion ED providers are intimately involved in all aspects of lung cancer care. Risk factor modification and referral for lung cancer screening are opportunities to further enhance patient care. In addition, with the advent of newer cancer therapies, ED providers must stay vigilant and up-to-date with all aspects of lung cancer including disparities, staging, symptoms of disease, prognosis, treatment, and therapy-related complications.
Collapse
Affiliation(s)
- Jeremy R. Walder
- Divisions of Critical Care, Pulmonary and Sleep Medicine, McGovern Medical School at UTHealth, 6431 Fannin St., Ste. MSB 1.282, Houston, TX 77030 USA
| | - Saadia A. Faiz
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1462, Houston, TX 77030 USA
| | - Marcelo Sandoval
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1468, Houston, TX 77030 USA
| |
Collapse
|
35
|
Decouvreur C, Lecocq M, Pilette C, Aboubakar Nana F, Ocak S. [Potential therapeutic implication of focal adhesion kinase in small-cell lung cancer]. Rev Mal Respir 2023; 40:222-224. [PMID: 36828677 DOI: 10.1016/j.rmr.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/25/2023]
Abstract
The molecular steps leading to small cell lung cancer (SCLC) development and progression are still poorly understood, resulting in the absence of targeted therapy and an extremely poor prognosis. Activation of Focal Adhesion Kinase (FAK) plays a key role in the invasive behavior of this cancer in vitro. Our hypothesis is that FAK could be a therapeutic target in SCLC. Our work aims to describe a mouse model to study the role of FAK and the antitumoral potential of its inhibition in SCLC in vivo.
Collapse
Affiliation(s)
- C Decouvreur
- Université catholique de Louvain (UCLouvain), institut de recherche expérimentale et clinique (IREC), pôle de pneumologie (PNEU), Bruxelles, Belgique; UCLouvain, CHU UCL Namur (site de Godinne), service de pneumologie, Namur, Belgique.
| | - M Lecocq
- Université catholique de Louvain (UCLouvain), institut de recherche expérimentale et clinique (IREC), pôle de pneumologie (PNEU), Bruxelles, Belgique
| | - C Pilette
- Université catholique de Louvain (UCLouvain), institut de recherche expérimentale et clinique (IREC), pôle de pneumologie (PNEU), Bruxelles, Belgique; UCLouvain, cliniques universitaires Saint-Luc, service de pneumologie, Bruxelles, Belgique
| | - F Aboubakar Nana
- Université catholique de Louvain (UCLouvain), institut de recherche expérimentale et clinique (IREC), pôle de pneumologie (PNEU), Bruxelles, Belgique; UCLouvain, cliniques universitaires Saint-Luc, service de pneumologie, Bruxelles, Belgique
| | - S Ocak
- Université catholique de Louvain (UCLouvain), institut de recherche expérimentale et clinique (IREC), pôle de pneumologie (PNEU), Bruxelles, Belgique; UCLouvain, CHU UCL Namur (site de Godinne), service de pneumologie, Namur, Belgique
| |
Collapse
|
36
|
İlhan A, Gurler F, Yilmaz F, Seyran E, Bastug V, Gorgulu B, Eraslan E, Yıldırım ÖA, Yazici O, Çakmak Öksüzoğlu ÖB. Clinicopathological Features and First-Line Treatment Outcomes of Geriatric Patients With Extensive-Stage Small Cell Lung Cancer: A Multicenter Study. Cureus 2023; 15:e35710. [PMID: 36875256 PMCID: PMC9982333 DOI: 10.7759/cureus.35710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction The geriatric patient population diagnosed with extensive stage small cell lung cancer (SCLC) is underrepresented in clinical studies. We aimed to evaluate the clinicopathological characteristics, first-line treatment patterns and treatment outcomes of patients aged 65 years or older with extensive stage SCLC. Material and methods In this multicenter, retrospective cohort study, patients aged 65 years or older, diagnosed with extensive-stage SCLC, between January 2009 and December 2021 were included. Patients who were under 65 years of age at the time of diagnosis and did not develop progression after curative treatment and patients with a second malignancy were excluded from the study. The clinicopathological characteristics, first-line treatment patterns and treatment outcomes were analyzed. Results A total of 132 patients were included in the study. The median age was 70 years (range:65-91), and 118 (89.4%) patients were male. There were 77 (58.3%) patients with eastern cooperative oncology group (ECOG) performance status (PS) of 0-1. There were 26 (19.7%) patients in the limited stage disease and 106 (80.3%) patients in the extensive stage disease at the time of diagnosis. First-line chemotherapy was given to 86 (65.2%) patients. Of the patients who could not receive treatment, 18 patients (13.6%) due to patient refusal, and 28 patients (21.2%) due to comorbid diseases and poor performance status with organ dysfunctions. The most common treatment regimen used as first-line treatment was cisplatin+etoposide (n=47, 54.7%), and followed by carboplatin+etoposide (n=39, 45.3%). First-line chemotherapy responses were complete response in 4 (4.7%) patients, partial response in 35 (40.7%) patients, stable disease in 13 (15.1%) patients, and progressive disease in 34 (39.5%) patients. The most common grade 3-4 adverse events was neutropenia in 33 (38.4%) patients. Forty nine patients (57.0%) completed the planned first-line treatment. The mPFS was 6.1 months and the mOS was 8.2 months with first-line treatment. We found that ECOG PS status was the most important negative prognostic factor for both PFS and OS. There was no difference between carboplatin+etoposide and cisplatin+etoposide regimens in terms of PFS, OS, adverse events and treatment compliance. Conclusion Thus, it may be an appropriate approach not to give up chemotherapy treatment easily in elderly patients with a diagnosis of extensive stage SCLC. It should be kept in mind that finding factors that might affect the prognosis and tailoring the tretment precisely on case-by-case basis in geriatric cancer patients have an impact on survival.
Collapse
Affiliation(s)
- Aysegul İlhan
- Department of Medical Oncology, University of Health Sciences, Dr. Abdurrahman Yurtarslan Ankara Oncology Training and Research Hospital, Ankara, TUR
| | - Fatih Gurler
- Department of Medical Oncology, University of Health Sciences, Dr. Abdurrahman Yurtarslan Ankara Oncology Training and Research Hospital, Ankara, TUR
| | - Funda Yilmaz
- Department of Medical Oncology, University of Health Sciences, Dr. Abdurrahman Yurtarslan Ankara Oncology Training and Research Hospital, Ankara, TUR
| | - Erdogan Seyran
- Department of Medical Oncology, University of Health Sciences, Dr. Abdurrahman Yurtarslan Ankara Oncology Training and Research Hospital, Ankara, TUR
| | - Vural Bastug
- Department of Internal Medicine, Gazi University School of Medicine, Ankara, TUR
| | - Bugra Gorgulu
- Department of Internal Medicine, Gazi University School of Medicine, Ankara, TUR
| | - Emrah Eraslan
- Department of Medical Oncology, University of Health Sciences, Dr. Abdurrahman Yurtarslan Ankara Oncology Training and Research Hospital, Ankara, TUR
| | - Özgen Ahmet Yıldırım
- Department of Medical Oncology, University of Health Sciences, Dr. Abdurrahman Yurtarslan Ankara Oncology Training and Research Hospital, Ankara, TUR
| | - Ozan Yazici
- Department of Medical Oncology, Gazi University, Ankara, TUR
| | - Ömür Berna Çakmak Öksüzoğlu
- Department of Medical Oncology, University of Health Sciences, Dr. Abdurrahman Yurtarslan Ankara Oncology Training and Research Hospital, Ankara, TUR
| |
Collapse
|
37
|
Mo X, Shen X, Mo X, Yu F, Tan W, Deng Z, He J, Luo Z, Chen Z, Yang J. CEMIP promotes small cell lung cancer proliferation by activation of glutamine metabolism via FBXW7/c-Myc-dependent axis. Biochem Pharmacol 2023; 209:115446. [PMID: 36746261 DOI: 10.1016/j.bcp.2023.115446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Small cell lung cancer (SCLC) is the most malignant lung cancer with rapid growth and early metastasis, but still lacks effective targeted therapies to improve the prognosis. Here, we demonstrated that a novel oncogenic protein, cell migration inducing hyaluronic binding protein (CEMIP), was robustly overexpressed in SCLC tissues than that in noncancerous tissues and high expression of CEMIP predicted poor outcomes in clinical specimens and in large sample size cohorts from public databases (GEPIA 2 and CPTAC). Liquid chromatography mass spectrometry (LC-MS) and in vitro/in vivo functional assays indicated that CEMIP contributed to the proliferation by increasing glutamine consumption and their metabolites (glutamate and glutathione) levels in SCLC cells. Moreover, the addition of a GLS1 inhibitor CB-839 dramatically reduced CEMIP-induced SCLC cell proliferation. Mechanistically, beyond as a scaffold protein, CEMIP facilitates glutamine-dependent cell proliferation through inhibiting c-Myc ubiquitination and increasing c-Myc stabilization and nuclear accumulation via hindering the interaction between FBXW7 (a E3 ubiquitin ligase) and its target substrate c-Myc. Taken together, our findings reveal a novel oncogenic role of CEMIP in sustaining SCLC growth via FBXW7/c-Myc-dependent axis, and provide new evidence that inhibition of CEMIP might be a potential therapeutic strategy for the treatment of SCLC.
Collapse
Affiliation(s)
- Xiaoxiang Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China; Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Xiaoju Shen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaocheng Mo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Fei Yu
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Weidan Tan
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Zhihua Deng
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Gastrointestinal Medicine, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, 533000 Guangxi, China
| | - Jingchuan He
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Zhuo Luo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Zhiquan Chen
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
38
|
Bailly C, Vergoten G. Interaction of Camptothecin Anticancer Drugs with Ribosomal Proteins L15 and L11: A Molecular Docking Study. Molecules 2023; 28:molecules28041828. [PMID: 36838813 PMCID: PMC9967338 DOI: 10.3390/molecules28041828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 01/31/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
The antitumor drug topotecan (TPT) is a potent inhibitor of topoisomerase I, triggering DNA breaks lethal for proliferating cancer cells. The mechanism is common to camptothecins SN38 (the active metabolite of irinotecan) and belotecan (BLT). Recently, TPT was shown to bind the ribosomal protein L15, inducing an antitumor immune activation independent of topoisomerase I. We have modeled the interaction of four camptothecins with RPL15 derived from the 80S human ribosome. Two potential drug-binding sites were identified at Ile135 and Phe129. SN38 can form robust RPL15 complexes at both sites, whereas BLT essentially gave stable complexes with site Ile135. The empirical energy of interaction (ΔE) for SN38 binding to RPL15 is similar to that determined for TPT binding to the topoisomerase I-DNA complex. Molecular models with the ribosomal protein L11 sensitive to topoisomerase inhibitors show that SN38 can form a robust complex at a single site (Cys25), much more stable than those with TPT and BLT. The main camptothecin structural elements implicated in the ribosomal protein interaction are the lactone moiety, the aromatic system and the 10-hydroxyl group. The study provides guidance to the design of modulators of ribosomal proteins L11 and L15, both considered anticancer targets.
Collapse
Affiliation(s)
- Christian Bailly
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France
- OncoWitan, Consulting Scientific Office, Wasquehal, F-59290 Lille, France
- Correspondence:
| | - Gérard Vergoten
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| |
Collapse
|
39
|
Antigene MYCN Silencing by BGA002 Inhibits SCLC Progression Blocking mTOR Pathway and Overcomes Multidrug Resistance. Cancers (Basel) 2023; 15:cancers15030990. [PMID: 36765949 PMCID: PMC9913109 DOI: 10.3390/cancers15030990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Small-cell lung cancer (SCLC) is the most aggressive lung cancer type, and is associated with smoking, low survival rate due to high vascularization, metastasis and drug resistance. Alterations in MYC family members are biomarkers of poor prognosis for a large number of SCLC. In particular, MYCN alterations define SCLC cases with immunotherapy failure. MYCN has a highly restricted pattern of expression in normal cells and is an ideal target for cancer therapy but is undruggable by traditional approaches. We propose an innovative approach to MYCN inhibition by an MYCN-specific antigene-PNA oligonucleotide (BGA002)-as a new precision medicine for MYCN-related SCLC. We found that BGA002 profoundly and specifically inhibited MYCN expression in SCLC cells, leading to cell-growth inhibition and apoptosis, while also overcoming multidrug resistance. These effects are driven by mTOR pathway block in concomitance with autophagy reactivation, thus avoiding the side effects of targeting mTOR in healthy cells. Moreover, we identified an MYCN-related SCLC gene signature comprehending CNTFR, DLX5 and TNFAIP3, that was reverted by BGA002. Finally, systemic treatment with BGA002 significantly increased survival in MYCN-amplified SCLC mouse models, including in a multidrug-resistant model in which tumor vascularization was also eliminated. These findings warrant the clinical testing of BGA002 in MYCN-related SCLC.
Collapse
|
40
|
Mejía-Méndez JL, López-Mena ER, Sánchez-Arreola E. Activities against Lung Cancer of Biosynthesized Silver Nanoparticles: A Review. Biomedicines 2023; 11:389. [PMID: 36830926 PMCID: PMC9953519 DOI: 10.3390/biomedicines11020389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Nanomedicine is an interdisciplinary field where nanostructured objects are applied to treat or diagnose disease. Nanoparticles (NPs) are a special class of materials at nanometric scale that can be prepared from lipids, polymers, or noble metals through bottom-up approaches. Biological synthesis is a reliable, sustainable, and non-toxic bottom-up method that uses phytochemicals, microorganisms, and enzymes to induce the reduction of metal ions into NPs. Silver (Ag) NPs exhibit potent therapeutic properties that can be exploited to overcome the limitations of current treatment modalities for human health issues such as lung cancer (LC). Here, we review the preparation of AgNPs using biological synthesis and their application against LC using in vitro and in vivo models. An overview of the staging, diagnosis, genetic mutations, and treatment of LC, as well as its main subtypes, is presented. A summary of the reaction mechanisms of AgNPs using microbial cell cultures, plant extracts, phytochemicals, and amino acids is included. The use of capping agents in the biosynthesis of AgNPs with anticancer activity is also detailed. The history and biological activities of metal-based nanostructures synthesized with gold, copper, palladium, and platinum are considered. The possible anticancer mechanisms of AgNPs against LC models are covered. Our perspective about the future of AgNPs in LC treatment and nanomedicine is added.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico
| | - Eugenio Sánchez-Arreola
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| |
Collapse
|
41
|
Liu Y, Wu K, Li L, Zhu F, Wang L, Su H, Li Y, Lu L, Lu G, Hu X. Total coumarins of Pileostegia tomentella induces cell death in SCLC by reprogramming metabolic patterns, possibly through attenuating β-catenin/AMPK/SIRT1. Chin Med 2023; 18:1. [PMID: 36597133 PMCID: PMC9809065 DOI: 10.1186/s13020-022-00703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Small-cell lung cancer (SCLC) is a high malignant and high energy-consuming type of lung cancer. Total coumarins of Pileostegia tomentella (TCPT) from a traditional folk medicine of Yao minority, is a potential anti-cancer mixture against SCLC, but the pharmacological and molecular mechanism of TCPT remains largely unknown. METHODS Screening of viability inhibition of TCPT among 7 cell lines were conducted by using CCK-8 assays. Anti-proliferative activities of TCPT in SCLC were observed by using colony formation and flow cytometry assays. Morphological changes were observed by transmission electron microscope and Mito-Tracker staining. High Throughput RNA-seq analysis and bio-informatics analysis were applied to find potential targeted biological and signaling pathways affected by TCPT. The mRNA expression of DEGs and protein expression of signalling proteins and metabolic enzymes were verified by qPCR and Western blot assays. Activity of rate-limiting enzymes and metabolite level were detected by corresponding enzyme activity and metabolites kits. Xenograft nude mice model of SCLC was established to observe the in vivo inhibition, metabolism reprogramming and mechanism of TCPT. RESULTS TCPT treatment shows the best inhibition in SCLC cell line H1688 rather than other 5 lung cancer cell lines. Ultrastructural investigation indicates TCPT induces mitochondria damage such as cytoplasm shrinkage, ridges concentration and early sight of autolysosome, as well as decrease of membrane potential. Results of RNA-seq combined bio-informatics analysis find out changes of metabolism progression affected the most by TCPT in SCLC cells, and these changes might be regulated by β-catenin/AMPK/SIRT1 axis. TCPT might mainly decline the activity and expression of rate-limiting enzymes, OGDH, PDHE1, and LDHA/B to reprogram aerobic oxidation pattern, resulting in reduction of ATP production in SCLC cells. Xenograft nude mice model demonstrates TCPT could induce cell death and inhibit growth in vivo. Assimilate to the results of in vitro model, TCPT reprograms metabolism by decreasing the activity and expression of rate-limiting enzymes (OGDH, PDHE1, and LDHA/B), and attenuates the expression of β-catenin, p-β-catenin, AMPK and SIRT1 accordance with in vitro data. CONCLUSION Our results demonstrated TCPT induces cell death of SCLC by reprograming metabolic patterns, possibly through attenuating master metabolic pathway axis β-catenin/AMPK/SIRT1.
Collapse
Affiliation(s)
- Ying Liu
- grid.411858.10000 0004 1759 3543Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China ,grid.411858.10000 0004 1759 3543Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China
| | - Kun Wu
- Departments of Hepatobiliary and Gastrointestinal Surgery, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021 Guangxi People’s Republic of China
| | - Li Li
- grid.411858.10000 0004 1759 3543Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China ,grid.411858.10000 0004 1759 3543Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China
| | - Fucui Zhu
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Li Wang
- grid.411858.10000 0004 1759 3543Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China ,grid.411858.10000 0004 1759 3543Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China
| | - Hua Su
- grid.411858.10000 0004 1759 3543Department of Pharmacology, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China ,grid.411858.10000 0004 1759 3543Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China
| | - Ying Li
- Department of Pharmacy, Guangxi Orthopaedics and Traumatology Hospital, Nanning, 530012 Guangxi People’s Republic of China
| | - Lu Lu
- School of Medicine & Health, Guangxi Vocational & Technical Institute of Industry, Nanning, 530001 Guangxi People’s Republic of China
| | - Guoshou Lu
- grid.411858.10000 0004 1759 3543Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China ,grid.411858.10000 0004 1759 3543Department of Chemistry, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China
| | - Xiaoxi Hu
- grid.411858.10000 0004 1759 3543Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China ,grid.411858.10000 0004 1759 3543Department of Chemistry, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, 530001 Guangxi People’s Republic of China
| |
Collapse
|
42
|
Gao L, Wang J, Chen J, Zhang X, Zhang M, Wang S, Zhao C. Anlotinib plus etoposide increases survival in patients with small-cell lung cancer after chemoradiotherapy. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Christensen DS, Ahrenfeldt J, Sokač M, Kisistók J, Thomsen MK, Maretty L, McGranahan N, Birkbak NJ. Treatment represents a key driver of metastatic cancer evolution. Cancer Res 2022; 82:2918-2927. [PMID: 35731928 DOI: 10.1158/0008-5472.can-22-0562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Metastasis is the main cause of cancer death, yet the evolutionary processes behind it remain largely unknown. Here, through analysis of large panel-based genomic datasets from the AACR GENIE project, including 40,979 primary and metastatic tumors across 25 distinct cancer types, we explore how the evolutionary pressure of cancer metastasis shapes the selection of genomic drivers of cancer. The most commonly affected genes were TP53, MYC, and CDKN2A, with no specific pattern associated with metastatic disease. This suggests that, on a driver mutation level, the selective pressure operating in primary and metastatic tumors is similar. The most highly enriched individual driver mutations in metastatic tumors were mutations known to drive resistance to hormone therapies in breast and prostate cancer (ESR1 and AR), anti-EGFR therapy in non-small cell lung cancer (EGFR T790M), and imatinib in gastrointestinal cancer (KIT V654A). Specific mutational signatures were also associated with treatment in three cancer types, supporting clonal selection following anti-cancer therapy. Overall, this implies that initial acquisition of driver mutations is predominantly shaped by the tissue of origin, where specific mutations define the developing primary tumor and drive growth, immune escape, and tolerance to chromosomal instability. However, acquisition of driver mutations that contribute to metastatic disease is less specific, with the main genomic drivers of metastatic cancer evolution associating with resistance to therapy.
Collapse
Affiliation(s)
- Ditte S Christensen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Johanne Ahrenfeldt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mateo Sokač
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Judit Kisistók
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Lasse Maretty
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, London, United Kingdom
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, United Kingdom
| | - Nicolai J Birkbak
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| |
Collapse
|
44
|
Hamilton G. Comparative characteristics of small cell lung cancer and Ewing's sarcoma: a narrative review. Transl Lung Cancer Res 2022; 11:1185-1198. [PMID: 35832443 PMCID: PMC9271444 DOI: 10.21037/tlcr-22-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022]
Abstract
Background and Objective Small cell lung cancer (SCLC) and Ewing's sarcoma (ES) at the disseminated stage are not amenable to therapy and have a dismal prognosis with low survival rates. Despite representing different tumor entities, treatment for both malignancies relies on cytotoxic chemotherapy that has not considerably changed for the past decades. The genomic background has been extensively studied and found to comprise inactivation of p53 and RB1 in case of SCLC and EWSR1/FLI1 rearrangement in case of ES resulting in aggressive tumors in adults with heavy tobacco consumption and as bone tumor in juveniles, respectively. New therapeutic modalities are urgently needed to improve the outcomes of both tumor entities, especially in patients with metastatic disease or recurrences. This review summarizes the common cell biologic and clinical characteristics of difficult-to-treat SCLC and ES and discusses their refractoriness and options to improve the therapeutic efficacy. Methods PubMed and Euro PMC were searched from January 1st, 2012 to January 16th, 2022 using the following key words: "SCLC", "Ewing´s sarcoma", "Genomics" and "Chemoresistance" as well as own work. Key Content and Findings Therapy of SCLC and ES involves the use of undirected cytotoxic drugs in multimodal chemotherapy and administration of topotecan for 2nd line SCLC regimens. Despite highly aggressive chemotherapies, outcomes are dismal for patients with disseminated tumors. A host of unrelated drugs and targeted therapeutics have failed to result in progress for the patients and the underlying mechanisms of chemoresistance are still not clear. Identification of chemoresistance-reversing modulators in vitro and patient-derived xenografts of SCLC and ES has not translated into new therapies. Conclusions The global chemoresistance of SCLC and ES may be explained by physiological resistance at the tumor level and formation of larger spheroids that contain quiescent and hypoxic tumor cells in regions that occlude therapeutics. This type of chemoresistance is difficult to overcome and prevent the accumulation of effective drug concentration at the tumor cell level to a significant degree leaving therapeutic interventions of any kind ineffective.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Ogt Demonstrated Conspicuous Clinical Significance in Cancers, from Pan-Cancer to Small-Cell Lung Cancer. JOURNAL OF ONCOLOGY 2022; 2022:2010341. [PMID: 35356257 PMCID: PMC8959957 DOI: 10.1155/2022/2010341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022]
Abstract
The clinical progression of small-cell lung cancer (SCLC) remains pessimistic. The aim of the present study was to promote the understanding of the clinical significance and mechanism of O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) in SCLC. Wilcoxon tests, standardized mean difference (SMD), and Kruskal–Wallis tests were utilized to compare OGT level differences among the experimental and control groups. The univariate Cox regression analysis, Kaplan–Meier curves, and receiver operating characteristic curves were applied to determine OGT's clinical relevance in cancers. The Spearman correlation analysis and enrichment analysis were utilized to explore the underlying mechanisms of OGT in cancers. For the first time in the field, we provide an overview of OGT in 32 cancers using a large number of samples (n = 21,196), determining distinct OGT expression in 25 cancers and its prognosis effects in 12 cancers. Furthermore, using 950 samples from multiple sources, upregulated OGT was found in both mRNA and protein levels in SCLC (SMD = 0.93, 95% CI [0.24, 1.63]). Higher OGT levels represented a more unfavorable disease-free interval for SCLC patients (p < 0.001). The research also identified OGT expression as a potential marker for SCLC prediction (sensitivity = 0.79, specificity = 0.86, and AUC = 0.88). The high expression of OGT in SCLC may result from the positive regulation of two transcription factors—DEK and XRN2. We primarily investigated the underlying mechanisms of OGT in SCLC. Herein, based on the analyses from pan-cancer to SCLC, OGT demonstrated conspicuous clinical significance. OGT may be an underlying biomarker for the treatment and identification of some cancers, including SCLC.
Collapse
|
46
|
Zhou Y, Dai M, Zhang Z. Prognostic Significance of the Systemic Immune-Inflammation Index (SII) in Patients With Small Cell Lung Cancer: A Meta-Analysis. Front Oncol 2022; 12:814727. [PMID: 35186750 PMCID: PMC8854201 DOI: 10.3389/fonc.2022.814727] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies have investigated the prognostic value of the systemic immune-inflammation index (SII) in small cell lung cancer (SCLC). However, the results have been inconsistent. The study aimed to investigate the prognostic and clinicopathological significance of SII in SCLC through a meta-analysis. Methods The PubMed, Web of Science, Embase, Cochrane Library, and China National Knowledge Infrastructure databases were thoroughly searched. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated to evaluate the prognostic value of the SII for survival outcomes. The combined odds ratios (ORs) and 95% CIs were used to evaluate the correlation between SII and clinicopathological features. Results Eight studies comprising 2,267 patients were included in the meta-analysis. Pooled analyses indicated that a high SII was significantly associated with worse overall survival (OS) (HR=1.52, 95% CI=1.15–2.00, p=0.003) but not progression-free survival (HR=1.38, 95% CI=0.81–2.35, p=0.238) in patients with SCLC. Moreover, a high SII was associated with extensive-stage SCLC (OR=2.43, 95% CI=1.86–3.17, p<0.001). However, there was a non-significant correlation between SII and age, sex, smoking history, Karnofsky Performance Status score, or initial therapeutic response. Conclusion Our meta-analysis demonstrated that a high SII could be an efficient prognostic indicator of OS in SCLC. We recommend adopting SII to predict OS in patients with SCLC, and SII in combination with other parameters or biomarkers may aid in addressing the clinical strategy and choosing the best treatment for an individual patient.
Collapse
|
47
|
Affiliation(s)
- Peter V Dicpinigaitis
- Albert Einstein College of Medicine and Montefiore Medical Center/Einstein Division, 1825 Eastchester Road, Bronx, NY, 10461, USA.
| |
Collapse
|
48
|
Kim ES, Keam SJ. Trilaciclib for the reduction of chemotherapy-induced myelosuppression in the management of extensive-stage small cell lung cancer: a profile of its use. DRUGS & THERAPY PERSPECTIVES 2022. [DOI: 10.1007/s40267-021-00889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|