1
|
Goodhead DT, Weinfeld M. Clustered DNA Damage and its Complexity: Tracking the History. Radiat Res 2024; 202:385-407. [PMID: 38954537 DOI: 10.1667/rade-24-00017.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 07/04/2024]
Abstract
The concept of radiation-induced clustered damage in DNA has grown over the past several decades to become a topic of considerable interest across the scientific disciplines involved in studies of the biological effects of ionizing radiation. This paper, prepared for the 70th anniversary issue of Radiation Research, traces historical development of the three main threads of physics, chemistry, and biochemical/cellular responses that led to the hypothesis and demonstration that a key component of the biological effectiveness of ionizing radiation is its characteristic of producing clustered DNA damage of varying complexities. The physics thread has roots that started as early as the 1920s, grew to identify critical nanometre-scale clusterings of ionizations relevant to biological effectiveness, and then, by the turn of the century, had produced an extensive array of quantitative predictions on the complexity of clustered DNA damage from different radiations. Monte Carlo track structure simulation techniques played a key role through these developments, and they are now incorporated into many recent and ongoing studies modelling the effects of radiation. The chemistry thread was seeded by water-radiolysis descriptions of events in water as radical-containing "spurs," demonstration of the important role of the hydroxyl radical in radiation-inactivation of cells and the difficulty of protection by radical scavengers. This led to the concept and description of locally multiply damaged sites (LMDS) for DNA double-strand breaks and other combinations of DNA base damage and strand breakage that could arise from a spur overlapping, or created in very close proximity to, the DNA. In these ways, both the physics and the chemistry threads, largely in parallel, put out the challenge to the experimental research community to verify these predictions of clustered DNA damage from ionizing radiations and to investigate their relevance to DNA repair and subsequent cellular effects. The third thread, biochemical and cell-based research, responded strongly to the challenge by demonstrating the existence and biological importance of clustered DNA damage. Investigations have included repair of a wide variety of defined constructs of clustered damage, evaluation of mutagenic consequences, identification of clustered base-damage within irradiated cells, and identification of co-localization of repair complexes indicative of complex clustered damage after high-LET irradiation, as well as extensive studies of the repair pathways involved in repair of simple double-strand breaks. There remains, however, a great deal more to be learned because of the diversity of clustered DNA damage and of the biological responses.
Collapse
|
2
|
Pfuhl T, Friedrich T, Scholz M. A double-strand-break model for the relative biological effectiveness of electrons based on ionization clustering. Med Phys 2022; 49:5562-5575. [PMID: 35686448 DOI: 10.1002/mp.15796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The effectiveness of ionizing radiation regarding DNA damage induction depends on its spatial energy deposition pattern. For electrons an increased effectiveness is observed at low kinetic energies due to the enhanced density of energy deposition events at electron track ends. PURPOSE A model is presented, which enables the calculation of the double-strand-break (DSB) yield and the relative biological effectiveness (RBE) for DSB induction of electrons. METHODS The model applies the mean free path between two ionizations and the assumption that two ionizations within a certain threshold distance are necessary to potentially lead to a DSB. Next to an expression for the electron RBE according to its common definition, a local RBE is determined, which describes the electrons' local effectiveness at a defined point on their track. RESULTS This local RBE allows a better understanding of microscopic processes resulting from radiation and can be used, for instance, to describe the mean effectiveness of the mixed electron radiation field as a function of the radial distance to the center of an ion track. CONCLUSIONS The presented model reflects the experimentally observed increased effectiveness of low-energetic electrons. It will be used in a future work to improve RBE predictions for ions performed with the local effect model.
Collapse
Affiliation(s)
- Tabea Pfuhl
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Thomas Friedrich
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Michael Scholz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
3
|
Zhang X, Wang F, Weng M, Cao M. Calculations of energy deposition and ionization in the 2019 novel coronavirus by electron beam irradiation. Radiat Phys Chem Oxf Engl 1993 2020; 177:109169. [PMID: 32921937 PMCID: PMC7473055 DOI: 10.1016/j.radphyschem.2020.109169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/20/2020] [Accepted: 08/29/2020] [Indexed: 11/22/2022]
Abstract
Using Monte Carlo methods, this study investigates energy deposition of energetic electrons and ionization in the 2019 novel coronavirus by electron irradiation, which are important characteristic quantities related with biological damage formation. The inelastic scattering of low-energy electrons (<10 keV) was calculated by dielectric theory. The optical energy-loss functions of viral proteins and RNA were derived from an empirical method in the energy-loss range <40 eV and the calculation of optical parameters of the biomolecules. The densities and distributions of energy deposition and ionization were calculated from the stopping power and inelastic cross-sections in the electron-cascade simulation. Electrons with primary energies of approximately 1-3 keV produced significant energy deposition and ionization in the target coronavirus. More energetic electrons were less effective due to the larger electron range and fewer scattering events in the coronavirus.
Collapse
Affiliation(s)
- Xiaqi Zhang
- Key Laboratory for Physical Electronics and Devices, Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Fang Wang
- Key Laboratory for Physical Electronics and Devices, Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Ming Weng
- Key Laboratory for Physical Electronics and Devices, Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Meng Cao
- Key Laboratory for Physical Electronics and Devices, Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
4
|
Tsai MY, Tian Z, Qin N, Yan C, Lai Y, Hung SH, Chi Y, Jia X. A new open-source GPU-based microscopic Monte Carlo simulation tool for the calculations of DNA damages caused by ionizing radiation --- Part I: Core algorithm and validation. Med Phys 2020; 47:1958-1970. [PMID: 31971258 DOI: 10.1002/mp.14037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Monte Carlo (MC) simulation of radiation interactions with water medium at physical, physicochemical, and chemical stages, as well as the computation of biologically relevant quantities such as DNA damages, are of critical importance for the understanding of microscopic basis of radiation effects. Due to the large problem size and many-body simulation problem in the chemical stage, existing CPU-based computational packages encounter the problem of low computational efficiency. This paper reports our development on a GPU-based microscopic Monte Carlo simulation tool gMicroMC using advanced GPU-acceleration techniques. METHODS gMicroMC simulated electron transport in the physical stage using an interaction-by-interaction scheme to calculate the initial events generating radicals in water. After the physicochemical stage, initial positions of all radicals were determined. Simulation of radicals' diffusion and reactions in the chemical stage was achieved using a step-by-step model using GPU-accelerated parallelization together with a GPU-enabled box-sorting algorithm to reduce the computations of searching for interaction pairs and therefore improve efficiency. A multi-scale DNA model of the whole lymphocyte cell nucleus containing ~6.2 Gbp of DNA was built. RESULTS Accuracy of physical stage simulation was demonstrated by computing stopping power and track length. The results agreed with published data and the data produced by GEANT4-DNA (version 10.3.3) simulations with 10 -20% difference in most cases. Difference of yield values of major radiolytic species from GEANT4-DNA results was within 10%. We computed DNA damages caused by monoenergetic 662 keV photons, approximately representing 137 Cs decay. Single-strand break (SSB) and double-strand break (DSB) yields were 196 ± 8 SSB/Gy/Gbp and 7.3 ± 0.7 DSB/Gy/Gbp, respectively, which agreed with the result of 188 SSB/Gy/Gbp and 8.4 DSB/Gy/Gbp computed by Hsiao et al. Compared to computation using a single CPU, gMicroMC achieved a speedup factor of ~540x using an NVidia TITAN Xp GPU card. CONCLUSIONS The achieved accuracy and efficiency demonstrated that gMicroMC can facilitate research on microscopic radiation transport simulation and DNA damage calculation. gMicroMC is an open-source package available to the research community.
Collapse
Affiliation(s)
- Min-Yu Tsai
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA.,Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Zhen Tian
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| | - Nan Qin
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| | - Congchong Yan
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| | - Youfang Lai
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA.,Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Shih-Hao Hung
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Yujie Chi
- Department of Physics, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Xun Jia
- Innovative Technology Of Radiotherapy Computation and Hardware (iTORCH) laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75287, USA
| |
Collapse
|
5
|
Liu W, Tan Z, Zhang L, Champion C. Investigation on the correlation between energy deposition and clustered DNA damage induced by low-energy electrons. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:179-187. [PMID: 29335772 DOI: 10.1007/s00411-018-0730-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 01/10/2018] [Indexed: 06/07/2023]
Abstract
This study presents the correlation between energy deposition and clustered DNA damage, based on a Monte Carlo simulation of the spectrum of direct DNA damage induced by low-energy electrons including the dissociative electron attachment. Clustered DNA damage is classified as simple and complex in terms of the combination of single-strand breaks (SSBs) or double-strand breaks (DSBs) and adjacent base damage (BD). The results show that the energy depositions associated with about 90% of total clustered DNA damage are below 150 eV. The simple clustered DNA damage, which is constituted of the combination of SSBs and adjacent BD, is dominant, accounting for 90% of all clustered DNA damage, and the spectra of the energy depositions correlating with them are similar for different primary energies. One type of simple clustered DNA damage is the combination of a SSB and 1-5 BD, which is denoted as SSB + BD. The average contribution of SSB + BD to total simple clustered DNA damage reaches up to about 84% for the considered primary energies. In all forms of SSB + BD, the SSB + BD including only one base damage is dominant (above 80%). In addition, for the considered primary energies, there is no obvious difference between the average energy depositions for a fixed complexity of SSB + BD determined by the number of base damage, but average energy depositions increase with the complexity of SSB + BD. In the complex clustered DNA damage constituted by the combination of DSBs and BD around them, a relatively simple type is a DSB combining adjacent BD, marked as DSB + BD, and it is of substantial contribution (on average up to about 82%). The spectrum of DSB + BD is given mainly by the DSB in combination with different numbers of base damage, from 1 to 5. For the considered primary energies, the DSB combined with only one base damage contributes about 83% of total DSB + BD, and the average energy deposition is about 106 eV. However, the energy deposition increases with the complexity of clustered DNA damage, and therefore, the clustered DNA damage with high complexity still needs to be considered in the study of radiation biological effects, in spite of their small contributions to all clustered DNA damage.
Collapse
Affiliation(s)
- Wei Liu
- School of Electrical Engineering, Shandong University, Jinan, 250061, Shandong, People's Republic of China
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan, 250357, People's Republic of China
| | - Zhenyu Tan
- School of Electrical Engineering, Shandong University, Jinan, 250061, Shandong, People's Republic of China.
| | - Liming Zhang
- Electric Power Research Institute of Tianjin Electric Power Corporation, Tianjin, 300384, People's Republic of China
| | - Christophe Champion
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, CNRS/IN2P3, BP 120, 33175, Gradignan, France
| |
Collapse
|
6
|
Piroozfar B, Raisali G, Alirezapour B, Mirzaii M. The effect of 111In radionuclide distance and auger electron energy on direct induction of DNA double-strand breaks: a Monte Carlo study using Geant4 toolkit. Int J Radiat Biol 2018; 94:385-393. [DOI: 10.1080/09553002.2018.1440329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Behnaz Piroozfar
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Gholamreza Raisali
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Behrouz Alirezapour
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Mohammad Mirzaii
- Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
7
|
Henthorn NT, Warmenhoven JW, Sotiropoulos M, Mackay RI, Kirkby KJ, Merchant MJ. Nanodosimetric Simulation of Direct Ion-Induced DNA Damage Using Different Chromatin Geometry Models. Radiat Res 2017; 188:690-703. [PMID: 28792846 DOI: 10.1667/rr14755.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Monte Carlo based simulation has proven useful in investigating the effect of proton-induced DNA damage and the processes through which this damage occurs. Clustering of ionizations within a small volume can be related to DNA damage through the principles of nanodosimetry. For simulation, it is standard to construct a small volume of water and determine spatial clusters. More recently, realistic DNA geometries have been used, tracking energy depositions within DNA backbone volumes. Traditionally a chromatin fiber is built within the simulation and identically replicated throughout a cell nucleus, representing the cell in interphase. However, the in vivo geometry of the chromatin fiber is still unknown within the literature, with many proposed models. In this work, the Geant4-DNA toolkit was used to build three chromatin models: the solenoid, zig-zag and cross-linked geometries. All fibers were built to the same chromatin density of 4.2 nucleosomes/11 nm. The fibers were then irradiated with protons (LET 5-80 keV/μm) or alpha particles (LET 63-226 keV/μm). Nanodosimetric parameters were scored for each fiber after each LET and used as a comparator among the models. Statistically significant differences were observed in the double-strand break backbone size distributions among the models, although nonsignificant differences were noted among the nanodosimetric parameters. From the data presented in this article, we conclude that selection of the solenoid, zig-zag or cross-linked chromatin model does not significantly affect the calculated nanodosimetric parameters. This allows for a simulation-based cell model to make use of any of these chromatin models for the scoring of direct ion-induced DNA damage.
Collapse
Affiliation(s)
- N T Henthorn
- a Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - J W Warmenhoven
- a Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - M Sotiropoulos
- a Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - R I Mackay
- b Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom; and
| | - K J Kirkby
- a Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom.,c The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - M J Merchant
- a Division of Molecular and Clinical Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom.,c The Christie NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
8
|
Liu W, Tan Z, Zhang L, Champion C. Calculation on spectrum of direct DNA damage induced by low-energy electrons including dissociative electron attachment. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:99-110. [PMID: 28185000 DOI: 10.1007/s00411-016-0681-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 12/30/2016] [Indexed: 06/06/2023]
Abstract
In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.
Collapse
Affiliation(s)
- Wei Liu
- School of Electrical Engineering, Shandong University, Jinan, 250061, Shandong, People's Republic of China
| | - Zhenyu Tan
- School of Electrical Engineering, Shandong University, Jinan, 250061, Shandong, People's Republic of China.
| | - Liming Zhang
- School of Electrical Engineering, Shandong University, Jinan, 250061, Shandong, People's Republic of China
- Electric Power Research Institute of Tianjin Electric Power Corporation, Tianjin, 300384, People's Republic of China
| | - Christophe Champion
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, CNRS/IN2P3, BP 120, 33175, Gradignan, France
| |
Collapse
|
9
|
Pater P, Seuntjens J, El Naqa I, Bernal MA. On the consistency of Monte Carlo track structure DNA damage simulations. Med Phys 2015; 41:121708. [PMID: 25471955 DOI: 10.1118/1.4901555] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Monte Carlo track structures (MCTS) simulations have been recognized as useful tools for radiobiological modeling. However, the authors noticed several issues regarding the consistency of reported data. Therefore, in this work, they analyze the impact of various user defined parameters on simulated direct DNA damage yields. In addition, they draw attention to discrepancies in published literature in DNA strand break (SB) yields and selected methodologies. METHODS The MCTS code Geant4-DNA was used to compare radial dose profiles in a nanometer-scale region of interest (ROI) for photon sources of varying sizes and energies. Then, electron tracks of 0.28 keV-220 keV were superimposed on a geometric DNA model composed of 2.7 × 10(6) nucleosomes, and SBs were simulated according to four definitions based on energy deposits or energy transfers in DNA strand targets compared to a threshold energy ETH. The SB frequencies and complexities in nucleosomes as a function of incident electron energies were obtained. SBs were classified into higher order clusters such as single and double strand breaks (SSBs and DSBs) based on inter-SB distances and on the number of affected strands. RESULTS Comparisons of different nonuniform dose distributions lacking charged particle equilibrium may lead to erroneous conclusions regarding the effect of energy on relative biological effectiveness. The energy transfer-based SB definitions give similar SB yields as the one based on energy deposit when ETH ≈ 10.79 eV, but deviate significantly for higher ETH values. Between 30 and 40 nucleosomes/Gy show at least one SB in the ROI. The number of nucleosomes that present a complex damage pattern of more than 2 SBs and the degree of complexity of the damage in these nucleosomes diminish as the incident electron energy increases. DNA damage classification into SSB and DSB is highly dependent on the definitions of these higher order structures and their implementations. The authors' show that, for the four studied models, different yields are expected by up to 54% for SSBs and by up to 32% for DSBs, as a function of the incident electrons energy and of the models being compared. CONCLUSIONS MCTS simulations allow to compare direct DNA damage types and complexities induced by ionizing radiation. However, simulation results depend to a large degree on user-defined parameters, definitions, and algorithms such as: DNA model, dose distribution, SB definition, and the DNA damage clustering algorithm. These interdependencies should be well controlled during the simulations and explicitly reported when comparing results to experiments or calculations.
Collapse
Affiliation(s)
- Piotr Pater
- McGill University, Montreal, Quebec H3G 1A4, Canada
| | | | | | - Mario A Bernal
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas 13083-859, Brazil
| |
Collapse
|
10
|
Kopyra J, Abdoul-Carime H. Temperature dependence of the cross section for the fragmentation of thymine via dissociative electron attachment. J Chem Phys 2015; 142:174303. [PMID: 25956096 DOI: 10.1063/1.4919638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Providing experimental values for absolute Dissociative Electron Attachment (DEA) cross sections for nucleobases at realistic biological conditions is a considerable challenge. In this work, we provide the temperature dependence of the cross section, σ, of the dehydrogenated thymine anion (T - H)(-) produced via DEA. Within the 393-443 K temperature range, it is observed that σ varies by one order of magnitude. By extrapolating to a temperature of 313 K, the relative DEA cross section for the production of the dehydrogenated thymine anion at an incident energy of 1 eV decreases by 2 orders of magnitude and the absolute value reaches approximately 6 × 10(-19) cm(2). These quantitative measurements provide a benchmark for theoretical prediction and also a contribution to a more accurate description of the effects of ionizing radiation on molecular medium.
Collapse
Affiliation(s)
- Janina Kopyra
- Faculty of Science, Siedlce University, 3 Maja 54, 08-110 Siedlce, Poland
| | - Hassan Abdoul-Carime
- Université de Lyon; Université Claude Bernard Lyon1; Institut de Physique Nucléaire de Lyon, CNRS/IN2P3 UMR 5822, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
| |
Collapse
|
11
|
Rezaee M, Hunting DJ, Sanche L. Correlation between energy deposition and molecular damage from Auger electrons: A case study of ultra-low energy (5-18 eV) electron interactions with DNA. Med Phys 2014; 41:072502. [PMID: 24989405 PMCID: PMC4623756 DOI: 10.1118/1.4881329] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/13/2014] [Accepted: 05/18/2014] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The present study introduces a new method to establish a direct correlation between biologically related physical parameters (i.e., stopping and damaging cross sections, respectively) for an Auger-electron emitting radionuclide decaying within a target molecule (e.g., DNA), so as to evaluate the efficacy of the radionuclide at the molecular level. These parameters can be applied to the dosimetry of Auger electrons and the quantification of their biological effects, which are the main criteria to assess the therapeutic efficacy of Auger-electron emitting radionuclides. METHODS Absorbed dose and stopping cross section for the Auger electrons of 5-18 eV emitted by(125)I within DNA were determined by developing a nanodosimetric model. The molecular damages induced by these Auger electrons were investigated by measuring damaging cross section, including that for the formation of DNA single- and double-strand breaks. Nanoscale films of pure plasmid DNA were prepared via the freeze-drying technique and subsequently irradiated with low-energy electrons at various fluences. The damaging cross sections were determined by employing a molecular survival model to the measured exposure-response curves for induction of DNA strand breaks. RESULTS For a single decay of(125)I within DNA, the Auger electrons of 5-18 eV deposit the energies of 12.1 and 9.1 eV within a 4.2-nm(3) volume of a hydrated or dry DNA, which results in the absorbed doses of 270 and 210 kGy, respectively. DNA bases have a major contribution to the deposited energies. Ten-electronvolt and high linear energy transfer 100-eV electrons have a similar cross section for the formation of DNA double-strand break, while 100-eV electrons are twice as efficient as 10 eV in the induction of single-strand break. CONCLUSIONS Ultra-low-energy electrons (<18 eV) substantially contribute to the absorbed dose and to the molecular damage from Auger-electron emitting radionuclides; hence, they should be considered in the dosimetry calculation of such radionuclides. Moreover, absorbed dose is not an appropriate physical parameter for nanodosimetry. Instead, stopping cross section, which describes the probability of energy deposition in a target molecule can be an appropriate nanodosimetric parameter. The stopping cross section is correlated with a damaging cross section (e.g., cross section for the double-strand break formation) to quantify the number of each specific lesion in a target molecule for each nuclear decay of a single Auger-electron emitting radionuclide.
Collapse
Affiliation(s)
- Mohammad Rezaee
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Darel J. Hunting
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Léon Sanche
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
12
|
Boulanouar O, Fromm M, Bass AD, Cloutier P, Sanche L. Absolute cross section for loss of supercoiled topology induced by 10 eV electrons in highly uniform /DNA/1,3-diaminopropane films deposited on highly ordered pyrolitic graphite. J Chem Phys 2013; 139:055104. [PMID: 23927289 PMCID: PMC3812120 DOI: 10.1063/1.4817323] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It was recently shown that the affinity of doubly charged, 1-3 diaminopropane (Dap(2+)) for DNA permits the growth on highly ordered pyrolitic graphite (HOPG) substrates, of plasmid DNA films, of known uniform thickness [O. Boulanouar, A. Khatyr, G. Herlem, F. Palmino, L. Sanche, and M. Fromm, J. Phys. Chem. C 115, 21291-21298 (2011)]. Post-irradiation analysis by electrophoresis of such targets confirms that electron impact at 10 eV produces a maximum in the yield of single strand breaks that can be associated with the formation of a DNA(-) transient anion. Using a well-adapted deterministic survival model for the variation of electron damage with fluence and film thickness, we have determined an absolute cross section for strand-break damage by 10 eV electrons and inelastic scattering attenuation length in DNA-Dap complex films.
Collapse
Affiliation(s)
- Omar Boulanouar
- Laboratoire de Chimie Physique et Rayonnements – Alain Chambaudet, LRC CEA, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
| | - Michel Fromm
- Laboratoire de Chimie Physique et Rayonnements – Alain Chambaudet, LRC CEA, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
| | - Andrew D. Bass
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec J1H 5N4, Canada
| | - Pierre Cloutier
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec J1H 5N4, Canada
| | - Léon Sanche
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et de Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
13
|
Song Z, Luo L. Escherichia coli mutants induced by multi-ion irradiation. JOURNAL OF RADIATION RESEARCH 2012; 53:854-859. [PMID: 23111758 PMCID: PMC3483858 DOI: 10.1093/jrr/rrs061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 06/01/2023]
Abstract
Wild-type Escherichia coli K12 strain W3110 was irradiated by 10 keV nitrogen ions. Specifically, irradiation was performed six times by N(+) ions, followed by the selection of lac constitutive mutants, and each time a stable S55 mutant was produced. By sequencing the whole genome, the fine map of S55 was completed. Compared with reference sequences, a total of eighteen single nucleotide polymorphisms (SNPs), two insertions and deletions (Indels), and nine structural variations (SVs) were found in the S55 genome. Among the 18 SNPs, 11 are transversional from A, T or C to G, accounting for 55.6% of point mutations. GCCA insertion occurs in the target gene lacI. Four SNPs, including three in rlpB and one in ygbN, are connected with cell envelope and transport. All nine structural variations of S55 are deletions and contain insertion sequence (IS) elements. Six deleted SVs contain disrupted ISs, nonfunctional pseudogenes, and one more 23 252 bp SV in the Rac prophage region. Overall, our results show that deletion bias observed in E. coli K12 genome evolution is generally related to the deletion of some nonfunctional regions. Furthermore, since ISs are unstable factors in a genome, the multi-ion irradiations that caused these deleted fragments in S55 turn out to be beneficial to genome stability, generating a wider mutational spectrum. Thus, it is possible that the mutation of these genes increases the ability of the E. coli genome to resist etch and damage caused by ion irradiation.
Collapse
Affiliation(s)
| | - Liaofu Luo
- Corresponding author: Key Laboratory of Ion Beam Bioengineering of Inner Mongolia Autonomous Region, School of Physical Science and Technology, Inner Mongolia University, 235 West Daxue St., Hohhot 010021, PR China. Tel: +86-471-499-2676; Fax: +86-471-499-3124;
| |
Collapse
|
14
|
Alizadeh E, Sanche L. Precursors of solvated electrons in radiobiological physics and chemistry. Chem Rev 2012; 112:5578-602. [PMID: 22724633 DOI: 10.1021/cr300063r] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elahe Alizadeh
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Canada
| | | |
Collapse
|
15
|
Kopyra J, Szamrej I, Abdoul-Carime H, Farizon B, Farizon M. Decomposition of methionine by low energy electrons. Phys Chem Chem Phys 2012; 14:8000-4. [PMID: 22555818 DOI: 10.1039/c2cp40461c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we present the results from low energy (<12 eV) electron impact on isolated methionine, Met. We show that dissociative electron attachment is the operative mechanism for the sulfur content amino-acid fragmentation. The two most dominant fragments are attributed to the (Met-H)(-) and (C(4)NOH(5))(-) ions that are formed at energy below 2 eV. The formation of the latter anion is accompanied by the loss of neutral counterparts, which are most likely a water molecule and highly toxic methanethiol, CH(3)SH. Further fragments are associated with the damage at the sulfur end of the amino acid, producing the methyl sulfide anion CH(3)S(-) or sulfur containing neutrals. In the context of radiation induced damage to biological material at the nano-scale level, the present interest of methionine arises from the implication of the molecule in biological processes (e.g., S-adenosyl methionine for the stimulation of DNA methyltransferase reactions or protein synthesis).
Collapse
Affiliation(s)
- Janina Kopyra
- Department of Chemistry, Siedlce University, 3-Maja 54, 08-110 Siedlce, Poland.
| | | | | | | | | |
Collapse
|
16
|
Michaud M, Bazin M, Sanche L. Measurement of inelastic cross sections for low-energy electron scattering from DNA bases. Int J Radiat Biol 2012; 88:15-21. [PMID: 21615242 PMCID: PMC3828174 DOI: 10.3109/09553002.2011.577505] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To determine experimentally the absolute cross sections (CS) to deposit various amount of energies into DNA bases by low-energy electron (LEE) impact. MATERIALS AND METHODS Electron energy loss (EEL) spectra of DNA bases were recorded for different LEE impact energies on the molecules deposited at very low coverage on an inert argon (Ar) substrate. Following their normalisation to the effective incident electron current and molecular surface number density, the EEL spectra were then fitted with multiple Gaussian functions in order to delimit the various excitation energy regions. The CS to excite a molecule into its various excitation modes were finally obtained from computing the area under the corresponding Gaussians. RESULTS The EEL spectra and absolute CS for the electronic excitations of pyrimidine and the DNA bases thymine, adenine, and cytosine by electron impacts below 18 eV were reported for the molecules deposited at about monolayer coverage on a solid Ar substrate. CONCLUSIONS The CS for electronic excitations of DNA bases by LEE impact were found to lie within the 10(216) to 10(218) cm(2) range. The large value of the total ionisation CS indicated that ionisation of DNA bases by LEE is an important dissipative process via which ionising radiation degrades and is absorbed in DNA.
Collapse
Affiliation(s)
- Marc Michaud
- Department of Nuclear Medicine and Radiobiology, Sherbrooke, Quebec, Canada.
| | | | | |
Collapse
|
17
|
|
18
|
|
19
|
Bug MU, Baek WY, Rabus H. Simulation of ionisation clusters formed in nanometric volumes of the deoxyribose-substitute tetrahydrofuran. Int J Radiat Biol 2011; 88:137-42. [DOI: 10.3109/09553002.2011.610864] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|